JP4085797B2 - Chromaticity processing method - Google Patents

Chromaticity processing method Download PDF

Info

Publication number
JP4085797B2
JP4085797B2 JP2002348159A JP2002348159A JP4085797B2 JP 4085797 B2 JP4085797 B2 JP 4085797B2 JP 2002348159 A JP2002348159 A JP 2002348159A JP 2002348159 A JP2002348159 A JP 2002348159A JP 4085797 B2 JP4085797 B2 JP 4085797B2
Authority
JP
Japan
Prior art keywords
chromaticity
water
chlorine
catalyst
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002348159A
Other languages
Japanese (ja)
Other versions
JP2004181285A (en
Inventor
奬吾 安財
良弘 恵藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002348159A priority Critical patent/JP4085797B2/en
Publication of JP2004181285A publication Critical patent/JP2004181285A/en
Application granted granted Critical
Publication of JP4085797B2 publication Critical patent/JP4085797B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、色度成分を含有する水に塩素系酸化剤を添加して金属酸化物触媒と接触させることにより色度成分を除去する色度処理方法に関する。
【0002】
【従来の技術】
従来、色度成分を含む水から色度成分を除去する方法としては、硫酸アルミニウムや塩化第二鉄等の凝集剤を添加して凝集沈殿処理する方法や、活性炭による吸着処理法、塩素やオゾン等の酸化剤による酸化分解法などがあるが、特公昭58−8307号公報には、処理により汚泥が発生せず、効率的に色度成分を除去する方法として、酸化剤と共に、コバルト及び/又はニッケルをゼオライトやアルミナ等の担体に担持した触媒を用いて、色度成分を接触酸化分解する方法が提案されている。
【0003】
【特許文献1】
特公昭58−8307号公報
【0004】
【発明が解決しようとする課題】
特公昭58−8307号公報に記載される触媒酸化分解法であれば、汚泥を発生させることなく、水中の色度成分を効率的に除去することができるが、酸化剤の添加量制御が難しく、酸化剤の過不足により、触媒の劣化、或いは後工程における残留酸化剤除去処理の負荷の増大といった問題があった。
【0005】
即ち、酸化剤添加量は、一般的には被処理水の色度に対して比例制御されるが、処理される排水は、量、水質(色度)ともに変化するため、酸化剤の添加量制御は容易ではなく、色度負荷が低下した場合には、酸化剤が過剰添加となり、後工程における残留酸化剤除去処理の負荷が増大し、逆に色度負荷が増加し、酸化剤が不足した場合には、金属酸化物触媒が活性酸素を維持できなくなり、触媒の劣化が進行してしまうことにより、処理水の水質が悪化する。
【0006】
本発明は上記従来の問題点を解決し、色度成分を含有する水に塩素系酸化剤を添加して金属酸化物触媒と接触させることにより色度成分を除去するに当たり、塩素系酸化剤の過不足を防止して、安定かつ効率的な処理を行う方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明(請求項1)の色度処理方法は、色度成分を含有する水に塩素系酸化剤を添加して金属酸化物触媒と接触させることにより色度成分を除去する方法において、処理水に残留する塩素系酸化剤の有効成分濃度が2〜50mg−Cl/Lとなるように該塩素系酸化剤を添加する色度処理方法であって、前記金属過酸化物触媒が、過酸化ニッケル及び/又は過酸化コバルトを担持したリン酸塩含有化合物であり、該リン酸塩含有化合物がヒドロキシアパタイト、クロロアパタイト及びフロロアパタイトよりなる群から選ばれた1種又は2種以上であることを特徴とする。
【0008】
本発明(請求項2)の色度処理方法は、色度成分を含有する水に塩素系酸化剤を添加して金属過酸化物触媒と接触させることにより色度成分を除去する方法において、処理水に残留する塩素系酸化剤の有効成分濃度が2〜50mg−Cl /Lとなるように該塩素系酸化剤を添加する色度処理方法であって、前記金属過酸化物触媒が、過酸化ニッケル及び/又は過酸化コバルトを担持したリン酸塩含有化合物であり、前記リン酸塩含有化合物が天然産出リン鉱石であることを特徴とする。
【0009】
処理水中に残留する酸化剤の有効成分濃度が2〜50mg−Cl/Lとなるように酸化剤を添加制御することにより、触媒の劣化を防止すると共に、後段の残留酸化剤処理の負荷を低減して、良好な水質の処理水を安定かつ効率的に得ることができる。
【0010】
本発明において、金属酸化物触媒としては、過酸化ニッケル及び/又は過酸化コバルトを担持したリン酸塩含有化合物が用いられる。このリン酸塩含有化合物としては、ヒドロキシアパタイト、クロロアパタイト、フロロアパタイトや天然産出リン鉱石が挙げられる。また、塩素系酸化剤としては、次亜塩素酸塩等が挙げられ、この場合、処理水の残留塩素濃度が2〜50mg−Cl/Lとなるように塩素系酸化剤を添加する。
【0011】
【発明の実施の形態】
以下に本発明の色度処理方法の実施の形態を詳細に説明する。
【0012】
本発明においては、色度成分を含む水(被処理水)に塩素系酸化剤を添加して金属酸化物触媒を接触させる。
【0013】
素系酸化剤には特に制限はなく、例えば、塩素、次亜塩素酸ナトリウム、次亜塩素酸カリウム、次亜塩素酸カルシウムなどの次亜塩素酸塩、亜塩素酸ナトリウム、亜塩素酸カリウムなどの亜塩素酸塩、塩素酸ナトリウム、塩素酸カリウム、塩素酸カルシウムなどの塩素酸塩、過塩素酸ナトリウム、過塩素酸カルシウムなどの過塩素酸塩などを挙げることができる。これらの中で、次亜塩素酸塩は適度の酸化性を有するので、好適に使用することができる。
【0014】
このような塩素系酸化剤の添加量は、少な過ぎると金属酸化物触媒が劣化し、多過ぎても添加量に見合う効果を得ることができない上に、処理後に残留する酸化剤の除去手段における負荷が増大し、好ましくない。従って、このような問題を防止するべく、塩素系酸化剤等の酸化剤は処理水の残留塩素濃度等の残留酸化剤の有効成分濃度が2〜50mg−Cl/L、好ましくは5〜50mg−Cl/Lとなるように添加することが好ましい。
【0015】
本発明で使用する金属過酸化物触媒としては、例えば、過酸化コバルト、過酸化ニッケル、過酸化銅、過酸化銀などの1種又は2種以上、好ましくは過酸化ニッケル及び/又は過酸化コバルトを挙げることができる。これらの金属過酸化物触媒は、リン酸カルシウム系化合物に担持させ。ここで、リン酸カルシウム系化合物としては、ヒドロキシアパタイト(Ca10(POOH)、クロロアパタイト(Ca10(POCl)、フロロアパタイト(Ca10(POよりなるアパタイト系化合物が挙げられるが、その他、天然産出リン鉱石のような天然鉱物を用いることができる。これらの担体は1種を単独で用いても良く、2種以上を混合して用いても良い。
【0016】
このような金属酸化物担持触媒の金属担持量は、担体の重量当たり0.01〜10重量%とすることが好ましい。この担持量が0.01重量%未満では触媒金属量が少なく、十分な触媒作用を得ることができず、10重量%を超える担持量で担持させることは、技術的に困難である。
【0017】
このような触媒の調製方法を、ヒドロキシアパタイトを担体とする過酸化ニッケル担持触媒を例として、以下に説明する。
【0018】
ヒドロキシアパタイトへのニッケルの担持は、ニッケルの硫酸塩、硝酸塩、塩化物などの水溶液又はこれらの混合水溶液と接触させることにより行う。接触方法としては、ヒドロキシアパタイトの粒子をニッケル化合物水溶液に浸漬する方法、或いは、ヒドロキシアパタイトの粒子をカラムなどに充填し、ニッケル化合物水溶液を一過式又は循環式に通水する方法などが挙げられる。ニッケル化合物水溶液の濃度や接触時間は、ヒドロキシアパタイト上に必要量のニッケルが担持されるように設定すれば良い。ニッケル化合物の水溶液で処理したヒドロキシアパタイトを、水溶液と分離した後、必要に応じて水洗する。
【0019】
次いで、このようにして得られたニッケル担持ヒドロキシアパタイトを、酸化剤を含むアルカリ水溶液と接触させることにより、過酸化ニッケル担持触媒を得る。この場合の接触方法としては、ニッケルイオンを担持したヒドロキシアパタイトを酸化剤を含むアルカリ水溶液に浸漬する方法、或いは、このヒドロキシアパタイトをカラムなどに充填し、酸化剤を含むアルカリ水溶液を一過式又は循環式に通水する方法などが挙げられる。ここで、酸化剤としては、例えば、次亜塩素酸ナトリウム、塩素ガス、電解により発生させた塩素など、遊離塩素を発生する各種の塩素系酸化剤が好適に用いられる。また、アルカリ水溶液としては、水酸化ナトリウム、水酸化カリウムなどの水溶液を用いることができる。
【0020】
本発明の色度処理方法において、被処理水に塩素系酸化剤を添加してこのような金属酸化物触媒と接触させる方法としては特に制限はないが、例えば、次のような方法を採用することができる。
【0021】
(1) 被処理水に酸化剤を添加した後、金属酸化物触媒を充填したカラムに通水する。
(2) 被処理水に酸化剤と金属酸化物触媒を添加して撹拌し、その後固液分離する。
【0022】
上記(1)の方法において、被処理水の通水速度は、被処理水の色度、目標とする処理水の色度、酸化剤の添加量等に応じて適宜決定されるが、通常の場合、通水SVで1〜20hr−1程度とすることが好ましい。
【0023】
上記(2)の方法において、被処理水への金属酸化物触媒の添加量は、被処理水の色度、目標とする処理水の色度、酸化剤の添加量等に応じて適宜決定されるが、通常の場合、50〜500mg−Cl/L程度とすることが好ましい。
【0024】
このような本発明の色度処理方法によれば、例えば、飲料水工場、食品工場、
染料工場、肥料工場、半導体工場、発電所などより排出される着色排水を最適な塩素系酸化剤添加量で効率的に処理して良好な処理水を得ることができる。
【0025】
なお、本発明の色度処理方法及び処理装置では、排水中の色度成分と共にCOD成分も分解除去することができる。
【0026】
【実施例】
以下に実施例を挙げて本発明をより具体的に説明する。
【0027】
なお、以下の実施例及び比較例においては、金属酸化物触媒として、以下の方法で調製した過酸化ニッケル担持ヒドロキシアパタイト触媒を用いた。
【0028】
[過酸化ニッケル担持ヒドロキシアパタイト触媒の調製]
(1) 担体として、ヒドロキシアパタイト(キシダ化学社製特級,粒径0.5mm)1000gを採り、SS成分がなくなるまで洗浄した。
(2) 硫酸ニッケル(NiSO・6HO)112g(25g−Ni/1000g−dry担体)を800mLの超純水に溶解した。これを(1)の水洗した担体に添加し、20hr放置した(担体に対して2.5重量%−Ni添加)。
(3) (2)の上澄み液を廃棄した。
(4) (3)で分離した担体を、1000mLの超純水で3度洗浄した。
(5) 35gの水酸化ナトリウム(NaOH)を500mLの超純水に溶解し、400mLの10重量%次亜塩素酸ナトリウム(NaClO)水溶液を添加した溶液を(4)の担体に添加し、20hr放置した。
(6) (5)の上澄み液を廃棄した後、洗浄水のpHが10になるまで分離した担体を超純水で洗浄した。
【0029】
実施例1
金属酸化物触媒を50mL充填した触媒塔に、飲料工場の着色排水(色度1200度)に酸化剤としてNaClOを150〜470mg−Cl/Lの範囲で添加量を変えて添加した水を通水速度500mL/hr(通水SV:10hr−1)で通水して処理を行った(ここで色度とはJIS Z8722(物体色の測定方法)に準拠して測定した値であり、処理水色度の目標値は100度以下である。)。
【0030】
得られた処理水の色度と残留塩素濃度との関係を調べ、結果を図1に示した。
【0031】
図1より次のことが明らかである。残留塩素濃度が2mg/L未満の場合(No.1=1.1mg−Cl/L、No.2=0.7mg−Cl/L)には、処理水の色度も高いが、触媒塔上部の触媒が白色化していることが確認された。この白色化は脱色作用のある触媒の活性酸素が失われていることを示し、触媒の劣化が進行していると考えられる。残留塩素濃度が2mg−Cl/L以上であれば(No.3=11mg−Cl/L)、このような触媒劣化の問題はない。また、塩素系酸化剤濃度が50mg−Cl/Lを超えても(No.6=67mg−Cl/L,No.7=71mg−Cl/L,No.8=106mg−Cl/L)、処理水色度はほぼ一定である。処理水色度の点から、残留塩素濃度は特に5〜50mg−Cl/L、とりわけ15〜50mg−Cl/L(No.4=21mg−Cl/L,No.5=36mg−Cl/L)であることが好ましい。
【0032】
【発明の効果】
以上詳述した通り、本発明の色度処理によれば、色度成分を含有する水に塩素系酸化剤を添加して金属酸化物触媒と接触させることにより色度成分を除去するに当たり、酸化剤の過不足を防止して、安定かつ効率的な処理を行うことができる。
【図面の簡単な説明】
【図1】 実施例1の結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chromaticity treatment method for removing a chromaticity component by adding a chlorine-based oxidizing agent to water containing the chromaticity component and bringing it into contact with a metal peroxide catalyst.
[0002]
[Prior art]
Conventionally, as a method for removing chromaticity components from water containing chromaticity components, a coagulating and precipitating method by adding a coagulant such as aluminum sulfate or ferric chloride, an adsorption treatment method using activated carbon, chlorine or ozone. In Japanese Patent Publication No. 58-8307, as a method for efficiently removing chromaticity components without producing sludge by treatment, cobalt and / or Alternatively, a method has been proposed in which a chromaticity component is catalytically oxidized and decomposed using a catalyst in which nickel is supported on a support such as zeolite or alumina.
[0003]
[Patent Document 1]
Japanese Examined Patent Publication No. 58-8307 [0004]
[Problems to be solved by the invention]
The catalytic oxidative decomposition method described in Japanese Patent Publication No. 58-8307 can efficiently remove chromaticity components in water without generating sludge, but it is difficult to control the amount of oxidant added. However, due to excess and deficiency of the oxidant, there has been a problem that the catalyst is deteriorated or the load of the residual oxidant removing process in the subsequent process is increased.
[0005]
That is, the amount of oxidant added is generally controlled in proportion to the chromaticity of the water to be treated, but the amount of oxidant added since the amount of wastewater to be treated varies in both quantity and water quality (chromaticity). Control is not easy, and when the chromaticity load decreases, excess oxidizer is added, increasing the load of residual oxidizer removal in the subsequent process, conversely increasing the chromaticity load and insufficient oxidizer In this case, the metal oxide catalyst can no longer maintain active oxygen, and the deterioration of the catalyst progresses, thereby deteriorating the quality of the treated water.
[0006]
Upon this invention is to solve the above conventional problems, to remove the chroma component by the addition of chlorine-based oxidizing agent to water containing the chromaticity component is contacted with a metal peroxide catalyst, chlorine-based oxidizing agent It is an object of the present invention to provide a method for performing stable and efficient processing by preventing excess and deficiency.
[0007]
[Means for Solving the Problems]
The chromaticity treatment method of the present invention (Claim 1) is a method for removing a chromaticity component by adding a chlorine-based oxidizing agent to water containing the chromaticity component and bringing it into contact with a metal peroxide catalyst. active ingredient concentration of chlorine-based oxidizing agent remaining in the water is a chromaticity processing how to adding the chlorine-based oxidizing agent such that 2~50mg-Cl 2 / L, the metal peroxide catalyst, A phosphate-containing compound carrying nickel peroxide and / or cobalt peroxide, wherein the phosphate-containing compound is one or more selected from the group consisting of hydroxyapatite, chloroapatite and fluoroapatite It is characterized by that.
[0008]
The chromaticity treatment method of the present invention (Claim 2) is a method for removing a chromaticity component by adding a chlorine-based oxidizing agent to water containing the chromaticity component and bringing it into contact with a metal peroxide catalyst. A chromaticity treatment method of adding a chlorine-based oxidizing agent so that an active ingredient concentration of the chlorine-based oxidizing agent remaining in water is 2 to 50 mg-Cl 2 / L, wherein the metal peroxide catalyst contains A phosphate-containing compound supporting nickel oxide and / or cobalt peroxide, wherein the phosphate-containing compound is a naturally produced phosphate ore.
[0009]
By controlling the addition of the oxidizing agent so that the active ingredient concentration of the oxidizing agent remaining in the treated water is 2 to 50 mg-Cl 2 / L, the deterioration of the catalyst is prevented and the load of the residual oxidizing agent treatment in the subsequent stage is reduced. It can reduce and can obtain the treated water of favorable water quality stably and efficiently.
[0010]
In the present invention, a phosphate-containing compound carrying nickel peroxide and / or cobalt peroxide is used as the metal peroxide catalyst . Examples of the phosphate-containing compound include hydroxyapatite, chloroapatite, fluoroapatite, and naturally-occurring phosphate ore. As the chlorine-based oxidizing agent, hypochlorite and the like, in this case, the residual chlorine concentration in the treated water is added to chlorine-based oxidizing agent such that 2~50mg-Cl 2 / L.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the chromaticity processing method of the present invention will be described in detail.
[0012]
In the present invention, a metal peroxide catalyst is brought into contact by adding a chlorine-based oxidant to water (treated water) containing a chromaticity component.
[0013]
There is no particular limitation on the salt-type oxidation agent, such as chlorine, sodium hypochlorite, potassium hypochlorite, hypochlorite such as calcium hypochlorite, sodium chlorite, potassium chlorite And chlorates such as sodium chlorate, potassium chlorate and calcium chlorate, and perchlorates such as sodium perchlorate and calcium perchlorate. Among these, hypochlorite has moderate oxidation properties and can be used preferably.
[0014]
If the amount of such a chlorinated oxidant is too small, the metal oxide catalyst deteriorates, and if it is too large, an effect commensurate with the amount of addition cannot be obtained, and in the means for removing the oxidant remaining after the treatment. The load increases, which is not preferable. Therefore, in order to prevent such a problem, the oxidizing agent such as a chlorine-based oxidizing agent has an active ingredient concentration of residual oxidant such as residual chlorine concentration of treated water of 2 to 50 mg-Cl 2 / L, preferably 5 to 50 mg. It is preferable to add so as to be —Cl 2 / L.
[0015]
The Rukin genus peroxide catalyst be used in the present invention, for example, cobalt peroxide, nickel peroxide, peroxide copper, peroxides and silver, such as one or more, preferably nickel peroxide and / or peracetic Mention may be made of cobalt oxide. These metal peroxides catalyst Ru supported on calcium phosphate-based compound. Here, as the calcium phosphate compound, hydroxyapatite (Ca 10 (PO 4 ) 6 OH 2 ), chloroapatite (Ca 10 (PO 4 ) 6 Cl 2 ), fluoroapatite (Ca 10 (PO 4 ) 6 F 2 ) It becomes more apatitic compounds, but other, it is possible to use natural minerals such as naturally occurring phosphate rock. These carriers may be used alone or in combination of two or more.
[0016]
The amount of metal supported on such a metal peroxide- supported catalyst is preferably 0.01 to 10% by weight per weight of the support. If the supported amount is less than 0.01% by weight, the amount of catalytic metal is small and sufficient catalytic action cannot be obtained, and it is technically difficult to support the supported amount exceeding 10% by weight.
[0017]
A method for preparing such a catalyst will be described below with a nickel peroxide-supported catalyst using hydroxyapatite as a carrier.
[0018]
The nickel is supported on the hydroxyapatite by bringing it into contact with an aqueous solution of nickel sulfate, nitrate, chloride, or a mixed aqueous solution thereof. Examples of the contact method include a method in which hydroxyapatite particles are immersed in an aqueous nickel compound solution, or a method in which hydroxyapatite particles are filled in a column and the nickel compound aqueous solution is passed in a transient or circulating manner. . The concentration and contact time of the nickel compound aqueous solution may be set so that a necessary amount of nickel is supported on the hydroxyapatite. The hydroxyapatite treated with the aqueous solution of the nickel compound is separated from the aqueous solution and then washed with water as necessary.
[0019]
Next, the nickel-supported hydroxyapatite thus obtained is brought into contact with an alkaline aqueous solution containing an oxidizing agent to obtain a nickel peroxide-supported catalyst. As a contact method in this case, a method in which hydroxyapatite carrying nickel ions is immersed in an alkaline aqueous solution containing an oxidizing agent, or a column or the like is filled with this hydroxyapatite and an alkaline aqueous solution containing an oxidizing agent is transiently or For example, a method of circulating water. Here, as the oxidizing agent, various chlorine-based oxidizing agents that generate free chlorine such as sodium hypochlorite, chlorine gas, and chlorine generated by electrolysis are preferably used. Moreover, as aqueous alkali solution, aqueous solution, such as sodium hydroxide and potassium hydroxide, can be used.
[0020]
In the chromaticity treatment method of the present invention, there is no particular limitation on the method of adding a chlorine-based oxidizing agent to the water to be treated and bringing it into contact with such a metal peroxide catalyst. For example, the following method is adopted. can do.
[0021]
(1) After adding an oxidizing agent to the water to be treated, water is passed through a column packed with a metal peroxide catalyst.
(2) An oxidizing agent and a metal peroxide catalyst are added to the water to be treated and stirred, and then solid-liquid separation is performed.
[0022]
In the method (1), the flow rate of the water to be treated is appropriately determined according to the chromaticity of the water to be treated, the target chromaticity of the water to be treated, the amount of the oxidizing agent added, etc. In this case, it is preferable to set the water flow SV to about 1 to 20 hr −1 .
[0023]
In the method (2), the amount of the metal peroxide catalyst added to the water to be treated is appropriately determined according to the chromaticity of the water to be treated, the target chromaticity of the water to be treated, the amount of the oxidizing agent added, and the like. However, in the normal case, it is preferably about 50 to 500 mg-Cl 2 / L.
[0024]
According to such a chromaticity treatment method of the present invention, for example, a drinking water factory, a food factory,
Colored wastewater discharged from dye factories, fertilizer factories, semiconductor factories, power plants, etc. can be efficiently treated with the optimum amount of chlorinated oxidant to obtain good treated water.
[0025]
In the chromaticity processing method and processing apparatus of the present invention, the COD component can be decomposed and removed together with the chromaticity component in the waste water.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
[0027]
In the following Examples and Comparative Examples, a nickel peroxide-supported hydroxyapatite catalyst prepared by the following method was used as the metal peroxide catalyst.
[0028]
[Preparation of nickel peroxide-supported hydroxyapatite catalyst]
(1) As a carrier, 1000 g of hydroxyapatite (special grade manufactured by Kishida Chemical Co., Ltd., particle size 0.5 mm) was taken and washed until the SS component disappeared.
(2) 112 g of nickel sulfate (NiSO 4 .6H 2 O) (25 g-Ni / 1000 g-dry carrier) was dissolved in 800 mL of ultrapure water. This was added to the carrier washed with water in (1) and left for 20 hours (2.5 wt% -Ni added to the carrier).
(3) The supernatant liquid of (2) was discarded.
(4) The carrier separated in (3) was washed 3 times with 1000 mL of ultrapure water.
(5) 35 g of sodium hydroxide (NaOH) was dissolved in 500 mL of ultrapure water, and 400 mL of a 10 wt% sodium hypochlorite (NaClO) aqueous solution was added to the carrier of (4) , and 20 hr I left it alone.
(6) After discarding the supernatant of (5), the separated carrier was washed with ultrapure water until the pH of the washing water reached 10.
[0029]
Example 1
A catalyst tower packed with 50 mL of a metal oxide catalyst is passed through a colored waste water (coloring 1200 ° C.) of a beverage factory with NaClO added as an oxidizing agent in a range of 150 to 470 mg-Cl 2 / L with different addition amounts. Processing was performed by passing water at a water speed of 500 mL / hr (water passing SV: 10 hr −1 ) (here, chromaticity is a value measured in accordance with JIS Z8722 (measurement method of object color). (The target value of water color is 100 degrees or less.)
[0030]
The relationship between the chromaticity of the obtained treated water and the residual chlorine concentration was examined, and the results are shown in FIG.
[0031]
The following is clear from FIG. When the residual chlorine concentration is less than 2 mg / L (No. 1 = 1.1 mg-Cl 2 / L, No. 2 = 0.7 mg-Cl 2 / L), the chromaticity of the treated water is high, but the catalyst It was confirmed that the catalyst at the top of the tower was whitened. This whitening indicates that the active oxygen of the decolorizing catalyst has been lost, and it is considered that the deterioration of the catalyst has progressed. If the residual chlorine concentration is 2 mg-Cl 2 / L or more (No. 3 = 11 mg-Cl 2 / L), there is no such problem of catalyst deterioration. Also, chlorine-based oxidizing agent concentration exceeds the 50mg-Cl 2 / L (No.6 = 67mg-Cl 2 /L,No.7=71mg-Cl 2 /L,No.8=106mg-Cl 2 / L) The treated water chromaticity is almost constant. From the viewpoint of the processing light blue degree, the residual chlorine concentration in particular 5~50mg-Cl 2 / L, especially 15~50mg-Cl 2 /L(No.4=21mg-Cl 2 /L,No.5=36mg-Cl 2 / L).
[0032]
【The invention's effect】
As described in detail above, according to the chromaticity treatment of the present invention, in removing the chromaticity component by adding a chlorine-based oxidizing agent to the water containing the chromaticity component and bringing it into contact with the metal peroxide catalyst, It is possible to prevent the excess and deficiency of the oxidizing agent and perform a stable and efficient treatment.
[Brief description of the drawings]
1 is a graph showing the results of Example 1. FIG.

Claims (2)

色度成分を含有する水に塩素系酸化剤を添加して金属酸化物触媒と接触させることにより色度成分を除去する方法において、
処理水に残留する塩素系酸化剤の有効成分濃度が2〜50mg−Cl/Lとなるように該塩素系酸化剤を添加する色度処理方法であって、
前記金属過酸化物触媒が、過酸化ニッケル及び/又は過酸化コバルトを担持したリン酸塩含有化合物であり、
該リン酸塩含有化合物がヒドロキシアパタイト、クロロアパタイト及びフロロアパタイトよりなる群から選ばれた1種又は2種以上であることを特徴とする色度処理方法
In a method of removing a chromaticity component by adding a chlorinated oxidant to water containing the chromaticity component and bringing it into contact with a metal peroxide catalyst,
Active ingredient concentration of chlorine-based oxidizing agent remaining in the treated water is a chromaticity processing how to adding the chlorine-based oxidizing agent such that 2~50mg-Cl 2 / L,
The metal peroxide catalyst is a phosphate-containing compound carrying nickel peroxide and / or cobalt peroxide;
A chromaticity treatment method, wherein the phosphate-containing compound is one or more selected from the group consisting of hydroxyapatite, chloroapatite, and fluoroapatite .
色度成分を含有する水に塩素系酸化剤を添加して金属過酸化物触媒と接触させることにより色度成分を除去する方法において、
処理水に残留する塩素系酸化剤の有効成分濃度が2〜50mg−Cl /Lとなるように該塩素系酸化剤を添加する色度処理方法であって、
前記金属過酸化物触媒が、過酸化ニッケル及び/又は過酸化コバルトを担持したリン酸塩含有化合物であり、
前記リン酸塩含有化合物が天然産出リン鉱石であることを特徴とする色度処理方法。
In a method of removing a chromaticity component by adding a chlorinated oxidant to water containing the chromaticity component and bringing it into contact with a metal peroxide catalyst,
A chromaticity treatment method for adding a chlorine-based oxidant so that an active ingredient concentration of a chlorine-based oxidant remaining in treated water is 2 to 50 mg-Cl 2 / L,
The metal peroxide catalyst is a phosphate-containing compound carrying nickel peroxide and / or cobalt peroxide;
A chromaticity treatment method, wherein the phosphate-containing compound is a naturally produced phosphate ore.
JP2002348159A 2002-11-29 2002-11-29 Chromaticity processing method Expired - Fee Related JP4085797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348159A JP4085797B2 (en) 2002-11-29 2002-11-29 Chromaticity processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348159A JP4085797B2 (en) 2002-11-29 2002-11-29 Chromaticity processing method

Publications (2)

Publication Number Publication Date
JP2004181285A JP2004181285A (en) 2004-07-02
JP4085797B2 true JP4085797B2 (en) 2008-05-14

Family

ID=32751145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348159A Expired - Fee Related JP4085797B2 (en) 2002-11-29 2002-11-29 Chromaticity processing method

Country Status (1)

Country Link
JP (1) JP4085797B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003058B2 (en) * 2006-08-21 2012-08-15 栗田工業株式会社 Decolorization treatment method for colored beverage drainage

Also Published As

Publication number Publication date
JP2004181285A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
EP0849227B1 (en) Electrolytic treatment method for water-containing nitrogen compounds
JP7204140B2 (en) Method for treating wastewater containing cyanide
JPH06226272A (en) Method of reducing content of organic chemical substance in waste liquid
JPH0738988B2 (en) Method for detoxifying aqueous solution containing cyanide and / or cyano complex
JP4085797B2 (en) Chromaticity processing method
JP5003058B2 (en) Decolorization treatment method for colored beverage drainage
JP4399854B2 (en) Treatment method of waste water containing hydrazine
JP4165199B2 (en) Chromaticity treatment catalyst and chromaticity treatment method
JP2008264668A (en) Method and apparatus for electrolytic treatment of wastewater
JPH0249798B2 (en) JUKIKAGOBUTSUGANJUSUINOSHORIHOHO
JPH0780479A (en) Treatment of organic compound-containing waste liquid
JP2004181284A (en) Chromaticity treatment method and treatment apparatus
JP2001300553A (en) Method for treating cyanide-containing wastewater
JP2003181476A (en) Method for decomposing chelating agent
JPS58112088A (en) Purification of hydrazine-contg. waste water
JP2022117162A (en) Waste water treatment method
JP2005021863A (en) Electrolytic treatment method of nitrogen compound-containing waste water
JP2007069190A (en) Method and apparatus for treating nitrite nitrogen-containing water
JP4450146B2 (en) COD component-containing water treatment method
JP3845901B2 (en) Method for decomposing and removing organic substances in phosphoric acid solution
JPS5855088A (en) Decomposing method for precursor of organic chlorine compound such as humic acid by combination use of ozone and hydrogen peroxide
JP2006314952A (en) Hardly biodegradable organic matter-containing water treatment apparatus and method
FR2826354A1 (en) PROCESS FOR DECOMPOSING HYDRAZINE CONTAINED IN AQUEOUS LIQUID
JPS6046042B2 (en) Method for producing iodine from natural can water
JP2000140867A (en) Treatment of water containing cod component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees