JP4083707B2 - Method and apparatus for testing activity of alkali metal dispersant - Google Patents

Method and apparatus for testing activity of alkali metal dispersant Download PDF

Info

Publication number
JP4083707B2
JP4083707B2 JP2004148858A JP2004148858A JP4083707B2 JP 4083707 B2 JP4083707 B2 JP 4083707B2 JP 2004148858 A JP2004148858 A JP 2004148858A JP 2004148858 A JP2004148858 A JP 2004148858A JP 4083707 B2 JP4083707 B2 JP 4083707B2
Authority
JP
Japan
Prior art keywords
alkali metal
activity
dispersant
metal dispersant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004148858A
Other languages
Japanese (ja)
Other versions
JP2005331318A (en
Inventor
和雄 高橋
明仁 折井
正明 向出
章夫 本地
真二 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004148858A priority Critical patent/JP4083707B2/en
Publication of JP2005331318A publication Critical patent/JP2005331318A/en
Application granted granted Critical
Publication of JP4083707B2 publication Critical patent/JP4083707B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、環境汚染物質であるポリ塩化ビフェニル(PCB)等の有機塩素化合物を脱塩素化する場合などに使用されるアルカリ金属分散剤の活性検査方法と装置に関する。また、活性が低下したアルカリ金属分散剤を再活性化するための再生方法と装置に関する。   The present invention relates to an activity test method and apparatus for an alkali metal dispersant used when dechlorinating an organic chlorine compound such as polychlorinated biphenyl (PCB) which is an environmental pollutant. The present invention also relates to a regeneration method and apparatus for reactivating an alkali metal dispersant having reduced activity.

アルカリ金属は、還元性が高いことから様々な化学工業製品の製造に利用されている。単位時間当たり出来るだけ多くの還元生成物質を得るために、アルカリ金属は細かくして、他の物質との接触表面積を出来るだけ大きくすることが必要である。このため、アルカリ金属および化学工業製品との共存性が良好な液体中で、アルカリ金属を微小粒子化し、分散させて液体状のコロイド(サスペンションまたは分散剤と呼ばれる)にして使用することが多い。   Alkali metals are used in the manufacture of various chemical industrial products because of their high reducibility. In order to obtain as many reduction products as possible per unit time, it is necessary to make the alkali metal fine and to increase the contact surface area with other substances as much as possible. For this reason, in a liquid having good coexistence with alkali metal and chemical industrial products, the alkali metal is often made into fine particles and dispersed to be used as a liquid colloid (referred to as a suspension or a dispersant).

アルカリ金属分散剤中のアルカリ金属は、鉱油などの液体の媒質で覆われており、空気中の酸素や水分(湿分を含む)から隔離された状態にある。このためアルカリ金属分散剤の方が、単体のアルカリ金属に比べて取り扱いが容易である。一方、液中のアルカリ金属は、その性質が維持されて反応性に富むことから非常に有用であり、たとえばPCBなどの難分解性有機塩素化合物の脱塩素剤などとして用いられている。   The alkali metal in the alkali metal dispersant is covered with a liquid medium such as mineral oil, and is isolated from oxygen and moisture (including moisture) in the air. For this reason, the alkali metal dispersant is easier to handle than the single alkali metal. On the other hand, the alkali metal in the liquid is very useful because it maintains its properties and is highly reactive, and is used, for example, as a dechlorinating agent for persistent organic chlorine compounds such as PCB.

しかし、製造したアルカリ金属分散剤を有機塩素化合物の脱塩素剤として使用するまでには、長い時で数ヶ月を要する場合があり、この間にアルカリ金属の活性が低下し、所望の脱塩素反応が得られないことがある。   However, it may take several months to use the produced alkali metal dispersant as a dechlorination agent for organochlorine compounds. During this time, the activity of the alkali metal is lowered, and the desired dechlorination reaction is performed. It may not be obtained.

アルカリ金属分散剤を長い間放置した場合に活性が低下する原因としては、たとえば空気中の酸素や水分が徐々に媒質中に溶け込み、この溶け込んだ酸素や水分によってアルカリ金属粒子の極表面層が変質することが考えられる。また、分散状態にあった微粒のアルカリ金属が沈降して微細粒子同士が結合し、単純な攪拌では元の分散状態まで回復しないため反応に寄与する表面積が小さくなってしまうことが考えられる。   The reason why the activity decreases when the alkali metal dispersant is left for a long time is, for example, that oxygen and moisture in the air gradually dissolve in the medium, and the extreme surface layer of the alkali metal particles is altered by the dissolved oxygen and moisture. It is possible to do. In addition, it is conceivable that the fine alkali metal in the dispersed state settles and the fine particles are bonded to each other and the surface area contributing to the reaction is reduced because the original dispersed state is not recovered by simple stirring.

これらの活性低下を防止する改善策として、分散剤の製造および貯蔵を窒素やアルゴンガスなどの不活性ガス雰囲気下で行い、酸素や水分によるアルカリ金属の変質を防止することが行われている(例えば、特許文献1参照)。また、貯蔵中の分散剤の沈降を防止するために、貯蔵および輸送中も攪拌することが知られている(例えば、特許文献2参照)。   As an improvement measure to prevent these activity declines, the production and storage of a dispersant is performed in an inert gas atmosphere such as nitrogen or argon gas to prevent alteration of alkali metal due to oxygen or moisture ( For example, see Patent Document 1). In addition, it is known to stir during storage and transportation in order to prevent sedimentation of the dispersant during storage (see, for example, Patent Document 2).

