JP4085298B2 - Thermal storage type exhaust gas treatment equipment - Google Patents

Thermal storage type exhaust gas treatment equipment Download PDF

Info

Publication number
JP4085298B2
JP4085298B2 JP2000396745A JP2000396745A JP4085298B2 JP 4085298 B2 JP4085298 B2 JP 4085298B2 JP 2000396745 A JP2000396745 A JP 2000396745A JP 2000396745 A JP2000396745 A JP 2000396745A JP 4085298 B2 JP4085298 B2 JP 4085298B2
Authority
JP
Japan
Prior art keywords
heat storage
exhaust gas
storage layer
gas treatment
distribution valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000396745A
Other languages
Japanese (ja)
Other versions
JP2002195540A (en
Inventor
和樹 小林
成 冨永
利文 向井
博 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2000396745A priority Critical patent/JP4085298B2/en
Publication of JP2002195540A publication Critical patent/JP2002195540A/en
Application granted granted Critical
Publication of JP4085298B2 publication Critical patent/JP4085298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Incineration Of Waste (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中に含まれる可燃性有害成分や可燃性悪臭成分を、触媒燃焼または直接燃焼させて無害無臭な物質に変換させるとともに、その際に生じる熱を回収して排ガス処理に再利用する蓄熱型の排ガス処理装置に関する。
【0002】
【従来の技術】
自動車などの塗装工場や、金属洗浄工場、あるいは印刷工場などからは、トルエン、キシレン、スチレン等の揮発性有機化合物(volatile organic compound,: VOC)を含んだ排ガスが発生する。このようなVOC含有ガスは、せいぜい十数ppmから数%程度の濃度であるが、環境や人体への影響がかなり大きいことが明らかになってきた。
【0003】
例えば、NOxと反応して光化学スモッグを発生させたり、森林を枯れさせたり、さらには、光化学オキシダントの主成分であるオゾンを対流圏内で増加させ、地球を温暖化する。また、これらのVOC含有ガスは、発ガンの誘引となり、人体に健康障害を起こさせることが知られている。
【0004】
このため、上記各種の工場などでは、VOC含有ガスを無害化処理して大気中に排出している。VOC含有ガスの無害化処理方法としては、直接燃焼方式、触媒燃焼方式、蓄熱燃焼方式、触媒燃焼/蓄熱方式、濃縮方式、生物処理方式などがある。
【0005】
このなかで、ランニングコストやメンテナンスの容易さなどを考慮すると、有害成分の燃焼熱を回収して未処理排ガスの熱源として再利用する蓄熱型排ガス処理装置が有望である。蓄熱型排ガス処理装置は、蓄熱室の数により、二塔式、三塔式、多塔式のものなどがある。
【0006】
この蓄熱型排ガス処理方法は、未処理排ガスを蓄熱材に流通させて予熱した後、炉に導入してVOCを燃焼して無害化処理し、処理済の高温排ガスを再び蓄熱材に流通させてその熱を蓄え、蓄えたその熱を低温の未処理排ガスが流通するときに再び放出して熱交換を行なうものである。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の蓄熱型排ガス処理方法には次のような問題点があった。すなわち、シリコーンオイルのように粘度の高い成分を含むVOCガスを、蓄熱型排ガス処理装置で処理した場合、未処理ガスの入口側に相当する蓄熱材低温部で、シリコーンオイルの付着により開口面積が狭められるという問題が生じた。
【0008】
これにより圧力損失が増加し、排ガス処理量を一定に維持しようとすれば、送風機の負荷を増大させなければならず、そのため、エネルギー消費量が増大することになり、さらには、蓄熱材開口部が閉塞して装置が運転不能に陥るという欠点があった。
【0009】
本発明の課題は、上記従来技術の問題点を解消し、蓄熱型排ガス処理装置において、未処理排ガスが流通する蓄熱材開口部の閉塞を防止し、長期間の安定した運転を可能にすることである。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は未処理排ガス中の揮発性有機化合物を燃焼処理する燃焼炉と、前記燃焼処理した高温の処理済排ガスと熱交換して蓄熱した後、前記蓄熱した熱によって低温の未処理排ガスを加熱する複数の室に分けられた蓄熱層と、前記蓄熱層の一部の室に未処理排ガスを順次吸気させ、前記蓄熱層の残りの室から処理済排ガスを順次排気する回転式の分配弁とを有して構成された蓄熱型排ガス処理装置において、前記分配弁を設定された一定の回転速度で回転し、前記蓄熱層に設定された一の室が排気に切り換わったときに前記分配弁の回転速度を下げ、当該室が吸気側に切り換わって当該室の温度が排気切換え時の温度に戻ったときに前記分配弁の回転速度を元に戻す分配弁回転速度制御を間欠に実施することを特徴とする。これにより、蓄熱層の各室内を流れる高温の処理済排ガスの流通時間を調整して、蓄熱層の低温部を加熱して蓄熱層への付着物による圧力損失の増大を防止することができる。この場合において、蓄熱材における未処理排ガスの流入側と流出側との差圧から、圧力損失部である蓄熱材低温部におけるシリコーンオイルの付着を検知し、分配弁の回転速度を制御して蓄熱材低温部の温度を450〜500℃に上げ、付着したシリコーンオイルをシリカ粉末に変えることにより容易に除去可能とした。これにより、長期間の安定した運転が可能になった。
【0011】
すなわち、蓄熱式の排ガス処理装置において、未処理排ガスと処理済排ガスの熱交換を行なう蓄熱層は、排ガスの流通方向と平行な細い流路を形成した、断面ハニカム状の蓄熱材を複数段積層して形成され、蓄熱層の差圧に基づいて蓄熱材ハニカムの圧力損失部を加熱する機能を備えることで、安定な運転を可能としたものである。また、蓄熱材ハニカムの入口側および出口側のセル径を、他の領域のそれよりも大きくすることで、安定な運転を可能とすることもできる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。図1に本発明の蓄熱型排ガス処理装置の主要部を示す。本例の蓄熱型排ガス処理装置は、大きく分けて、VOCを含有する未処理排ガスを高温で処理する炉4と、未処理排ガスを加熱し処理済排ガスを除熱する蓄熱層3と、未処理排ガスを高温の蓄熱層に分配する分配弁2とから構成される。
【0013】
炉4は、熱源となるバーナ5を具備している。蓄熱層3は、複数個の蓄熱材を備えており、これらはガスの流れ方向に連結され、このガス流れを横断する方向には、互いに隔離された複数の流路▲1▼〜▲8▼を形成している。
【0014】
図1を用いて、本実施形態をさらに詳述する。分配弁2の下部は、清浄ガス6、未処理排ガス1、パージガス10なとが流通する3重管構造となっている。蓄熱層3は排ガスと熱交換を行なう8室に分かれており、それぞれの蓄熱材の前後の差圧を測定する差圧検知器7と、出口温度を測定する温度計8を備えている。なお、符号11はマニホールド、符号12は固定弁である。
【0015】
また、蓄熱層3の構造は、排ガスの流通方向と平行な細い流路を形成した断面がハニカム状の蓄熱材を複数段積層して形成され、入口側および出口側の蓄熱材ハニカムのセル径を、中間部のセル径よりも大きくしている。
【0016】
シリコーンオイルを含む数百ppmのトルエンを含有する未処理排ガス1は、図中右側より導入され、回転式の分配弁2を通過し、蓄熱層3を具備するガス分解ゾーンに導入される。
【0017】
このとき、分配弁の位置により、蓄熱層3内の3〜4室を通過する。未処理排ガス1は蓄熱材層3中で昇温され、未処理排ガス中のトルエンは、炉4に入るとすぐに着火して燃焼する。トルエンやシリコーンは共に800℃以上の高温で完全に分解する。
【0018】
シリコーンはSiを含むため、燃焼によってシリカ粒子を生成する。高温でVOCを分解した処理済排ガス9は、未処理排ガス導入時には通過しなかった蓄熱材中の3〜4室を通過し、蓄熱層で熱交換して除熱され、200℃以下の清浄ガス6として排出される。
【0019】
分配弁2が回転することにより、導入または排出されるガスは順次、蓄熱層3中の8室を移動していくようになっている。こうして蓄熱層3は、未処理排ガス1に対しては熱を与え、一方、高温の処理済排ガス9を除熱して蓄熱する。
【0020】
図2に、同じサイズの蓄熱材を6個充填した蓄熱層の蓄熱型排ガス処理装置を用い、1%シリコーンを含む700ppmのトルエン含有排ガスを数百時間処理したときの、蓄熱材の位置A〜Fと蓄熱材1個当りの差圧との関係を示す。
【0021】
図からわかるように、低温側の蓄熱材の圧力損失は、他のそれよりも数倍高かった。蓄熱材に付着した堆積物は、500℃の高温空気に曝したところ、エアブローで簡単に除去できた。
【0022】
なお、図6に示すように、示差熱天秤による分析結果から、シリコーンオイルは、500℃までに燃焼してシリカ粉末となることがわかっている。そのため、粘度の高いシリコーンオイルが高温空気により燃焼してシリカ粉末になったために容易に除去できたものである。
【0023】
図3に、分配弁2の回転速度が一定時の炉出口の温度変化を示す。温度は、8室のうち、分配弁上で対向配置される第1室と第5室のものを示す。分配弁を1rpmで回転した場合、第1室の出口温度は、1分間に、最高値→最低値→最高値を繰り返し、一方、第5室の出口温度は、1分間に、最低値→最高値→最低値を繰り返す。
【0024】
このとき、各室の差圧は時間とともに上昇するので、差圧が上昇したところで分配弁の回転速度を下げ、出口の温度を上昇させる。分配弁を1rpmから1/3rpmに回転速度を下げたときの出口温度の挙動を図4に示す。
【0025】
第1室が排気になるときに回転速度を下げると、排気側は高温ガスに曝される時間が長くなり出口温度は上昇する。一方、吸気側の第5室は低温空気の吸気時間が長くなり、出口温度はいったん下がるものの、しばらくして切替前よりも高い温度で定常化する。
【0026】
しかし、この場合、このような制御によって長時間燃焼させる必要があるが、シリコーンオイルの場合は、短時間の高温暴露により、すぐに酸化されてシリカ粒子になる。
【0027】
そこで、熱交換率を極力低下させない制御方法として、図5に示す制御を実施した。すなわち、第1室が排気になるときに回転速度を下げ、排気側の最高温度を450〜500℃とし、次に最低温度に戻った時点で回転速度を元に戻す。次いで、吸気側の第5室が排気側になるときに同様の操作を繰り返せば、出口温度は初期と同じ温度で定常化し、蓄熱材の熱効率を下げずに運転ができる。
【0028】
この操作により、概略100hの運転で、初期から50mmAq上昇した差圧を元に戻すことができた。この操作は、差圧検知により、差圧上昇時に実施してもよいが、例えば1日1回のように、定期的に実施してもよい。
【0029】
なお、上記実施形態では、高温排ガスの流通を制御して低温部の温度を上げていたが、例えば未処理排ガスの入口側および出口側の蓄熱材ハニカムのセル径を、中間部のセル径よりも大きくすることで、ヤニ成分などが付着しても閉塞されずに排ガス流路径が保持され、さらに容易に安定運転が可能となる。
【0030】
以上のように、本例では、排ガスの流通方向と平行な細い流路を形成した断面ハニカム状の蓄熱材を複数段積層して蓄熱層を形成し、蓄熱層の差圧から排ガス流路の圧力損失部を検知し、分配弁2の回転を制御して蓄熱層3内を流れる高温の処理済排ガスの流通時間を調整することにより、圧力損失部を加熱するようにした。
【0031】
この場合、シリコーンオイルが付着して圧力損失が発生する未処理排ガスの蓄熱材ハニカム入口、すなわち、処理済排ガスの出口の温度を450〜500℃に上げることにより、付着したシリコーンオイルはすぐに酸化されてシリカ粒子となり、ブロアーにより簡単に除去でき、排ガス流路の閉塞が抑制され安定運転が可能となる。
【0032】
【発明の効果】
上述のとおり、本発明によれば、蓄熱型排ガス処理装置において、蓄熱層の差圧により低温部の圧力損失を検知し、低温部を加熱する機能を備えることで安定な運転ができた。また、分配弁の回転速度制御により、蓄熱層の所定の部分を定期的に上昇させることによっても安定な運転が可能になった。
【図面の簡単な説明】
【図1】本発明の蓄熱型排ガス処理装置の一実施形態の主要部を示す図である。
【図2】本発明において、蓄熱材の各位置と蓄熱材1個当りの差圧との関係を示す図である。
【図3】分配弁の回転速度が一定時の炉出口の温度変化を示す図である。
【図4】分配弁の回転速度を下げたときの出口温度の挙動を示す図である。
【図5】本発明における熱交換率を極力低下させない制御方法の一例を示す図である。
【図6】示差熱天秤による分析結果を示す図である。
【符号の説明】
1 未処理排ガス
2 分配弁
3 蓄熱層
4 炉
5 助燃バーナ
6 清浄ガス
7 差圧検知器
8 温度計
9 処理済排ガス
10 パージガス
11 マニホールド
12 固定弁
[0001]
BACKGROUND OF THE INVENTION
The present invention converts flammable harmful components and combustible malodorous components contained in exhaust gas into harmless and odorless substances by catalytic combustion or direct combustion, and recovers the heat generated at that time and reuses it for exhaust gas treatment. The present invention relates to a heat storage type exhaust gas treatment apparatus.
[0002]
[Prior art]
An exhaust gas containing a volatile organic compound (VOC) such as toluene, xylene, styrene, or the like is generated from a paint factory such as an automobile, a metal washing factory, or a printing factory. Such a VOC-containing gas has a concentration of about several tens of ppm to several percent at most, but it has become clear that the influence on the environment and the human body is considerably large.
[0003]
For example, it reacts with NOx to generate photochemical smog, withering the forest, and further increasing ozone in the troposphere to warm the earth, which is the main component of the photochemical oxidant. These VOC-containing gases are known to induce carcinogenesis and cause health problems in the human body.
[0004]
For this reason, in the above various factories, the VOC-containing gas is detoxified and discharged into the atmosphere. Examples of the detoxification treatment method for VOC-containing gas include a direct combustion method, a catalytic combustion method, a heat storage combustion method, a catalyst combustion / heat storage method, a concentration method, and a biological treatment method.
[0005]
Among these, in consideration of running cost, ease of maintenance, and the like, a heat storage type exhaust gas treatment apparatus that recovers combustion heat of harmful components and reuses it as a heat source of untreated exhaust gas is promising. The heat storage type exhaust gas treatment apparatus includes a two-column type, a three-column type, and a multi-column type depending on the number of heat storage chambers.
[0006]
In this heat storage type exhaust gas treatment method, untreated exhaust gas is circulated through a heat storage material and preheated, then introduced into a furnace, VOC is burned and detoxified, and the treated high temperature exhaust gas is circulated through the heat storage material again. The heat is stored, and the stored heat is discharged again when low-temperature untreated exhaust gas flows to perform heat exchange.
[0007]
[Problems to be solved by the invention]
However, the conventional heat storage type exhaust gas treatment method has the following problems. That is, when a VOC gas containing a high-viscosity component such as silicone oil is processed by a heat storage type exhaust gas processing apparatus, the opening area is reduced due to the adhesion of silicone oil at the low temperature portion of the heat storage material corresponding to the inlet side of the untreated gas. The problem of being narrowed occurred.
[0008]
As a result, if the pressure loss increases and the exhaust gas treatment amount is to be kept constant, the load of the blower must be increased, so that the energy consumption increases, and further, the heat storage material opening However, there was a drawback that the device became inoperable due to blockage.
[0009]
An object of the present invention is to solve the above-mentioned problems of the prior art, and in a heat storage type exhaust gas treatment device, prevent clogging of a heat storage material opening through which untreated exhaust gas flows and enable stable operation for a long period of time. It is.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present onset Ming, a combustion furnace for combusting the volatile organic compounds in the untreated flue gas, after the heat storage the combustion process with high-temperature processed exhaust gas heat exchanger to the heat storage The heat storage layer divided into a plurality of chambers for heating the low temperature untreated exhaust gas by the heat generated, and the untreated exhaust gas are sequentially sucked into a part of the heat storage layer, and the treated exhaust gas from the remaining chambers of the heat storage layer In the heat storage type exhaust gas treatment device configured to have a rotary distribution valve that sequentially exhausts the gas, the distribution valve is rotated at a predetermined rotation speed, and one chamber set in the heat storage layer is provided. When switching to exhaust, the rotation speed of the distribution valve is reduced, and when the chamber is switched to the intake side and the temperature of the chamber returns to the temperature at the time of exhaust gas switching, the rotation speed of the distribution valve is restored. It is necessary to intermittently control the distribution valve rotation speed. And butterflies. Thereby, the distribution | circulation time of the high temperature processed exhaust gas which flows through each room | chamber of a thermal storage layer can be adjusted, the low temperature part of a thermal storage layer can be heated, and the increase in the pressure loss by the deposit | attachment to a thermal storage layer can be prevented. In this case, from the differential pressure between the inflow side and the outflow side of the untreated exhaust gas in the heat storage material, the adhesion of silicone oil in the low temperature portion of the heat storage material, which is the pressure loss portion, is detected and the rotational speed of the distribution valve is controlled to store the heat. The temperature of the low temperature part of the material was raised to 450 to 500 ° C., and the attached silicone oil was changed to silica powder, so that it could be easily removed. As a result, stable operation over a long period of time has become possible.
[0011]
That is, in the heat storage type exhaust gas treatment device, the heat storage layer for exchanging heat between the untreated exhaust gas and the treated exhaust gas is formed by stacking a plurality of stages of heat storage materials having a honeycomb cross-section in a narrow flow path parallel to the exhaust gas flow direction. Thus, a stable operation is possible by providing a function of heating the pressure loss portion of the heat storage material honeycomb based on the differential pressure of the heat storage layer. In addition, stable operation can be achieved by making the cell diameters on the inlet side and outlet side of the heat storage material honeycomb larger than those in other regions.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a main part of the heat storage type exhaust gas treatment apparatus of the present invention. The heat storage type exhaust gas treatment apparatus of this example is roughly divided into a furnace 4 for treating untreated exhaust gas containing VOC at a high temperature, a heat storage layer 3 for heating the untreated exhaust gas and removing the treated exhaust gas, and untreated It is comprised from the distribution valve 2 which distributes exhaust gas to a high temperature thermal storage layer.
[0013]
The furnace 4 includes a burner 5 serving as a heat source. The heat storage layer 3 includes a plurality of heat storage materials, which are connected in the gas flow direction, and a plurality of flow paths (1) to (8) isolated from each other in the direction crossing the gas flow. Is forming.
[0014]
The present embodiment will be further described in detail with reference to FIG. The lower part of the distribution valve 2 has a triple pipe structure in which clean gas 6, untreated exhaust gas 1 and purge gas 10 flow. The heat storage layer 3 is divided into eight chambers that exchange heat with exhaust gas, and includes a differential pressure detector 7 that measures the differential pressure before and after each heat storage material, and a thermometer 8 that measures the outlet temperature. Reference numeral 11 denotes a manifold, and reference numeral 12 denotes a fixed valve.
[0015]
Further, the structure of the heat storage layer 3 is formed by laminating a plurality of honeycomb-shaped heat storage materials with a cross section forming a narrow flow path parallel to the flow direction of the exhaust gas, and the cell diameter of the heat storage material honeycomb on the inlet side and the outlet side. Is made larger than the cell diameter of the intermediate portion.
[0016]
Untreated exhaust gas 1 containing several hundred ppm of toluene containing silicone oil is introduced from the right side in the figure, passes through a rotary distribution valve 2, and is introduced into a gas decomposition zone provided with a heat storage layer 3.
[0017]
At this time, it passes through 3 to 4 chambers in the heat storage layer 3 depending on the position of the distribution valve. The untreated exhaust gas 1 is heated in the heat storage material layer 3, and the toluene in the untreated exhaust gas ignites and burns as soon as it enters the furnace 4. Both toluene and silicone are completely decomposed at a high temperature of 800 ° C. or higher.
[0018]
Since silicone contains Si, silica particles are generated by combustion. The treated exhaust gas 9 obtained by decomposing VOC at a high temperature passes through 3 to 4 chambers in the heat storage material that did not pass when the untreated exhaust gas was introduced, and heat was removed by heat exchange in the heat storage layer. 6 is discharged.
[0019]
As the distribution valve 2 rotates, the introduced or discharged gas sequentially moves through the eight chambers in the heat storage layer 3. Thus, the heat storage layer 3 gives heat to the untreated exhaust gas 1, while removing heat from the high temperature treated exhaust gas 9 to store heat.
[0020]
In FIG. 2, the heat storage material position A when a 700 ppm toluene-containing exhaust gas containing 1% silicone is treated for several hundred hours using a heat storage type exhaust gas treatment device of a heat storage layer filled with six heat storage materials of the same size The relationship between F and the differential pressure per heat storage material is shown.
[0021]
As can be seen, the pressure loss of the heat storage material on the low temperature side was several times higher than the others. Deposits adhering to the heat storage material were easily removed by air blow when exposed to high temperature air at 500 ° C.
[0022]
In addition, as shown in FIG. 6, it is known from the analysis result by the differential thermal balance that the silicone oil burns up to 500 ° C. to become silica powder. For this reason, the silicone oil having a high viscosity is easily removed because it is burned with high-temperature air to form silica powder.
[0023]
FIG. 3 shows the temperature change at the furnace outlet when the rotation speed of the distribution valve 2 is constant. A temperature shows the thing of the 1st chamber and the 5th chamber which are opposingly arranged on a distribution valve among 8 chambers. When the distribution valve is rotated at 1 rpm, the outlet temperature of the first chamber repeats the highest value → the lowest value → the highest value in one minute, while the outlet temperature of the fifth chamber has the lowest value → the highest value in one minute. Repeat from value to lowest value.
[0024]
At this time, since the differential pressure in each chamber increases with time, when the differential pressure increases, the rotational speed of the distribution valve is decreased and the outlet temperature is increased. FIG. 4 shows the behavior of the outlet temperature when the rotation speed of the distribution valve is lowered from 1 rpm to 1/3 rpm .
[0025]
If the rotation speed is lowered when the first chamber is exhausted, the exhaust side is exposed to high temperature gas and the outlet temperature rises. On the other hand, in the fifth chamber on the intake side, the intake time of the low-temperature air becomes longer and the outlet temperature is temporarily lowered, but after a while, it becomes steady at a higher temperature than before switching.
[0026]
However, in this case, it is necessary to burn for a long time by such control, but in the case of silicone oil, it is immediately oxidized into silica particles by high-temperature exposure for a short time.
[0027]
Therefore, the control shown in FIG. 5 was performed as a control method for reducing the heat exchange rate as much as possible. That is, when the first chamber is exhausted, the rotational speed is lowered, the maximum temperature on the exhaust side is set to 450 to 500 ° C., and then the rotational speed is restored when the temperature returns to the minimum temperature. Next, when the same operation is repeated when the fifth chamber on the intake side becomes the exhaust side, the outlet temperature becomes steady at the same temperature as the initial stage, and operation can be performed without lowering the thermal efficiency of the heat storage material.
[0028]
By this operation, the differential pressure increased by 50 mmAq from the initial stage was able to be restored by the operation of about 100 h. This operation may be performed when the differential pressure is increased by detecting the differential pressure, but may be performed periodically, for example, once a day.
[0029]
In the above embodiment, the temperature of the low temperature part is increased by controlling the circulation of the high temperature exhaust gas. For example, the cell diameter of the heat storage material honeycomb on the inlet side and the outlet side of the untreated exhaust gas is set to be higher than the cell diameter of the intermediate part. By increasing the diameter, the exhaust gas flow path diameter is maintained without being blocked even if a spear component or the like adheres, and a stable operation can be performed more easily.
[0030]
As described above, in this example, a heat storage layer is formed by laminating a plurality of stages of the heat storage material having a honeycomb cross section formed with a narrow flow path parallel to the flow direction of the exhaust gas. By detecting the pressure loss part and controlling the rotation of the distribution valve 2 to adjust the circulation time of the high-temperature treated exhaust gas flowing in the heat storage layer 3, the pressure loss part is heated.
[0031]
In this case, by increasing the temperature of the untreated exhaust gas heat storage material honeycomb inlet where the silicone oil adheres and pressure loss occurs, that is, the treated exhaust gas outlet temperature to 450 to 500 ° C., the adhered silicone oil is immediately oxidized. As a result, silica particles can be easily removed by a blower, and the exhaust gas flow passage is prevented from being blocked and stable operation is possible.
[0032]
【The invention's effect】
As described above, according to the present invention, in the heat storage type exhaust gas treatment apparatus, a stable operation can be performed by detecting the pressure loss in the low temperature part based on the differential pressure of the heat storage layer and heating the low temperature part. In addition, stable operation is also possible by periodically raising a predetermined portion of the heat storage layer by controlling the rotational speed of the distribution valve.
[Brief description of the drawings]
FIG. 1 is a diagram showing a main part of one embodiment of a heat storage type exhaust gas treatment apparatus of the present invention.
FIG. 2 is a diagram showing a relationship between each position of a heat storage material and a differential pressure per heat storage material in the present invention.
FIG. 3 is a diagram showing a change in temperature at the furnace outlet when the rotation speed of the distribution valve is constant.
FIG. 4 is a diagram showing the behavior of outlet temperature when the rotational speed of the distribution valve is lowered.
FIG. 5 is a diagram showing an example of a control method for reducing the heat exchange rate as much as possible in the present invention.
FIG. 6 is a diagram showing an analysis result by a differential thermobalance.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Untreated exhaust gas 2 Distribution valve 3 Heat storage layer 4 Furnace 5 Auxiliary burner 6 Clean gas 7 Differential pressure detector 8 Thermometer 9 Treated exhaust gas 10 Purge gas 11 Manifold 12 Fixed valve

Claims (6)

未処理排ガス中の揮発性有機化合物を燃焼処理する燃焼炉と、前記燃焼処理した高温の処理済排ガスと熱交換して蓄熱した後、前記蓄熱した熱によって低温の未処理排ガスを加熱する複数の室に分けられた蓄熱層と、前記蓄熱層の一部の室に未処理排ガスを順次吸気させ、前記蓄熱層の残りの室から処理済排ガスを順次排気する回転式の分配弁とを有して構成された蓄熱型排ガス処理装置において、
前記分配弁を設定された一定の回転速度で回転し、前記蓄熱層に設定された一の室が排気に切り換わったときに前記分配弁の回転速度を下げ、当該室が吸気側に切り換わって当該室の温度が排気切換え時の温度に戻ったときに前記分配弁の回転速度を元に戻す分配弁回転速度制御を間欠に実施することを特徴とする蓄熱型排ガス処理装置。
A combustion furnace for combusting the volatile organic compounds in the untreated flue gas, after the heat storage the combustion process with high-temperature processed exhaust gas heat exchanger to, a plurality of heating the raw exhaust gas of low temperature by the heat the heat storage Yes and thermal storage layer which is divided into chambers, said by sequentially intake the raw exhaust gas to a part of the chamber of the heat storage layer, and a rotary distribution valve for sequentially evacuating the treated exhaust gas from the rest of the chamber of the heat storage layer In the heat storage type exhaust gas treatment device configured as
The distribution valve rotates at a set constant rotation speed, and when one chamber set in the heat storage layer is switched to exhaust, the rotation speed of the distribution valve is lowered, and the chamber is switched to the intake side. Then, when the temperature of the chamber returns to the temperature at the time of exhaust gas switching, the distribution valve rotation speed control for returning the rotation speed of the distribution valve to the original is intermittently performed .
前記蓄熱層の差圧から該蓄熱層の圧力損失を検知し、前記圧力損失の増大時に前記分配弁回転速度制御を実施することを特徴とする請求項1に記載の蓄熱型排ガス処理装置。Detects the pressure loss of the heat storage layer from the differential pressure of the heat storage layer, the heat storage type exhaust gas treatment apparatus according to claim 1, which comprises carrying out the dispensing valve rotational speed control when an increase of the pressure loss . 前記蓄熱層は、排ガスの流通方向と平行な細い流路を形成した断面ハニカム状の蓄熱材を複数段積層して形成されたものである請求項1または2に記載の蓄熱型排ガス処理装置。  The heat storage type exhaust gas treatment apparatus according to claim 1 or 2, wherein the heat storage layer is formed by laminating a plurality of stages of heat storage materials having a honeycomb shape in a cross section in which narrow flow paths parallel to the flow direction of the exhaust gas are formed. 前記蓄熱層は、蓄熱材ハニカムの入口側および出口側のセル径を、中間のセル径よりも大きくしたものである請求項1、2または3に記載の蓄熱型排ガス処理装置。  The heat storage type exhaust gas treatment apparatus according to claim 1, wherein the heat storage layer has a cell diameter on an inlet side and an outlet side of a heat storage material honeycomb larger than an intermediate cell diameter. 請求項1〜のうちいずれか1項に記載の蓄熱型排ガス処理装置を運転する運転方法において、前記分配弁回転速度制御による処理済排ガスの流通時間の調整は、前記蓄熱層の低温部を450〜500℃に上げることを特徴とする蓄熱型排ガス処理装置の運転方法。The operation method of operating the heat storage type exhaust gas treatment device according to any one of claims 1 to 4 , wherein the adjustment of the distribution time of the treated exhaust gas by the distribution valve rotation speed control is performed in a low temperature part of the heat storage layer . how the operation of the heat storage type exhaust gas treatment apparatus characterized by raising the temperature to 450 to 500 ° C.. 前記分配弁回転速度制御による処理済排ガスの流通時間が、1分〜3分である請求項に記載の蓄熱型排ガス処理装置の運転方法。The operating method of the regenerative exhaust gas treatment device according to claim 5 , wherein the distribution time of the treated exhaust gas by the distribution valve rotation speed control is 1 to 3 minutes.
JP2000396745A 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment Expired - Fee Related JP4085298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000396745A JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000396745A JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JP2002195540A JP2002195540A (en) 2002-07-10
JP4085298B2 true JP4085298B2 (en) 2008-05-14

Family

ID=18861983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000396745A Expired - Fee Related JP4085298B2 (en) 2000-12-27 2000-12-27 Thermal storage type exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP4085298B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5675149B2 (en) * 2010-04-05 2015-02-25 三菱重工業株式会社 Boiler equipment
JP5543868B2 (en) * 2010-07-22 2014-07-09 日本碍子株式会社 Processing method of radioactive silicone oil
US10299642B2 (en) 2015-06-05 2019-05-28 Mtd Products Inc Blower with intake closure

Also Published As

Publication number Publication date
JP2002195540A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
AU742412B2 (en) Web dryer with fully integrated regenerative heat source
US4280416A (en) Rotary valve for a regenerative thermal reactor
EP1029200B1 (en) Rotary oxidizer systems for control of restaurant emissions
KR100784409B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Method Therefor
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
KR100690441B1 (en) Concentrated Catalytic Oxidizing System of Volatile Organic Compounds, and Concentrating Bank Therefor
CN206660779U (en) A kind of waste gas pollution control and treatment system
KR100597695B1 (en) A Selective Catalyst And Non-Catalyst Reduction System Using Regenerative Heat Recovery
US6193504B1 (en) Portable rotary catalytic oxidizer systems
JP4085298B2 (en) Thermal storage type exhaust gas treatment equipment
JP3352927B2 (en) Dioxin reduction method for discontinuous combustion type waste incineration facility
AU2002355927B2 (en) Modular voc entrapment chamber for a two-chamber regenerative oxidizer
JP3940832B2 (en) Thermal storage type exhaust gas treatment equipment
CN116658917A (en) Organic waste gas concentration thermal oxidation treatment device and process thereof
JP2911112B2 (en) Combustion deodorization of organic silicon-containing exhaust gas
GB1602812A (en) Industrial oven
CN110887050B (en) Device for removing VOC (volatile organic compounds) and reducing odor from waste gas
KR20010097924A (en) Air cleaner by using catalyst
CA2159096A1 (en) Regenerative device
Geng et al. Application Study on Three-Bed Regenerative Thermal Oxidizers to Treat Volatile Organic Compounds
JP3544442B2 (en) Catalyst purification device
JP2002048325A (en) Control method for volatile organic compound processing apparatus
KR102338658B1 (en) Generative thermal oxidizer system installed enhanced purge system for removing remain ordor
JPH11173529A (en) Heat storage catalytic method and device for treating exhaust gas
JP2005195302A (en) Sludge incineration exhaust gas treatment method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees