JP4084174B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP4084174B2
JP4084174B2 JP2002358031A JP2002358031A JP4084174B2 JP 4084174 B2 JP4084174 B2 JP 4084174B2 JP 2002358031 A JP2002358031 A JP 2002358031A JP 2002358031 A JP2002358031 A JP 2002358031A JP 4084174 B2 JP4084174 B2 JP 4084174B2
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
circular
fluid
finned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002358031A
Other languages
Japanese (ja)
Other versions
JP2004190922A (en
Inventor
典穂 岡座
雄二 井上
義和 川邉
和生 中谷
辰三 菴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002358031A priority Critical patent/JP4084174B2/en
Priority to KR1020030089044A priority patent/KR20040050875A/en
Priority to CNB2003101202661A priority patent/CN1322300C/en
Publication of JP2004190922A publication Critical patent/JP2004190922A/en
Application granted granted Critical
Publication of JP4084174B2 publication Critical patent/JP4084174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Fluid Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクル装置に用いられる熱交換器に関し、特に、給湯装置における給湯用熱交換器として用いられる熱交換器に関する。
【0002】
【従来の技術】
例えば、冷凍サイクル装置に用いられる利用側熱交換器2として、図12に示すように、円管11、および円管11の外周に螺旋状に巻かれた円管12からなり、円管11の内部を第一流体(例えば、水)の流路とする一方、円管12の内部を第二流体(例えば、冷媒)の流路とした熱交換器が採用されていた(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2001−280862号公報(第6−7頁、第5図)
【0004】
【発明が解決しようとする課題】
ところで、図12に示したような円管11の外周に円管12を螺旋状に巻いて構成した熱交換器では、円管11と円管12との熱接触を確実なものとするために、炉中ろう付けにより円管11と円管12を接合する必要がある。このために、高価なろう付け用の炉が必要となり、その設備投資を回収するために、熱交換器が高コスト化するといった課題が生じていた。
【0005】
そこで、本発明は、炉中ろう付けを行わずに円管11と円管12との熱接触を確実なものとすることで、熱交換器の高性能化と低コスト化の両立を図ることを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の本発明の熱交換器は、管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に螺旋状に巻き付けられ配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を前記フィン間の空間に配置し、前記フィンを隣接する前記 円管の隙間を埋めるような山形形状とすることで、前記円管を両側に位置する前記フィン面と前記管とに接触させる構成としたことを特徴とする。
請求項2記載の本発明は、請求項1に記載の熱交換器において、前記円管の内径を、前記フィン付き管の内径よりも小さくしたことを特徴とする。
請求項3記載の本発明は、請求項1又は請求項2に記載の熱交換器において、前記第二流体を、前記第一流体よりも動作圧力の高い流体としたことを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載の熱交換器において、前記第二流体を炭酸ガスとし、前記第一流体を水としたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の熱交換器において、前記管と前記フィンと前記円管との間に形成される空間に、熱伝達物質を充填したことを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれかに記載の熱交換器において、前記フィン付き管の外周に配置した円管を複数本とし、前記第二流体の流路を多パス化したことを特徴とする。
【0007】
【発明の実施の形態】
本発明による第1の実施の形態は、円管をフィン間の空間に配置し、円管を少なくとも両側に位置するフィン面と管とに接触させたものである。本実施の形態によれば、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明による第2の実施の形態は、第1の実施の形態において、円管の内径を、フィン付き管の内径よりも小さくしたものである。本実施の形態によれば、径の小さな管の方が加工を行いやすいため、円管をフィン付き管の外周に配置しやすい。
また、本発明による第3の実施の形態は、第1または第2の実施の形態において、円管の内部を流れる第二流体の動作圧力が、フィン付き管の内部を流れる第一流体の動作圧力より高くなるように構成したものである。本実施の形態によれば、耐圧を確保しやすい小径の円管の内部に圧力の高い第二流体を流すことで、熱交換器の耐圧向上にかかるコスト低減が可能である。
また、本発明による第4の実施の形態は、第1から第3の実施の形態において、円管の内部を流れる第二流体は炭酸ガスで、フィン付き管の内部を流れる第一流体は水として用いる熱交換器である。本実施の形態によれば、耐圧を確保しやすい小径の円管の内部に伝熱特性が良好で、圧力の高い炭酸ガスを流すことで、熱交換器の耐圧向上にかかるコストを低減でき、熱交換性能が向上する。
また、本発明による第5の実施の形態による熱交換器は、第1から第4の実施の形態において、フィン付き管の外周面およびフィンと円管との間の形成される空間に、熱伝達物質を充填したものである。本実施の形態によれば、より確実な熱接触が得られ、熱交換性能が向上する。
また、本発明による第6の実施の形態による熱交換器は、第1から第5の実施の形態において、フィン付き管の外周に配置した円管を複数本とし、円管の内部を流れる第二流体の流路を多パス化した熱交換器である。本実施の形態によれば、第二流体の圧力損失を低減でき、熱交換性能が向上する。
【0008】
【実施例】
まず、本発明の熱交換器を用いる冷凍サイクル装置について説明する。
図1は、本発明の熱交換器を利用した給湯装置を示す構成図である。
図1に示すように、本実施例による給湯装置は、圧縮機1、給湯用熱交換器としての利用側熱交換器2、減圧器3、および外気を熱源とする熱源側熱交換器4からなる冷媒サイクルAと、給水ポンプ5、利用側熱交換器2、および給湯タンク6からなる給湯サイクルBとを備えている。冷媒サイクルAは、冷媒として例えば炭酸ガス(二酸化炭素)を用い、圧縮機1では臨界圧力を越える圧力まで冷媒を圧縮して運転する。
圧縮機1から吐出された冷媒は、利用側熱交換器2において給水ポンプ5から供給される水を加熱し、加熱されたお湯は、給湯タンク6に貯められる。
【0009】
次に、このような給湯装置に用いられる本発明の一実施例による熱交換器の構成について、図2から図5を用いて説明する。
図2から図5は本実施例による熱交換器の製造工程を示し、図2は第一流体が流れるフィン付き管の要部外観斜視図、図3はフィン付き管の外周に第二流体が流れる円管の一部を配置した状態を示す要部外観斜視図、図4はフィン付き管の外周に円管を配置させた状態を示す要部断面図、図5は完成状態を示す要部断面図である。
図2に示すように、一般的にはローフィンチューブやハイフィンチューブと呼ばれるフィン付き管20は、筒状の管21の外周に、所定高さのフィン22が螺旋状に形成され、ほぼ等間隔に形成されたフィン22の間には、螺旋状の空間23が形成されている。
図3に示すように、円管24は、フィン付き管20のフィン22間の空間23に、螺旋状に巻き付けられる。そして図4に示すように、円管24は、フィン付き管20に巻き付けられた状態で、円管24の外周面が管21の外周面と両側に位置するフィン22面とに当接するような外径で構成されている。
円管24をフィン付き管20に巻き付けた後に、図5に示すように、フィン付き管20のフィン22の一部を折り曲げることで熱交換器2aが製作される。フィン22の折り曲げは、中空の治具に挿入、又は押し出しや引き抜き加工により行う。フィン22を、円管24を包み込むように折り曲げ、フィン22の折曲片によって円管24をフィン付き管20の外周に固定することで、円管24とフィン付き管20の熱接触を確保する。
本実施例による熱交換器2aは、フィン付き管20の内部を、例えば水等の第一流体の流路とし、円管24の内部を、例えば炭酸ガスのような冷媒である第二流体の流路とする。なお、第一流体と第二流体とは対向流とする方が望ましい。
【0010】
上記のように構成された熱交換器2aにおいては、次のような効果が得られる。
まず、従来の熱交換器のような炉中ろう付けを行うことなく、フィン付き管20と円管24の熱接触を確保できるために、熱交換器2aの製造上のコストを低減できる。また、従来の熱交換器では、円管11の外周のみで円管12と金属接触していたのに対し、本実施例の熱交換器2aでは、フィン22により円管24を包み込むように固定しているため、金属接触面が増大し、より確実にフィン付き管20と円管24との熱接触が得られ、熱交換性能が向上する。
さらに、円管24の内部を第一流体より動作圧力の高い第二流体の流路とし、フィン付き管20の内部は、第二流体より動作圧力の低い第一流体の流路とすることにより、動作圧力の高い第二流体が流れる円管24は耐圧を確保しやすい小径の管であることから、円管24の耐圧を確保するために必要な肉厚の増加による原材料コストの上昇を、極力おさえることができ、熱交換器2aの耐圧向上にかかるコストを低減できる。
【0011】
次に、上述のように構成された熱交換器2aを給湯装置に用いた場合の動作について説明する。
円管24の内部は冷媒である炭酸ガスの流路とし、フィン付き管20の内部は水の流路とする。この給湯装置においては、圧縮機1で圧縮された冷媒は、高温高圧状態となり、本実施例の熱交換器である利用側熱交換器2aの円管24を通過する際に、フィン付き管20の内部を流れる水に放熱し冷却される。すなわち、給湯タンク6の底部から給水ポンプ5によりフィン付き管20の内部へ送り込まれた水は、円管24の内部を流れる冷媒により加熱される。冷媒は、その後減圧器3により減圧されて、低温低圧の気液二相状態となる。そして、熱源側熱交換器4では、冷媒は空気によって冷却されて、気液二相またはガス状態となり、気液二相またはガス状態となった冷媒は、再び圧縮機1に吸入される。このようなサイクルを繰り返すことにより、利用側熱交換器2aのフィン付き管20の内部を流れる水はお湯となり、そのお湯を給湯タンク6の頂部から貯めることで給湯器として利用できる。このように、炭酸ガスを冷媒として使用した給湯装置の利用側熱交換器として、本実施例の熱交換器2aを用いると、他の冷媒より動作圧力の高い炭酸ガスを、耐圧を確保しやすい小径の円管24の内部に流すことができ、熱交換器2aの耐圧向上にかかるコストを低減でき、かつ、伝熱特性が良好な炭酸ガスを流すことで熱交換性能が向上する。
【0012】
次に、別の実施例による熱交換器の構成について、図6を用いて説明する。
本実施例による熱交換器2bは、図5に示した熱交換器の構成に加えて、折り曲げられたフィン22と円管24の外周面とによって形成される隙間25に、伝熱性の高い物質からなる部材、例えば、アルミ合金の粉末を含むペーストなどを充填したものである。このような熱交換器2bにおいては、隙間25の熱抵抗が、伝熱性の高い物質により低減され、より確実な熱接触が得られるために熱交換性能が向上する。
【0013】
さらに、別の実施例による熱交換器の構成について、図7を用いて説明する。
本実施例による熱交換器2cは、フィン付き管31の複数のフィン32間に、2本の円管34、35を螺旋状に巻き付けたものであり、フィン32の一部を折り曲げることで、円管34、35とフィン付き管31を固定したものである。さらに、円管34と円管35は分岐管(図示せず)により第二流体の流路を分岐し、第二流体が円管34と円管35のそれぞれの内部を並列に流れるように、すなわち第二流体の流路を2パスとするように構成されている。このような熱交換器2cにおいては、第二流体の圧力損失を低減でき、より熱交換性能が向上する。なお、本実施例では巻き付ける円管を2本とし、第二流体の流路を2パスとする構成として説明したが、さらに複数の円管を巻き付ける構成とし、第二流体の流路をさらに多パス化してもよい。
【0014】
さらに、別の実施例による熱交換器の構成について、図8を用いて説明する。本実施例による熱交換器2dは、フィン付き管41のフィン42が、円管44を折り曲げて固定する程、高くないものである。このような熱交換器2dにおいては、フィン42により円管44を固定することはできないものの、フィン42の高さが低いためにフィン付き管41の製造が比較的容易になり、製造コストが低減できる。さらに、フィン42を、隣接する円管44の隙間を埋めるような山形形状とすることにより、フィン付き管41と円管44との金属接触している面積が増大し、熱交換性能が向上する。
【0015】
なお、以上説明した熱交換器において、フィン付き管20、31、41のフィン22、32、42は転造などの加工方法により、フィン付き管と同一素材、例えば、高い伝熱性を有するアルミ合金や銅で一体形成されていることが望ましい。また、フィン付き管20、31、41の内部に、螺旋溝やコルゲートなどを形成し、伝熱面積の拡大や乱流の促進を図り、さらに熱交換器の性能を向上させてもよい。
【0016】
さらに、別の実施例による熱交換器の構成について、図9から図11を用いて説明する。
図9は、本実施例による熱交換器の、第一流体が流れるフィン付き管の要部外観斜視図、図10は、同熱交換器のフィン付き管の外周に第二流体が流れる円管を配置させた状態を示す要部外観斜視図、図11は、フィン付き管の外周に円管を配置させた状態を示す断面図である。
図9に示すように、フィン付き管50は、筒状の管51の外周に、所定高さのフィン52が管軸方向に複数本並行に形成されている。本実施例の熱交換器2eにおいては、図10、図11に示すように、複数のフィン52の間の空間53に、円管54をフィン付き管50の管軸と並行に配置する。その後、図11に示すように、押し出しや引き抜き加工を行うことなどにより、フィン付き管50のフィン52で円管54を包み込むか、又は挟み込むように先端部を折り曲げることで、円管54をフィン付き管50の外周に固定し、円管54とフィン付き管50の熱接触を確保する。このような熱交換器2eにおいては、図4に示す構成の熱交換器2aと同様の効果を有することに加え、フィン52の高さが比較的低くても円管54を固定できることやフィン52を折り曲げるための押し出しや引き抜き加工が比較的容易なことから、製造コストを低減できる。さらに、図7に示す構成の熱交換器2cで説明したような第二流体流路の多パス化が容易にできるといったメリットも有する。
なお、フィン付き管50のフィン52は押し出しなどの加工方法によりフィン付き管と同一素材、例えば、高い伝熱性を有するアルミ合金や銅で一体形成されていることが望ましい。
【0017】
【発明の効果】
本発明によれば、円管を少なくとも両側に位置するフィン面と管とに接触させることにより、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明によれば、円管をフィン付き管に螺旋状に巻き付けて構成したことにより、フィン付き管と円管の接触面積増大により熱交換性能が向上する。
また、本発明によれば、円管の内径をフィン付き管の内径よりも小さくしたことで、径の小さな管の方が加工を行いやすいため、円管をフィン付き管の外周に配置しやすい。
また、本発明によれば、耐圧を確保しやすい小径の円管の内部に圧力の高い第二流体を流すことで、熱交換器の耐圧向上にかかるコスト低減が可能である。
また、本発明によれば、耐圧を確保しやすい小径の円管の内部に伝熱特性が良好で、圧力の高い炭酸ガスを流すことで、熱交換器の耐圧向上にかかるコストを低減でき、熱交換性能が向上する。
また、本発明によれば、フィン付き管の外周面およびフィンと円管との間に形成される空間に熱伝達物質を充填することで、より確実な熱接触が得られ、熱交換性能が向上する。
また、本発明によれば、フィン付き管の外周に配置した円管を複数本とし、円管の内部を流れる第二流体の流路を多パス化することで、第二流体の圧力損失を低減でき、熱交換性能が向上する。
【図面の簡単な説明】
【図1】 本発明の熱交換器を利用した給湯装置を示す構成図
【図2】 本発明の一実施例による熱交換器の第一流体が流れるフィン付き管の要部外観斜視図
【図3】 同実施例によるフィン付き管の外周に第二流体が流れる円管の一部を配置した状態を示す要部外観斜視図
【図4】 同実施例によるフィン付き管の外周に円管を配置させた状態を示す要部断面図
【図5】 同実施例による完成状態を示す要部断面図
【図6】 他の実施例による熱交換器の要部断面図
【図7】 他の実施例による熱交換器の要部断面図
【図8】 他の実施例による熱交換器の要部断面図
【図9】 他の実施例による熱交換器の、第一流体が流れるフィン付き管の要部外観斜視図
【図10】 同熱交換器のフィン付き管の外周に第二流体が流れる円管を配置させた状態を示す要部外観斜視図
【図11】 同熱交換器のフィン付き管の外周に円管を配置させた状態を示す断面図
【図12】 従来の熱交換器を示す要部外観斜視図
【符号の説明】
1 圧縮機
2 利用側熱交換器(給湯用熱交換器)
3 減圧器
4 熱源側熱交換器(室外熱交換器)
5 給水ポンプ
6 給湯タンク
11、12、24、34、35、44、54 円管
20、31、41,50 フィン付き管
22、32、42、52 フィン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger used in a refrigeration cycle apparatus, and more particularly to a heat exchanger used as a hot water supply heat exchanger in a hot water supply apparatus.
[0002]
[Prior art]
For example, as shown in FIG. 12, the use-side heat exchanger 2 used in the refrigeration cycle apparatus includes a circular tube 11 and a circular tube 12 spirally wound around the outer periphery of the circular tube 11. A heat exchanger in which the inside of the circular pipe 12 is used as a flow path for the second fluid (for example, refrigerant) while the inside is used as the flow path for the first fluid (for example, water) has been employed (for example, Patent Document 1). reference).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-280862 (page 6-7, FIG. 5)
[0004]
[Problems to be solved by the invention]
By the way, in the heat exchanger configured by spirally winding the circular tube 12 around the outer periphery of the circular tube 11 as shown in FIG. 12, in order to ensure the thermal contact between the circular tube 11 and the circular tube 12. It is necessary to join the circular pipe 11 and the circular pipe 12 by brazing in the furnace. For this reason, an expensive brazing furnace is required, and there has been a problem that the cost of the heat exchanger is increased in order to recover the equipment investment.
[0005]
Therefore, the present invention achieves both high performance and low cost of the heat exchanger by ensuring the thermal contact between the circular tube 11 and the circular tube 12 without performing brazing in the furnace. With the goal.
[0006]
[Means for Solving the Problems]
The heat exchanger of the present invention according to claim 1 comprises a finned tube having fins on the outer periphery of the tube, and a circular tube wound around the outer periphery of the finned tube and arranged in a spiral manner. In the heat exchanger for exchanging heat between the first fluid flowing inside and the second fluid flowing inside the circular tube, the circular tube is arranged in a space between the fins, and the fins are adjacent to each other said with chevron shape so as to fill the gap of the circular tube, characterized by being configured to the fin surface for positioning the circular tube on both sides and Ru into contact with said tube.
According to a second aspect of the present invention, in the heat exchanger according to the first aspect , the inner diameter of the circular tube is smaller than the inner diameter of the finned tube.
According to a third aspect of the present invention, in the heat exchanger according to the first or second aspect, the second fluid is a fluid having a higher operating pressure than the first fluid.
According to a fourth aspect of the present invention, in the heat exchanger according to any one of the first to third aspects, the second fluid is carbon dioxide and the first fluid is water.
According to a fifth aspect of the present invention, in the heat exchanger according to any one of the first to fourth aspects , a heat transfer material is provided in a space formed between the tube, the fin, and the circular tube. It is characterized by filling.
According to a sixth aspect of the present invention, in the heat exchanger according to any one of the first to fifth aspects, a plurality of circular tubes arranged on the outer periphery of the finned tube are provided, and the flow path of the second fluid Is characterized by multipath.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the first embodiment of the present invention , a circular pipe is arranged in a space between fins, and the circular pipe is brought into contact with the fin surface and the pipe located at least on both sides. According to the present embodiment, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube.
In the second embodiment of the present invention, the inner diameter of the circular tube is smaller than the inner diameter of the finned tube in the first embodiment. According to the present embodiment, since a pipe having a smaller diameter is easier to process, it is easier to arrange the circular pipe on the outer periphery of the finned pipe.
In the third embodiment of the present invention, the operation of the first fluid in which the operating pressure of the second fluid flowing inside the circular tube is the inside of the finned tube in the first or second embodiment. It is configured to be higher than the pressure. According to the present embodiment, it is possible to reduce the cost for improving the pressure resistance of the heat exchanger by flowing the second fluid having a high pressure inside the small-diameter circular tube in which the pressure resistance is easily secured.
In the fourth embodiment according to the present invention, in the first to third embodiments, the second fluid flowing inside the circular tube is carbon dioxide, and the first fluid flowing inside the finned tube is water. As a heat exchanger. According to the present embodiment, heat transfer characteristics are good inside a small-diameter circular tube that is easy to ensure pressure resistance, and by flowing high pressure carbon dioxide gas, the cost for improving the pressure resistance of the heat exchanger can be reduced, Heat exchange performance is improved.
The heat exchanger according to the fifth embodiment of the present invention has a heat exchanger in the outer peripheral surface of the finned tube and the space formed between the fin and the circular tube in the first to fourth embodiments. It is filled with a transmitter substance. According to the present embodiment, more reliable thermal contact is obtained and the heat exchange performance is improved.
The heat exchanger according to the sixth embodiment of the present invention includes a plurality of circular tubes arranged on the outer periphery of the finned tube in the first to fifth embodiments, and flows through the inside of the circular tube. This is a heat exchanger in which a two-fluid flow path is multipassed. According to the present embodiment, the pressure loss of the second fluid can be reduced, and the heat exchange performance is improved.
[0008]
【Example】
First, a refrigeration cycle apparatus using the heat exchanger of the present invention will be described.
FIG. 1 is a block diagram showing a hot water supply apparatus using the heat exchanger of the present invention.
As shown in FIG. 1, a hot water supply apparatus according to the present embodiment includes a compressor 1, a use side heat exchanger 2 as a heat exchanger for hot water supply, a decompressor 3, and a heat source side heat exchanger 4 using outside air as a heat source. And a hot water supply cycle B including a hot water supply pump 5, a use-side heat exchanger 2, and a hot water supply tank 6. In the refrigerant cycle A, for example, carbon dioxide (carbon dioxide) is used as the refrigerant, and the compressor 1 is operated by compressing the refrigerant to a pressure exceeding the critical pressure.
The refrigerant discharged from the compressor 1 heats the water supplied from the water supply pump 5 in the use side heat exchanger 2, and the heated hot water is stored in the hot water supply tank 6.
[0009]
Next, the structure of the heat exchanger according to one embodiment of the present invention used in such a hot water supply apparatus will be described with reference to FIGS.
2 to 5 show the manufacturing process of the heat exchanger according to the present embodiment, FIG. 2 is an external perspective view of the main part of the finned tube through which the first fluid flows, and FIG. 3 shows the second fluid on the outer periphery of the finned tube. FIG. 4 is a main part sectional view showing a state in which a circular pipe is arranged on the outer periphery of a finned pipe, and FIG. 5 is a main part showing a completed state. It is sectional drawing.
As shown in FIG. 2, a finned tube 20 generally called a low fin tube or a high fin tube has fins 22 of a predetermined height spirally formed on the outer periphery of a cylindrical tube 21, and is substantially equidistant. A spiral space 23 is formed between the fins 22 formed in the above.
As shown in FIG. 3, the circular tube 24 is spirally wound around the space 23 between the fins 22 of the finned tube 20. As shown in FIG. 4, the circular tube 24 is wound around the finned tube 20 so that the outer peripheral surface of the circular tube 24 comes into contact with the outer peripheral surface of the tube 21 and the fin 22 surfaces located on both sides. It consists of an outer diameter.
After the circular tube 24 is wound around the finned tube 20, the heat exchanger 2 a is manufactured by bending a part of the fin 22 of the finned tube 20 as shown in FIG. 5. The fins 22 are bent by insertion into a hollow jig or by extrusion or drawing. The fin 22 is bent so as to wrap around the circular tube 24, and the circular tube 24 is fixed to the outer periphery of the finned tube 20 by the bent piece of the fin 22, thereby ensuring thermal contact between the circular tube 24 and the finned tube 20. .
In the heat exchanger 2a according to the present embodiment, the inside of the finned tube 20 is a flow path of a first fluid such as water, and the inside of the circular tube 24 is a second fluid that is a refrigerant such as carbon dioxide gas. Let it be a flow path. Note that the first fluid and the second fluid are preferably counterflowed.
[0010]
In the heat exchanger 2a configured as described above, the following effects are obtained.
First, since the heat contact between the finned tube 20 and the circular tube 24 can be ensured without performing brazing in the furnace like a conventional heat exchanger, the manufacturing cost of the heat exchanger 2a can be reduced. Further, in the conventional heat exchanger, metal contact is made with the circular tube 12 only at the outer periphery of the circular tube 11, whereas in the heat exchanger 2a of the present embodiment, the circular tube 24 is fixed so as to be wrapped by the fins 22. Therefore, the metal contact surface is increased, the thermal contact between the finned tube 20 and the circular tube 24 can be obtained more reliably, and the heat exchange performance is improved.
Furthermore, the inside of the circular pipe 24 is a flow path for the second fluid having a higher operating pressure than the first fluid, and the inside of the finned pipe 20 is the flow path for the first fluid having a lower operating pressure than the second fluid. Since the circular pipe 24 through which the second fluid having a high operating pressure flows is a small-diameter pipe that easily secures the pressure resistance, the increase in the raw material cost due to the increase in the wall thickness necessary to secure the pressure resistance of the circular pipe 24, It can be suppressed as much as possible, and the cost for improving the pressure resistance of the heat exchanger 2a can be reduced.
[0011]
Next, the operation when the heat exchanger 2a configured as described above is used in a hot water supply device will be described.
The inside of the circular pipe 24 is a flow path for carbon dioxide gas as a refrigerant, and the inside of the finned pipe 20 is a flow path for water. In this hot water supply device, the refrigerant compressed by the compressor 1 becomes a high-temperature and high-pressure state, and passes through the circular tube 24 of the use-side heat exchanger 2a which is the heat exchanger of the present embodiment, so that the finned tube 20 Heat is dissipated in the water flowing inside and cooled. That is, the water fed from the bottom of the hot water supply tank 6 into the finned tube 20 by the water supply pump 5 is heated by the refrigerant flowing inside the circular tube 24. The refrigerant is then depressurized by the decompressor 3 and enters a low-temperature and low-pressure gas-liquid two-phase state. In the heat source side heat exchanger 4, the refrigerant is cooled by air to be in a gas-liquid two-phase or gas state, and the refrigerant in the gas-liquid two-phase or gas state is again sucked into the compressor 1. By repeating such a cycle, the water flowing inside the finned tube 20 of the use side heat exchanger 2a becomes hot water, and the hot water can be used as a hot water supply by storing it from the top of the hot water supply tank 6. Thus, when the heat exchanger 2a of the present embodiment is used as the use side heat exchanger of the hot water supply apparatus using carbon dioxide gas as a refrigerant, it is easy to ensure the pressure resistance of carbon dioxide gas having a higher operating pressure than other refrigerants. The heat exchange performance can be improved by flowing carbon dioxide gas that can flow into the small-diameter circular tube 24, reduce the cost for improving the pressure resistance of the heat exchanger 2a, and have good heat transfer characteristics.
[0012]
Next, the configuration of a heat exchanger according to another embodiment will be described with reference to FIG.
The heat exchanger 2b according to the present embodiment has a high heat transfer material in the gap 25 formed by the bent fins 22 and the outer peripheral surface of the circular tube 24 in addition to the configuration of the heat exchanger shown in FIG. A member made of, for example, a paste containing aluminum alloy powder is filled. In such a heat exchanger 2b, the heat resistance of the gap 25 is reduced by a highly heat-conductive substance, and more reliable heat contact is obtained, so that the heat exchange performance is improved.
[0013]
Furthermore, the structure of the heat exchanger by another Example is demonstrated using FIG.
In the heat exchanger 2c according to the present embodiment, two circular tubes 34 and 35 are spirally wound between the plurality of fins 32 of the finned tube 31, and a part of the fin 32 is bent. The circular tubes 34 and 35 and the finned tube 31 are fixed. Furthermore, the circular pipe 34 and the circular pipe 35 branch the flow path of the second fluid by a branch pipe (not shown) so that the second fluid flows in parallel inside each of the circular pipe 34 and the circular pipe 35. That is, the second fluid channel is configured to have two paths. In such a heat exchanger 2c, the pressure loss of the second fluid can be reduced, and the heat exchange performance is further improved. In this embodiment, two circular pipes are wound and the flow path of the second fluid is two paths. However, a plurality of circular pipes are wound and the second fluid flow path is further increased. A pass may be used.
[0014]
Furthermore, the structure of the heat exchanger by another Example is demonstrated using FIG. The heat exchanger 2d according to the present embodiment is not so high that the fins 42 of the finned tube 41 bend and fix the circular tube 44. In such a heat exchanger 2d, although the circular tube 44 cannot be fixed by the fins 42, the fins 41 are relatively easy to manufacture because the height of the fins 42 is low, and the manufacturing cost is reduced. it can. Further, by forming the fins 42 in a mountain shape that fills the gaps between the adjacent circular tubes 44, the area where the fin-attached tube 41 and the circular tube 44 are in metal contact increases, and the heat exchange performance is improved. .
[0015]
In the heat exchanger described above, the fins 22, 32 and 42 of the finned tubes 20, 31, and 41 are made of the same material as the finned tube, for example, an aluminum alloy having high heat conductivity, by a processing method such as rolling. It is desirable to be integrally formed of copper or copper. Moreover, a spiral groove, a corrugate, etc. may be formed inside the finned tubes 20, 31, 41 to increase the heat transfer area and promote turbulence, and further improve the performance of the heat exchanger.
[0016]
Furthermore, the structure of the heat exchanger by another Example is demonstrated using FIGS. 9-11.
FIG. 9 is an external perspective view of the main part of the finned tube through which the first fluid flows in the heat exchanger according to the present embodiment, and FIG. 10 is a circular tube through which the second fluid flows on the outer periphery of the finned tube of the heat exchanger. FIG. 11 is a cross-sectional view showing a state in which a circular tube is arranged on the outer periphery of a finned tube.
As shown in FIG. 9, the finned tube 50 has a plurality of fins 52 having a predetermined height formed in parallel in the tube axis direction on the outer periphery of a tubular tube 51. In the heat exchanger 2e of the present embodiment, as shown in FIGS. 10 and 11, the circular tube 54 is arranged in a space 53 between the plurality of fins 52 in parallel with the tube axis of the finned tube 50. After that, as shown in FIG. 11, the circular tube 54 is finned by wrapping the circular tube 54 with the fins 52 of the finned tube 50 or bending the tip so as to be sandwiched by performing extrusion or drawing. It fixes to the outer periphery of the attached tube 50, and ensures the thermal contact of the circular tube 54 and the finned tube 50. In such a heat exchanger 2e, in addition to having the same effect as the heat exchanger 2a having the configuration shown in FIG. 4, the circular tube 54 can be fixed even if the height of the fin 52 is relatively low, and the fin 52 The manufacturing cost can be reduced because the extrusion and drawing process for bending is relatively easy. Furthermore, there is an advantage that the second fluid flow path as described in the heat exchanger 2c having the configuration shown in FIG.
The fins 52 of the finned tube 50 are preferably integrally formed of the same material as the finned tube, for example, an aluminum alloy or copper having high heat conductivity, by a processing method such as extrusion.
[0017]
【The invention's effect】
According to the present invention , the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube by bringing the circular tube into contact with the fin surface and the tube located at least on both sides.
Further, according to the present invention, since the circular tube is wound around the finned tube in a spiral shape, the heat exchange performance is improved by increasing the contact area between the finned tube and the circular tube .
Further , according to the present invention, since the inner diameter of the circular tube is smaller than the inner diameter of the finned tube, the smaller diameter tube is easier to process, and therefore the circular tube can be easily disposed on the outer periphery of the finned tube. .
Further, according to the present invention, the cost for improving the pressure resistance of the heat exchanger can be reduced by allowing the second fluid having a high pressure to flow inside the small-diameter circular tube in which pressure resistance is easily secured.
In addition, according to the present invention, heat transfer characteristics are good inside a small-diameter circular tube that is easy to ensure pressure resistance, and by flowing a high-pressure carbon dioxide gas, the cost for improving the pressure resistance of the heat exchanger can be reduced, Heat exchange performance is improved.
In addition, according to the present invention, more reliable thermal contact can be obtained by filling the space formed between the outer peripheral surface of the finned tube and the fin and the circular tube with the heat transfer material, and the heat exchange performance is improved. improves.
In addition, according to the present invention, a plurality of circular pipes arranged on the outer periphery of the finned pipe are provided, and the flow path of the second fluid flowing inside the circular pipe is multipassed to reduce the pressure loss of the second fluid. The heat exchange performance is improved.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a hot water supply apparatus using a heat exchanger according to the present invention. FIG. 2 is an external perspective view of a main part of a finned tube through which a first fluid flows in a heat exchanger according to an embodiment of the present invention. 3] Perspective view of the external appearance of the main part showing a state in which a part of the circular pipe through which the second fluid flows is arranged on the outer periphery of the finned pipe according to the embodiment. Fig. 5 is a cross-sectional view of a main part showing a completed state according to the same embodiment. Fig. 6 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. FIG. 8 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. FIG. 9 is a cross-sectional view of a main part of a heat exchanger according to another embodiment. Fig. 10 is a perspective view of the external appearance of the main part. 11 is a cross-sectional view showing a state in which a circular tube is arranged on the outer periphery of a finned tube of the heat exchanger. FIG. 12 is a main portion external perspective view showing a conventional heat exchanger. Explanation】
1 Compressor 2 Use-side heat exchanger (heat exchanger for hot water supply)
3 Pressure reducer 4 Heat source side heat exchanger (outdoor heat exchanger)
5 Water supply pump 6 Hot water supply tank 11, 12, 24, 34, 35, 44, 54 Round pipe 20, 31, 41, 50 Finned pipe 22, 32, 42, 52 Fin

Claims (6)

管の外周にフィンを有するフィン付き管と、前記フィン付き管の外周に螺旋状に巻き付けられ配置される円管とからなり、前記フィン付き管の内部を流れる第一流体と前記円管の内部を流れる第二流体との間で熱交換を行わせる熱交換器において、前記円管を前記フィン間の空間に配置し、前記フィンを隣接する前記円管の隙間を埋めるような山形形状とすることで、前記円管を両側に位置する前記フィン面と前記管とに接触させる構成としたことを特徴とする熱交換器。A finned tube having fins on the outer periphery of the tube, and a circular tube spirally wound around the outer periphery of the finned tube, and the first fluid flowing inside the finned tube and the interior of the circular tube In the heat exchanger for exchanging heat with the second fluid flowing through the circular pipe, the circular pipe is disposed in the space between the fins, and the fin has a mountain shape that fills a gap between the adjacent circular pipes. it is, heat exchanger, characterized in that a configuration in which the fin surface for positioning the circular tube on both sides and Ru into contact with said tube. 前記円管の内径を、前記フィン付き管の内径よりも小さくしたことを特徴とする請求項1に記載の熱交換器。The heat exchanger according to claim 1 , wherein an inner diameter of the circular tube is smaller than an inner diameter of the finned tube. 前記第二流体を、前記第一流体よりも動作圧力の高い流体としたことを特徴とする請求項1又は請求項2に記載の熱交換器。  The heat exchanger according to claim 1 or 2, wherein the second fluid is a fluid having an operating pressure higher than that of the first fluid. 前記第二流体を炭酸ガスとし、前記第一流体を水としたことを特徴とする請求項1から請求項3のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 3, wherein the second fluid is carbon dioxide and the first fluid is water. 前記管と前記フィンと前記円管との間に形成される空間に、熱伝達物質を充填したことを特徴とする請求項1から請求項4のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 4, wherein a space formed between the tube, the fin, and the circular tube is filled with a heat transfer material. 前記フィン付き管の外周に配置した円管を複数本とし、前記第二流体の流路を多パス化したことを特徴とする請求項1から請求項5のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 5 , wherein a plurality of circular pipes arranged on the outer periphery of the finned pipe are provided, and the flow path of the second fluid is multipassed.
JP2002358031A 2002-12-10 2002-12-10 Heat exchanger Expired - Lifetime JP4084174B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002358031A JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger
KR1020030089044A KR20040050875A (en) 2002-12-10 2003-12-09 Heat exchanger
CNB2003101202661A CN1322300C (en) 2002-12-10 2003-12-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002358031A JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2004190922A JP2004190922A (en) 2004-07-08
JP4084174B2 true JP4084174B2 (en) 2008-04-30

Family

ID=32757863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002358031A Expired - Lifetime JP4084174B2 (en) 2002-12-10 2002-12-10 Heat exchanger

Country Status (3)

Country Link
JP (1) JP4084174B2 (en)
KR (1) KR20040050875A (en)
CN (1) CN1322300C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897298B2 (en) * 2006-01-17 2012-03-14 サンデン株式会社 Gas-liquid separator module
JP2008045868A (en) * 2006-07-21 2008-02-28 Sumitomo Light Metal Ind Ltd Heat exchanger for water heater, and its manufacturing method
JP5255236B2 (en) * 2007-06-25 2013-08-07 古河電気工業株式会社 Heat exchanger and heat exchange system
JP2009024969A (en) * 2007-07-23 2009-02-05 Sumitomo Light Metal Ind Ltd Heat exchanger
JP5794952B2 (en) * 2012-06-13 2015-10-14 三菱電機株式会社 Twisted tube heat exchanger
CN104684344A (en) * 2013-11-29 2015-06-03 国际商业机器公司 PCM (phase change material) cooling equipment, cooling system as well as method and unit for cooling system
JP2015135216A (en) * 2014-01-17 2015-07-27 株式会社東芝 Exhaust heat recovery apparatus and exhaust heat recovery system
WO2015132966A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device
RU2598542C1 (en) * 2015-09-30 2016-09-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" Fast neutron reactor fuel element, element for spacing fuel element and method (versions) of making element
CN105277022A (en) * 2015-11-30 2016-01-27 李家海 Tube-tube interlaced type heat exchanger
JP6569815B2 (en) * 2016-08-29 2019-09-04 三菱電機株式会社 Heat pump system
KR101725852B1 (en) * 2016-09-20 2017-04-11 신동훈 Manufacturing Method of Fin Tube Assembly, and Fin Tube Assembly Manufactured Thereby
KR102046800B1 (en) * 2019-08-06 2019-11-21 주식회사 카이저제빙기 Ice-maker unit for auger type ice maker
JP7141379B2 (en) * 2019-10-08 2022-09-22 株式会社ユタカ技研 Double pipe and its manufacturing method
CN111397401A (en) * 2020-04-26 2020-07-10 周建 Spiral annular pipe-in-pipe heat energy exchanger

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875759A (en) * 1973-04-13 1975-04-08 Columbia Gas System Corp Heat exchange evaporator
JPH02176361A (en) * 1988-12-27 1990-07-09 Matsushita Electric Ind Co Ltd Heat exchanger
GB9617043D0 (en) * 1996-08-14 1996-09-25 Courtaulds Plc Manufacture ofd extruded articles
JP3397055B2 (en) * 1996-10-22 2003-04-14 松下電器産業株式会社 Heat exchanger
JP2000111275A (en) * 1998-10-02 2000-04-18 Mitsubishi Electric Corp Refrigerant-heating device
JP2001248979A (en) * 2000-03-03 2001-09-14 Koa Seisakusho:Kk Heat exchange pipe and manufacturing method for the same as well as heat exchange structure of refrigerating circuit
JP2001280862A (en) * 2000-03-31 2001-10-10 Sanyo Electric Co Ltd Brine heat exchanger

Also Published As

Publication number Publication date
JP2004190922A (en) 2004-07-08
CN1322300C (en) 2007-06-20
CN1506646A (en) 2004-06-23
KR20040050875A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4084174B2 (en) Heat exchanger
JP3953074B2 (en) Heat exchanger
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
JP5202030B2 (en) Double tube heat exchanger
US20070095514A1 (en) Tube for heat exchanger and method of manufacturing the same
JP4211041B2 (en) Heat pump water heater
JP2008164245A (en) Heat exchanger
JP2007071528A (en) Turn fin condenser
US5704123A (en) Method of making folded, bent and re-expanded heat exchanger tube and assemblies
JP2003329376A (en) Double tube type heat exchanger
JP2005164210A (en) Heat exchanger, multiple pipe for use in the device, and manufacturing method of the same
JP4224793B2 (en) Heat exchanger and manufacturing method thereof
WO2008025740A1 (en) A method for producing a metal tube by clad rolling one more profiles to form at least one channel, a clad rolling mill for joining one or more profiles, a clad rolled metal tube
KR101514977B1 (en) Brazing low use condenser header for join-pipe of manufacture method
JP2006189249A (en) Double pipe heat exchanger
JP5785883B2 (en) Heat exchanger and heat pump type water heater using the same
JP2003247788A (en) Heat exchanger and manufacturing method thereof
JP2005221087A (en) Heat exchanger
JP3477531B1 (en) Heat exchanger and method for producing the same, and bath water heating system and floor heating system using such heat exchanger
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP2010091266A (en) Twisted tube type heat exchanger
JP2010014312A (en) Double tube type supercooler
KR101016696B1 (en) turn fin type heat exchanger and manufacturing method for turn fin type heat exchanger
JP3871581B2 (en) Heat exchanger for heat pump type water heater and heat pump type water heater using the same
JP5334898B2 (en) Twisted tube heat exchanger and equipment equipped with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4084174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

EXPY Cancellation because of completion of term