特開昭59−20179号公報(請求項8,9)JP 59-20179 (Claims 8 and 9)

特開2002−58979号公報(要約)JP 2002-58979 A (summary)

従来技術は、アルカリ金属分散剤の活性低下を防止する一手法ではあるが、依然として、長期間アルカリ金属分散剤を貯蔵した場合には、アルカリ金属の活性が維持できているのかどうか不明であるという問題が残っている。アルカリ金属分散剤に消費期限を設けて、消費期限が切れたならば廃棄処理することも考えられるが、活性が低下していないのに廃棄する場合が生じ、不経済である。   Although the prior art is one method for preventing the decrease in the activity of the alkali metal dispersant, it is still unclear whether the alkali metal activity can be maintained when the alkali metal dispersant is stored for a long period of time. The problem remains. Although it is conceivable to dispose of the alkali metal dispersant when the expiry date has been set and the expiry date has expired, there is a case where it is discarded even though the activity is not lowered, which is uneconomical.

本発明の目的は、PCBなどの難分解性有機塩素化合物を脱塩素するための脱塩素剤等として利用されるアルカリ金属分散剤の活性を簡便に検査する方法と装置、および活性の低下したアルカリ金属分散剤を再活性化する再生方法と装置を提供することにある。   An object of the present invention is to provide a method and apparatus for simply examining the activity of an alkali metal dispersant used as a dechlorinating agent for dechlorinating a hardly decomposable organochlorine compound such as PCB, and an alkali with reduced activity. It is an object of the present invention to provide a regeneration method and apparatus for reactivating a metal dispersant.

本発明の活性検査方法は、アルカリ金属分散剤を有機塩素化合物と水素供与体の存在下で反応させ、その反応熱による温度変化の程度からアルカリ金属分散剤の活性の有無を判定することにある。   The activity inspection method of the present invention is to react an alkali metal dispersant in the presence of an organic chlorine compound and a hydrogen donor, and to determine the presence or absence of the activity of the alkali metal dispersant from the degree of temperature change due to the heat of reaction. .

アルカリ金属分散剤と有機塩素化合物および水素供与体の反応は、発熱反応であり、アルカリ金属分散剤が活性を有していれば、反応によって温度が上昇する。このときの温度上昇幅が大きいほど、活性は優れる。また、最高温度に到達するまでの経過時間が短いほど、活性は優れる。   The reaction between the alkali metal dispersant, the organic chlorine compound, and the hydrogen donor is an exothermic reaction. If the alkali metal dispersant has activity, the reaction raises the temperature. The greater the temperature rise at this time, the better the activity. In addition, the shorter the elapsed time to reach the maximum temperature, the better the activity.

活性の検査には、管状の反応器を用いて一端から液を流入させて反応させる方法と、バッチ式の検査容器を用いて反応させる方法とが考えられる。   For the inspection of the activity, there are a method of allowing a liquid to flow from one end using a tubular reactor and a method of reacting using a batch type inspection container.

管状反応器を用いる方法では、一端にアルカリ金属分散剤の流入口と、有機塩素化合物および水素供与体の混合液の流入口を設け、両液を反応管の内部で合流させて反応させ、反応にともなう温度変化と反応管に流入後、最高温度に到達するまでに液が移動した距離とからアルカリ金属分散剤の活性の有無を検査することが望ましい。   In the method using a tubular reactor, an inlet for an alkali metal dispersant and an inlet for a mixed liquid of an organic chlorine compound and a hydrogen donor are provided at one end, and the two liquids are combined inside the reaction tube to cause a reaction. It is desirable to inspect the presence or absence of the activity of the alkali metal dispersant from the temperature change accompanying the flow and the distance that the liquid has moved before reaching the maximum temperature after flowing into the reaction tube.

また、検査容器を用いてバッチ式で行う方法では、容器内のアルカリ金属分散剤と有機塩素化合物の混合液中に水素供与体を滴下して反応させ、反応にともなう温度変化と、最高温度に到達するまでに要した時間とからアルカリ金属分散剤の活性の有無を検査することが望ましい。   In addition, in a batch method using an inspection container, a hydrogen donor is dropped into a mixed liquid of an alkali metal dispersant and an organochlorine compound in the container to cause a reaction, and a temperature change accompanying the reaction and a maximum temperature are reached. It is desirable to check whether the alkali metal dispersant is active from the time required to reach it.

本発明の再活性化方法は、活性の低下したアルカリ金属分散剤を、アルカリ金属が溶融した状態で分散処理を行って、アルカリ金属表面の変質層或いは/及び粒子同士の結合を破壊することにある。本発明の再生処理では、活性の低下したアルカリ金属分散剤を分散処理するための分散装置と、アルカリ金属分散剤をアルカリ金属の溶融温度まで加熱するための加熱器を用意する必要がある。好ましくは、更に、活性の回復したアルカリ金属分散剤をアルカリ金属の融点以下の温度まで冷却する冷却器が用意される。   In the reactivation method of the present invention, the alkali metal dispersant having reduced activity is subjected to a dispersion treatment in a state where the alkali metal is melted, and the altered layer on the surface of the alkali metal or / and the bond between particles is broken. is there. In the regeneration treatment of the present invention, it is necessary to prepare a dispersing device for dispersing an alkali metal dispersant having reduced activity and a heater for heating the alkali metal dispersant to the melting temperature of the alkali metal. Preferably, a cooler is further provided for cooling the alkali metal dispersant whose activity has been recovered to a temperature not higher than the melting point of the alkali metal.

アルカリ金属分散剤の分散処理は、カウレス翼高速回転方式、ホモミキサー方式、加圧式ホモジナイザー方式および超音波ホモジナイザー方式のいずれかにより行うことが好ましい。   The dispersion treatment of the alkali metal dispersant is preferably performed by any one of a Cowles blade high-speed rotation method, a homomixer method, a pressurization homogenizer method, and an ultrasonic homogenizer method.

本発明の活性回復方法が適用される、活性が低下したアルカリ金属分散剤には、例えばアルカリ金属の表層部が変質しただけで内部がアルカリ金属を維持している分散剤、分散剤同士が結合し粗粒化したもの、消費期限が切れた分散剤、本発明の活性検査で活性無しと判定されたものがある。   The activity-reduced alkali metal dispersant to which the activity recovery method of the present invention is applied is, for example, a dispersant in which the inside of the alkali metal is maintained only by alteration of the surface layer portion of the alkali metal, and the dispersant is bonded to each other. Some of them are coarse, some have expired, and some have been determined to be inactive by the activity test of the present invention.

本発明によれば、アルカリ金属分散剤の活性の検査を、簡易な方法で、かつ速やかに行うことができる。また、活性の低下したアルカリ金属分散剤を、簡易な方法で再生することができる。   According to the present invention, the inspection of the activity of the alkali metal dispersant can be quickly performed by a simple method. Moreover, the alkali metal dispersing agent with reduced activity can be regenerated by a simple method.

以下、本発明による活性検査方法、及び活性が低下したアルカリ金属分散剤の再活性化方法について、具体例を示して説明する。但し、本発明は、これらの実施形態に限定されるものではない。   Hereinafter, the activity test method according to the present invention and the method for reactivating an alkali metal dispersant having decreased activity will be described with reference to specific examples. However, the present invention is not limited to these embodiments.

(活性の検査)
図1は、アルカリ金属分散剤の活性を検査するための流通式検査装置の概略図を示したものである。本実施例の流通式検査装置は、アルカリ金属分散剤が入っている容器1、水素供与体を添加した有機塩素化合物が入っている容器2、アルカリ金属分散剤を送液するためのポンプ3、水素供与体を添加した有機塩素化合物を送液するためのポンプ4、管状の活性検査管5、温度センサー6および排液の回収容器7により構成されている。
(Activity test)
FIG. 1 shows a schematic diagram of a flow-type inspection apparatus for inspecting the activity of an alkali metal dispersant. The flow type inspection apparatus of the present embodiment includes a container 1 containing an alkali metal dispersant, a container 2 containing an organic chlorine compound to which a hydrogen donor is added, a pump 3 for feeding the alkali metal dispersant, It comprises a pump 4 for feeding an organochlorine compound to which a hydrogen donor is added, a tubular activity test tube 5, a temperature sensor 6, and a drainage recovery container 7.

流通式による活性の検査は、検査対象のアルカリ金属分散剤を容器1からポンプ3で活性検査管5に供給するとともに、水素供与体を添加した有機塩素化合物を容器2からポンプ4で活性検査管5に供給し、両液の流通と混合によって生じる反応熱による温度変化を温度センサー6で測定して実施する。ここで温度センサー6は、複数本の熱電対を流れ方向に沿って配置し、液体の温度分布を測定できるようにすることが望ましいが、活性検査管5の表面温度分布を測定するようにしても良い。   The inspection of the activity by the flow type is that the alkali metal dispersant to be inspected is supplied from the container 1 to the activity inspection tube 5 by the pump 3 and the organochlorine compound to which the hydrogen donor is added is supplied from the container 2 to the activity inspection tube 5 by the pump 4 The temperature change due to the reaction heat generated by the flow and mixing of the two liquids is measured by the temperature sensor 6 and carried out. Here, the temperature sensor 6 is preferably arranged with a plurality of thermocouples along the flow direction so that the temperature distribution of the liquid can be measured, but the surface temperature distribution of the active test tube 5 is measured. Also good.

ナトリウム分散剤の活性の有無は、温度センサー6で得られた温度分布の最高温度によって判定する。好ましくは最高温度と、最高温度に到達するまでの時間の両方により判定する。ここで、混合液の組成と流速、活性検査管5の形状と材質、放熱特性などの固有の条件によって、最高温度と最高温度に到達するまでの時間は異なる。このため、予備試験を実施し、反応液中に残存する有機塩素濃度が所望の範囲内となる検査条件と、活性検査管5の温度分布を把握しておく必要がある。以下に活性検査結果の具体例を示す。   Whether or not the sodium dispersant is active is determined by the maximum temperature of the temperature distribution obtained by the temperature sensor 6. Preferably, the determination is based on both the maximum temperature and the time to reach the maximum temperature. Here, the maximum temperature and the time to reach the maximum temperature differ depending on the specific conditions such as the composition and flow rate of the mixed liquid, the shape and material of the activity test tube 5, and the heat radiation characteristics. For this reason, it is necessary to carry out a preliminary test to grasp the inspection conditions in which the concentration of organic chlorine remaining in the reaction solution is within a desired range and the temperature distribution of the activity test tube 5. The specific example of an activity test result is shown below.

活性検査管5には、外径6mm、肉厚1mm、長さ1mのフッ素樹脂製チューブを用いた。活性検査管5の外表面には、温度センサー6として熱電対を100mm間隔で取り付けた。また、検査の対象としたアルカリ金属分散剤は、電気絶縁油にナトリウムを分散させたナトリウム分散剤とした。有機塩素化合物にはPCB油を用いた。   As the activity test tube 5, a fluororesin tube having an outer diameter of 6 mm, a wall thickness of 1 mm, and a length of 1 m was used. Thermocouples as temperature sensors 6 were attached to the outer surface of the activity test tube 5 at intervals of 100 mm. Further, the alkali metal dispersant to be inspected was a sodium dispersant in which sodium was dispersed in an electrical insulating oil. PCB oil was used as the organic chlorine compound.

ナトリウム分散剤には、製造時のナトリウム粒子の平均粒径が約6μm、濃度が10質量%のものを使用した。活性の検査は、ナトリウム分散剤が製造直後のもの、空気中で約2ヶ月間静置したもの、および空気中で約4ヶ月間静置したものについて行い、いずれも検査直前に十分に攪拌して用いた。   As the sodium dispersant, an average particle diameter of sodium particles at the time of production of about 6 μm and a concentration of 10% by mass was used. The test of activity is conducted on the sodium dispersant immediately after production, the sample left in air for about 2 months, and the sample left in air for about 4 months. Used.

PCB油には、電気絶縁油と水素供与体としてのアルコールで5質量%に希釈したPCB混合油(以下、単にPCB混合油と記載する)を用いた。   As the PCB oil, a PCB mixed oil diluted to 5% by mass with an electrical insulating oil and alcohol as a hydrogen donor (hereinafter simply referred to as a PCB mixed oil) was used.

活性検査では、活性検査管5にナトリウム分散剤とPCB混合油を、それぞれ5ml/minで供給し、活性検査管5の流れ方向の温度分布を測定した。得られた温度分布の一例を図2に示す。   In the activity test, sodium dispersant and PCB mixed oil were supplied to the activity test tube 5 at 5 ml / min, respectively, and the temperature distribution in the flow direction of the activity test tube 5 was measured. An example of the obtained temperature distribution is shown in FIG.

製造直後のナトリウム分散剤では、PCB混合油との合流でナトリウムとアルコールの反応によりわずかな温度上昇を示し、その後、約400mmの位置から脱塩素反応による急激な温度上昇となり、約550mmの位置で最高温度が95℃に達した。合流部から最高温度に到達する位置までの活性検査管5の体積を、総流量で除して求めた時間を滞留時間と定義して、活性を有するナトリウム分散剤の滞留時間を求めると約42秒になる。   The sodium dispersant immediately after production shows a slight temperature rise due to the reaction of sodium and alcohol at the merge with the PCB mixed oil, and then a rapid temperature rise due to the dechlorination reaction from the position of about 400 mm, at a position of about 550 mm. Maximum temperature reached 95 ° C. When the time obtained by dividing the volume of the activity test tube 5 from the junction to the position where the maximum temperature is reached by the total flow rate is defined as the residence time, the residence time of the active sodium dispersant is about 42. Second.

これに対して、約2ヶ月間静置したものは、滞留時間が約53秒と長くなり、かつ最高温度も70℃に低下した。さらに約4ヶ月間静置したものは、脱塩素反応による急激な温度上昇が見られなくなり、ナトリウム分散剤の活性の低下が明確に判定できた。   On the other hand, in the case of standing for about 2 months, the residence time was as long as about 53 seconds, and the maximum temperature was lowered to 70 ° C. Furthermore, when the sample was left standing for about 4 months, a rapid temperature increase due to the dechlorination reaction was not observed, and the decrease in the activity of the sodium dispersant could be clearly determined.

(活性の検査)
図3は、アルカリ金属分散剤の活性を検査するためのバッチ式検査装置の概略図を示したものである。バッチ式検査装置は、検査容器20、アルカリ金属分散剤と有機塩素化合物の混合液21、攪拌装置22、温度センサー23、液注入口24、水素供与体注入口25、不活性ガス供給管26および液の排出管27により構成されている。
(Activity test)
FIG. 3 is a schematic view of a batch type inspection apparatus for inspecting the activity of the alkali metal dispersant. The batch type inspection apparatus includes an inspection container 20, a mixed liquid 21 of an alkali metal dispersant and an organochlorine compound, a stirring device 22, a temperature sensor 23, a liquid inlet 24, a hydrogen donor inlet 25, an inert gas supply pipe 26, and A liquid discharge pipe 27 is used.

バッチ式による活性の検査は、検査容器20内に不活性ガス供給管26から不活性ガスを供給して空気と置換した後、所定量の検査対象のアルカリ金属分散剤と有機塩素化合物を液注入口24から注入し、攪拌装置22で攪拌、さらに水素供与体注入口25からアルコール等の水素供与体を滴下した時の温度を温度センサー23で測定して実施する。   In the batch-type activity inspection, an inert gas is supplied into the inspection container 20 from the inert gas supply pipe 26 and replaced with air, and then a predetermined amount of the alkali metal dispersant to be inspected and the organochlorine compound are liquid-injected. Injecting from the inlet 24, stirring with the stirring device 22, and further, the temperature when dropping a hydrogen donor such as alcohol from the hydrogen donor inlet 25 is measured with the temperature sensor 23.

ナトリウム分散剤の活性の有無は、温度センサー23で得られる経時的な温度変化の最高温度で判定する。反応による混合液の最高温度は、有機塩素化合物の濃度に依存し、図4のような関係にあるが、混合液の組成、攪拌速度、検査容器20の形状と材質、放熱特性などの固有の条件によって、最高温度と最高温度に到達するまでの時間は異なる。このため、予備試験を実施し、反応液中に残存する有機塩素濃度が所望の範囲内となる検査条件と、経時的な温度変化を把握しておくことが望ましい。以下に活性検査の具体例を示す。   The presence or absence of the activity of the sodium dispersant is determined by the maximum temperature change with time obtained by the temperature sensor 23. The maximum temperature of the mixed liquid due to the reaction depends on the concentration of the organochlorine compound and has a relationship as shown in FIG. 4. However, the temperature of the mixed liquid, the stirring speed, the shape and material of the cuvette 20, the heat dissipation characteristics, etc. Depending on the conditions, the maximum temperature and the time to reach the maximum temperature are different. For this reason, it is desirable to carry out a preliminary test to grasp the inspection conditions under which the concentration of organic chlorine remaining in the reaction solution falls within a desired range and the temperature change over time. Specific examples of the activity test are shown below.

検査容器内に、ナトリウム濃度が10質量%の製造直後のナトリウム分散剤5gと、鉱油で5質量%に希釈したPCB油5gを充填した後、攪拌しながら水素供与体を徐々に滴下して反応温度を測定した。その結果、脱塩素反応が生じて急激な温度上昇が見られ、約110℃に達した。一方、流通型による検査に用いた約4ヶ月静置後のナトリウム分散剤を同様の条件で検査した結果、急激な温度上昇は見られず、活性の低下を明確に判定できた。   In a test container, 5 g of a sodium dispersant immediately after production having a sodium concentration of 10% by mass and 5 g of PCB oil diluted to 5% by mass with mineral oil were charged, and a hydrogen donor was gradually added dropwise while stirring to react. The temperature was measured. As a result, dechlorination reaction occurred and a rapid temperature increase was observed, reaching about 110 ° C. On the other hand, as a result of inspecting the sodium dispersant after standing for about 4 months used for the flow-type inspection under the same conditions, no rapid temperature increase was observed, and a decrease in activity could be clearly determined.

なお、本実施例では、予め検査容器内にナトリウム分散剤とPCB混合油を注入する場合について示したが、検査対象のナトリウム分散剤を注入した後にアルコールを添加したPCB混合油を滴下、あるいはアルコールを添加したPCB混合油を注入した後にナトリウム分散剤を滴下しても、活性の検査は可能である。   In this embodiment, the case where the sodium dispersant and the PCB mixed oil are injected into the inspection container in advance is shown. However, the PCB mixed oil to which the alcohol is added after the injection of the sodium dispersant to be inspected is dropped or the alcohol is added. Even if the sodium dispersant is added dropwise after injecting the PCB mixed oil to which is added, the activity can be tested.

(活性の回復)
アルカリ金属分散剤の活性を回復するための装置の構成例を図5に示す。本実施例の再生装置は、アルカリ金属分散剤の貯槽40に、再分散装置系として送液ポンプ41、加熱器42、分散装置43、冷却器44が配管類で接続されたものである。
(Recovery of activity)
An example of the structure of an apparatus for recovering the activity of the alkali metal dispersant is shown in FIG. The regenerator of the present embodiment is one in which a liquid feed pump 41, a heater 42, a dispersing device 43, and a cooler 44 are connected to a storage tank 40 of an alkali metal dispersant as a redispersing device system by piping.

貯槽40は、製造したナトリウム分散剤を貯蔵するためのもので、貯蔵中の攪拌機能や、製造所と使用場所が異なる場合を想定して移送容器を兼ねたものなどがある。本発明を適用する場合、不活性ガスの調整系およびアルカリ金属分散剤の注入口と排出口が貯槽40に備わっていれば、特別な改造は不要である。分散装置43としては、通常用いられる分散方法が適用可能なものであればよく、例えばカウレス翼高速回転方式、ホモミキサー方式、加圧式ホモジナイザー方式および超音波ホモジナイザー方式などを用いることができる。また、送液ポンプ41としては、アルカリ金属分散剤が閉塞しにくい、例えばチューブポンプ、あるいはアルカリ金属の融点以上に加熱できるリークタイト方式のポンプを用いることが好ましい。加熱器42はアルカリ金属の融点以上に加熱できるものであれば良く、型式は問わない。また、冷却器44もアルカリ金属の融点以下まで冷却可能なものであれば良く、型式は問わない。これらの機器をユニット化し可搬式にすれば、貯槽40と一緒に移送してアルカリ金属分散剤の使用場所でも対応可能となることから、利便性は大幅に向上する。   The storage tank 40 is for storing the manufactured sodium dispersant, and includes a stirring function during storage and a storage container that also serves as a transfer container assuming that the manufacturing site and the usage location are different. When the present invention is applied, if the reservoir 40 is equipped with an inert gas adjustment system and an alkali metal dispersant inlet and outlet, no special modification is required. As the dispersion device 43, any dispersion method that is normally used can be used. For example, a Cowles blade high-speed rotation system, a homomixer system, a pressure homogenizer system, and an ultrasonic homogenizer system can be used. Further, as the liquid feed pump 41, it is preferable to use a tube pump or a leak tight pump that can be heated to a melting point or higher of the alkali metal, for example, where the alkali metal dispersant does not easily block. The heater 42 is not particularly limited as long as it can be heated to the melting point of the alkali metal or higher. Further, the cooler 44 may be any type as long as it can cool to the melting point of the alkali metal or less, and the type is not limited. If these devices are unitized and made portable, they can be transported together with the storage tank 40 and can be used at the place where the alkali metal dispersant is used, so the convenience is greatly improved.

活性の回復は、アルカリ金属分散剤の製造装置を用いて行うことができる。この実施形態について、図6を用いて説明する。   The recovery of activity can be performed using an apparatus for producing an alkali metal dispersant. This embodiment will be described with reference to FIG.

図6は、アルカリ金属分散剤製造装置50における分散装置に、活性の低下したアルカリ金属分散剤の注入部51を接続したアルカリ金属分散剤製造装置兼再生装置を示している。活性の低下したアルカリ金属分散剤は、アルカリ金属の溶融温度以上に加熱したものが注入される。   FIG. 6 shows an alkali metal dispersant production apparatus / regeneration apparatus in which an alkali metal dispersant injection unit 51 with reduced activity is connected to a dispersion apparatus in the alkali metal dispersant production apparatus 50. The alkali metal dispersant having a lowered activity is injected after being heated to the melting temperature of the alkali metal or higher.

アルカリ金属分散剤製造装置50は、一般的なものであり、前記したカウレス翼高速回転方式、ホモミキサー方式、加圧式ホモジナイザー方式および超音波ホモジナイザー方式などを備えた分散装置に、鉱油などの分散媒質と、加熱して溶融したアルカリ金属を充填してアルカリ金属分散剤が製造される。分散後のアルカリ金属分散剤は冷却器にてアルカリ金属の融点以下の温度まで冷却される。また、分散剤の濃度と粒径分布が濃度・粒径分布測定装置で測定される。所望の分散体濃度と粒径が得られれば、有機塩素化合物の脱塩素反応に使用するまで貯蔵・輸送容器に充填して保管される。   The alkali metal dispersant production apparatus 50 is a general one, and a dispersion medium such as mineral oil is added to a dispersion apparatus provided with the above-described Cowles blade high-speed rotation system, homomixer system, pressure homogenizer system, ultrasonic homogenizer system, and the like. Then, an alkali metal dispersant is produced by filling the heated and melted alkali metal. The dispersed alkali metal dispersant is cooled to a temperature below the melting point of the alkali metal by a cooler. Further, the concentration and particle size distribution of the dispersant are measured by a concentration / particle size distribution measuring apparatus. Once the desired dispersion concentration and particle size are obtained, they are stored in storage and transport containers until used for the dechlorination reaction of organochlorine compounds.

図6の装置によれば、新たな分散装置を設けずアルカリ金属分散剤製造装置50の分散装置に活性の低下したアルカリ金属分散剤を注入できるようにするだけで、再活性化を行うことができる。このため、再生のために新たな設備投資が不要となる。   According to the apparatus of FIG. 6, reactivation can be performed only by allowing the alkali metal dispersant having reduced activity to be injected into the dispersion apparatus of the alkali metal dispersant production apparatus 50 without providing a new dispersion apparatus. it can. This eliminates the need for new capital investment for regeneration.

実施例1で活性の低下が見られた製造後約4ヶ月静置した後のナトリウム分散剤を、図5に示す方法で活性の回復操作を実施した。なお、分散装置43は、超音波ホモジナイザー方式とした。   The activity of the sodium dispersant, which had been allowed to stand for about 4 months after production in which a decrease in activity was observed in Example 1, was recovered by the method shown in FIG. The dispersing device 43 was an ultrasonic homogenizer system.

活性の回復操作は、貯槽40にナトリウム分散剤を注入し、加熱器42を110℃に制御して分散装置43を循環させながら約2時間運転した。この再生操作後に実施例1で示した流通型活性検査装置により活性検査を実施した。   In the activity recovery operation, a sodium dispersant was injected into the storage tank 40, and the heater 42 was controlled at 110 ° C., and the dispersion apparatus 43 was circulated for about 2 hours. After this regeneration operation, an activity test was performed using the flow-type activity test apparatus shown in Example 1.

活性の検査結果を、再生前のものと比較して図7に示す。再生前の製造後約4ヶ月静置のナトリウム分散剤では、PCB混合油との反応による温度上昇が見られなかったが、再生後には、滞留時間30秒で最高温度も90℃まで回復した。   The activity test results are shown in FIG. 7 in comparison with those before regeneration. In the sodium dispersant which was allowed to stand for about 4 months after the production before the regeneration, no temperature increase was observed due to the reaction with the PCB mixed oil, but after the regeneration, the maximum temperature recovered to 90 ° C. with a residence time of 30 seconds.

なお、上記した実施例では、有機塩素化合物としてPCB油を用いたが、トリクロロベンゼン等で代用しても同様の検査は可能である。   In the above-described embodiment, PCB oil is used as the organic chlorine compound, but the same inspection can be performed even if it is substituted with trichlorobenzene or the like.

本発明により、アルカリ金属分散剤の活性を簡易な方法で検査できるようになった。また、長期間の放置等によって活性が低下したものを再活性化できるようになった。本発明は、極めて簡易な方法であるので、その利用価値はきわめて大きい。   According to the present invention, the activity of an alkali metal dispersant can be inspected by a simple method. In addition, it has become possible to reactivate those whose activity has decreased due to prolonged standing or the like. Since the present invention is a very simple method, its utility value is very large.

本発明の一実施例によるアルカリ金属分散剤活性検査装置の概略図。1 is a schematic view of an alkali metal dispersant activity inspection apparatus according to an embodiment of the present invention. アルカリ金属分散剤を活性検査した時の温度分布の説明図。Explanatory drawing of temperature distribution when an alkali metal dispersant is tested for activity. 本発明の他の実施例によるアルカリ金属分散剤活性検査装置の概略図。The schematic of the alkali metal dispersing agent activity test | inspection apparatus by the other Example of this invention. 有機塩素化合物濃度と混合液温度との関係を示す説明図。Explanatory drawing which shows the relationship between an organic chlorine compound density | concentration and liquid mixture temperature. 活性の低下したアルカリ金属分散剤を再活性化する装置の概略図。The schematic of the apparatus which reactivates the alkali metal dispersing agent with which activity fell. アルカリ金属分散剤製造装置兼再生装置の一実施例を示す概略図。Schematic which shows one Example of an alkali metal dispersing agent manufacturing apparatus and reproduction | regeneration apparatus. 活性が低下したアルカリ金属分散剤を再生したときの温度分布を、再生処理を行わないときの温度分布と比較して示した説明図。Explanatory drawing which showed the temperature distribution when reproducing | regenerating the alkali metal dispersing agent in which activity fell compared with the temperature distribution when not performing a regeneration process.

符号の説明Explanation of symbols

1…容器、2…容器、3…ポンプ、4…ポンプ、5…活性検査管、6…温度センサー、7…回収容器、20…検査容器、21…アルカリ金属分散剤と有機塩素化合物の混合液、22…攪拌装置、23…温度センサー、24…液注入口、25…水素供与体注入口、26…不活性ガス供給管、27…排出管、40…貯槽、41…送液ポンプ、42…加熱器、43…分散装置、44…冷却器、50…アルカリ金属分散剤製造装置、51…注入部。   DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Container, 3 ... Pump, 4 ... Pump, 5 ... Activity test tube, 6 ... Temperature sensor, 7 ... Collection container, 20 ... Test container, 21 ... Mixed liquid of alkali metal dispersant and organochlorine compound 22 ... Stirrer, 23 ... Temperature sensor, 24 ... Liquid inlet, 25 ... Hydrogen donor inlet, 26 ... Inert gas supply pipe, 27 ... Discharge pipe, 40 ... Storage tank, 41 ... Liquid feed pump, 42 ... Heater, 43 ... dispersing device, 44 ... cooler, 50 ... alkali metal dispersant producing device, 51 ... injecting section.

Claims (5)

アルカリ金属分散剤を有機塩素化合物と水素供与体の存在下で反応させ、反応にともなう温度変化の大きさからアルカリ金属分散剤の活性の有無を判定することを特徴とするアルカリ金属分散剤の活性検査方法。   The activity of an alkali metal dispersant characterized by reacting an alkali metal dispersant in the presence of an organic chlorine compound and a hydrogen donor and determining the presence or absence of the activity of the alkali metal dispersant from the magnitude of the temperature change caused by the reaction. Inspection method. 有機塩素化合物と水素供与体の混合液およびアルカリ金属分散剤を、管状の反応管の一端から流入させ他端から流出するまでの間で両者を合流させて反応させ、反応にともなう流体の温度変化と反応管に流入後、最高温度に到達するまでに流体が流れた距離とからアルカリ金属分散剤の活性の有無を判定することを特徴とするアルカリ金属分散剤の活性検査方法。   Changes in the temperature of the fluid accompanying the reaction, with the mixture of the organochlorine compound and hydrogen donor, and the alkali metal dispersant, flowing from one end of the tubular reaction tube until they flow out from the other end. And determining the presence or absence of the activity of the alkali metal dispersant from the distance that the fluid has flowed to reach the maximum temperature after flowing into the reaction tube. アルカリ金属分散剤と有機塩素化合物の混合液中に水素供与体を滴下して反応させ、反応にともなう温度変化と、最高温度に到達するまでに要した時間とからアルカリ金属分散剤の活性の有無を判定することを特徴とするアルカリ金属分散剤の活性検査方法。   The presence or absence of the activity of the alkali metal dispersant from the temperature change caused by the reaction and the time required to reach the maximum temperature by reacting the hydrogen donor dropwise in the mixture of the alkali metal dispersant and the organic chlorine compound. Determining the activity of an alkali metal dispersant. 一端にアルカリ金属分散剤の流入口と有機塩素化合物および水素供与体の混合液の流入口を有し内部で合流可能な管状反応管と、前記管状反応管の表面温度及び前記管状反応管の内部を流れる流体の温度のうち少なくとも一方を計測する温度計測器とを備えたことを特徴とするアルカリ金属分散剤の活性検査装置。   A tubular reaction tube having an inlet of an alkali metal dispersant and an inlet of a mixed solution of an organic chlorine compound and a hydrogen donor at one end; and a tubular reaction tube which can be merged therein; the surface temperature of the tubular reaction tube and the interior of the tubular reaction tube And a temperature measuring device for measuring at least one of the temperatures of the fluid flowing through the alkali metal dispersant activity test apparatus. アルカリ金属分散剤と有機塩素化合物の混合液を入れる検査容器と、前記検査容器内の前記混合液中に水素供与体を滴下する水素供与体滴下装置と、前記検査容器内の液の温度を計測する温度計測器とを備えたことを特徴とするアルカリ金属分散剤の活性検査装置。   A test container for containing a mixed liquid of an alkali metal dispersant and an organic chlorine compound, a hydrogen donor dropping device for dropping a hydrogen donor into the mixed liquid in the test container, and measuring the temperature of the liquid in the test container And an alkali metal dispersant activity test apparatus.
JP2004148858A 2004-05-19 2004-05-19 Method and apparatus for testing activity of alkali metal dispersant Expired - Fee Related JP4083707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004148858A JP4083707B2 (en) 2004-05-19 2004-05-19 Method and apparatus for testing activity of alkali metal dispersant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004148858A JP4083707B2 (en) 2004-05-19 2004-05-19 Method and apparatus for testing activity of alkali metal dispersant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008005612A Division JP2008169486A (en) 2008-01-15 2008-01-15 Method and apparatus for regenerating alkali metal dispersant

Publications (2)

Publication Number Publication Date
JP2005331318A JP2005331318A (en) 2005-12-02
JP4083707B2 true JP4083707B2 (en) 2008-04-30

Family

ID=35486082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004148858A Expired - Fee Related JP4083707B2 (en) 2004-05-19 2004-05-19 Method and apparatus for testing activity of alkali metal dispersant

Country Status (1)

Country Link
JP (1) JP4083707B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2928209B1 (en) * 2008-03-03 2011-04-22 Rhodia Operations METHOD AND PLANT FOR DETERMINING AT LEAST ONE PARAMETER OF A PHYSICAL AND / OR CHEMICAL PROCESSING

Also Published As

Publication number Publication date
JP2005331318A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
Cheung et al. Sonochemical destruction of CFC 11 and CFC 113 in dilute aqueous solution
TWI294517B (en) System and method comprising same for measurement and/or analysis of particles in gas stream
Oo et al. Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates
US7829046B2 (en) Scrubber for reactive gases
Chaturvedi et al. CO2 capturing evaluation of single-step silica nanofluid through rheological investigation for nanofluid use in carbon utilization applications
JP3935870B2 (en) Liquid alkali metal in which nano-sized ultrafine particles such as metals are dispersed
JP4083707B2 (en) Method and apparatus for testing activity of alkali metal dispersant
US4071324A (en) Chemical reactor
Kalus et al. Discrimination of ablation, shielding, and interface layer effects on the steady-state formation of persistent bubbles under liquid flow conditions during laser synthesis of colloids
EP3100997A1 (en) Method for producing trifluoroethylene
JP2008169486A (en) Method and apparatus for regenerating alkali metal dispersant
US7572428B2 (en) Process for producing fluorine gas
KR19990063091A (en) Method and apparatus for measuring particles in liquid samples
US20110163265A1 (en) Formulation and method for preparing gels comprising hydrous aluminum oxide
WO2007055207A1 (en) Process and equipment for charging ethylene carbonate containing material
JP2007263814A (en) Combustion type water quality measuring instrument
JP4506464B2 (en) Continuous resin recovery device and recovery method
EP3459620B1 (en) Apparatus for generating formaldehyde monomer vapor
Bian et al. Online flow digestion of biological and environmental samples for inductively coupled plasma–optical emission spectroscopy (ICP–OES)
Brooks et al. PNNL development and analysis of material-based hydrogen storage systems for the hydrogen storage engineering center of excellence
Shen et al. A safe and efficient process for the preparation of difluoromethane in continuous flow
An et al. Prediction of defluidization behavior using particle apparent viscosity
Baker et al. Straight-chain halocarbon forming fluids for TRISO fuel kernel production–Tests with yttria-stabilized zirconia microspheres
JP2005008944A (en) Method for manufacturing/storing/transporting alkali-metal-dispersing body
JP2003083833A (en) Abnormality detection method of heat exchanging process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees