JP4083669B2 - Ferritic stainless steel sheet excellent in deep drawability and method for producing the same - Google Patents

Ferritic stainless steel sheet excellent in deep drawability and method for producing the same Download PDF

Info

Publication number
JP4083669B2
JP4083669B2 JP2003406085A JP2003406085A JP4083669B2 JP 4083669 B2 JP4083669 B2 JP 4083669B2 JP 2003406085 A JP2003406085 A JP 2003406085A JP 2003406085 A JP2003406085 A JP 2003406085A JP 4083669 B2 JP4083669 B2 JP 4083669B2
Authority
JP
Japan
Prior art keywords
stainless steel
rolling
ferritic stainless
plane
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003406085A
Other languages
Japanese (ja)
Other versions
JP2005163139A (en
Inventor
謙 木村
純一 濱田
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2003406085A priority Critical patent/JP4083669B2/en
Publication of JP2005163139A publication Critical patent/JP2005163139A/en
Application granted granted Critical
Publication of JP4083669B2 publication Critical patent/JP4083669B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法に関する。   The present invention relates to a ferritic stainless steel sheet excellent in deep drawability and a method for producing the same.

フェライト系ステンレス鋼板は、近年の製造技術の進歩により成形性が向上し、成形用材料、例えば、厨房用や自動車排気系部品等の用途に用いられている。最近では、フェライト系ステンレス鋼板の用途は、冷蔵庫、炊飯器等、家電製品の外板、ドアノブ等の内装部品にまで拡大している。   Ferritic stainless steel sheets have improved formability due to recent advances in manufacturing technology, and are used for molding materials such as kitchens and automobile exhaust system parts. Recently, ferritic stainless steel sheets have been used for interior parts such as refrigerators, rice cookers, and other home appliances and doorknobs.

フェライト系ステンレス鋼板を成形、特に円筒形に代表される深絞り成形する場合には、図1に示したように、成形後に耳と呼ばれる面内異方性に起因する凹凸が発生する場合がある。図1に示したように、深絞り成形後に耳が発生すると、耳の高さが最も低い箇所で凸部を切断して製品化するため、歩留まりが低下する。   When forming a ferritic stainless steel sheet, particularly deep drawing typified by a cylindrical shape, as shown in FIG. 1, irregularities due to in-plane anisotropy called ears may occur after forming. . As shown in FIG. 1, when an ear is generated after deep drawing, the convex portion is cut at a place where the ear height is the lowest to produce a product, so that the yield decreases.

ステンレス鋼板の面内異方性を改善する方法として、1次冷間圧延、中間焼鈍、最終冷間圧延を行う際に1次冷間圧延と最終冷間圧延の冷延圧下配分を制御する方法(例えば、特許文献1)、熱間圧延条件を制御する方法(例えば特許文献2、3)、一貫製造工程で析出物及び集合組織を制御する方法(例えば、特許文献4)が知られている。これらの方法では、JIS Z 2254記載のように圧延方向(L方向)、圧延方向から45°の方向(D方向)、圧延方向から90°の方向(C方向)の3方向のr値(ランクフォード値、塑性ひずみ比)、それぞれrL、rC、rDから算出されるΔr=(rL+rC−2×rD)/2が改善される。   As a method of improving the in-plane anisotropy of a stainless steel sheet, a method of controlling the cold rolling reduction distribution between the primary cold rolling and the final cold rolling during primary cold rolling, intermediate annealing, and final cold rolling. (For example, Patent Document 1), methods for controlling hot rolling conditions (for example, Patent Documents 2 and 3), and methods for controlling precipitates and textures in an integrated manufacturing process (for example, Patent Document 4) are known. . In these methods, as described in JIS Z 2254, r values (ranks) in three directions, ie, the rolling direction (L direction), the direction 45 ° from the rolling direction (D direction), and the direction 90 ° from the rolling direction (C direction). Ford value, plastic strain ratio), Δr = (rL + rC−2 × rD) / 2 calculated from rL, rC, and rD, respectively, is improved.

また、rL、rC、rDの最大r値と最少r値の差を面内異方性と規定してこれを低減するために焼鈍および冷間圧延方法を制御する方法(例えば、特許文献5)が公知である。   Also, a method of controlling the annealing and cold rolling methods to reduce the difference between the maximum r value and the minimum r value of rL, rC, and rD as in-plane anisotropy (for example, Patent Document 5). Is known.

特開昭52−039559号公報Japanese Patent Laid-Open No. 52-039595 特開平07−268461号公報JP 07-268461 A 特開平08−311542号公報Japanese Patent Laid-Open No. 08-311542 特開2002−194507号公報JP 2002-194507 A 特開2003−160846号公報Japanese Patent Laid-Open No. 2003-160846

しかしながら、上記の各特許文献に記載の発明であっても、実際に円筒深絞り成形したときに耳が大きく発生することがあった。面内異方性の指標であるΔrが小さい場合でも、円筒深絞りを行った際の耳高さが大きくなる原因は次のように考えられる。まず、図2(a)に示したようにrDが最も低い場合には、Δrと耳高さは良い相関関係を示し、耳は4つのD方向に出る。しかし、図2(b)に示したように、例えばrLが最小であり、rCが最大である場合には、Δrは小さいものの、耳が2つのL方向に出る。また、図2(c)に示したように、rL、rD、rCがほぼ同等であっても、圧延方向から60°の方向(60°方向という。)のr値が最大値、最小値である場合には、6つの60°方向(2つのL方向を含む。)に耳が出る。   However, even in the inventions described in the above-mentioned patent documents, a large amount of ears may occur when the cylindrical deep drawing is actually performed. Even when Δr, which is an index of in-plane anisotropy, is small, the cause of the increase in the ear height when performing cylindrical deep drawing is considered as follows. First, as shown in FIG. 2A, when rD is the lowest, Δr and ear height show a good correlation, and the ear comes out in four D directions. However, as shown in FIG. 2B, for example, when rL is minimum and rC is maximum, Δr is small, but the ear comes out in two L directions. Further, as shown in FIG. 2C, even when rL, rD, and rC are substantially equal, the r value in the direction 60 ° from the rolling direction (referred to as the 60 ° direction) is the maximum value and the minimum value. In some cases, six 60 ° directions (including two L directions) are heard.

即ち、実際の耳高さは、r値が最も高い方向と最も低い方向における成形時の材料流入の差で決められると考えられるが、このような着眼点でのr値面内異方性の改善方法について検討された例はない。また、r値の面内異方性を改善するには、集合組織をランダム方位とすることが有効である。しかし、集合組織をランダム方位にすると、r値の面内異方性は改善されるものの、L方向、D方向、C方向の平均r値は約1.0になり、深絞り性が不十分となる。   That is, the actual ear height is considered to be determined by the difference in material inflow during molding between the direction with the highest r value and the direction with the lowest r value. There have been no studies on improvement methods. In order to improve the in-plane anisotropy of the r value, it is effective to set the texture to a random orientation. However, when the texture is random orientation, the in-plane anisotropy of the r value is improved, but the average r value in the L direction, D direction, and C direction is about 1.0, and the deep drawability is insufficient. It becomes.

本発明は、上記現状に鑑み、L方向からC方向まで10°毎に測定したr値の単純平均値を2.0以上にして優れた深絞り性を確保しつつ、深絞り時の耳高さと相関する面内異方性を低減した深絞り性に優れたフェライト系ステンレス鋼板およびその製造方法を提供するものである。   In view of the above-mentioned present situation, the present invention secures excellent deep drawability by setting the simple average value of r values measured every 10 ° from the L direction to the C direction to 2.0 or more, and the ear height at the time of deep drawing. A ferritic stainless steel sheet excellent in deep drawability with reduced in-plane anisotropy correlated with the above and a method for producing the same.

本発明者らは、優れた深絞り性と耳率を確保するための最適な集合組織を有するステンレス鋼板およびその製造方法を鋭意検討し、板面に垂直な方向の{111}<112>面、{100}<011>面、{111}<011>面のX線ランダム強度を最適化することが有効であることを見出した。本発明は、以上の知見に基づいてなされたものであり、その要旨とするところは以下の通りである。   The inventors of the present invention diligently studied a stainless steel plate having an optimum texture for securing excellent deep drawability and ear rate and a manufacturing method thereof, and {111} <112> plane perpendicular to the plate surface. , {100} <011> plane and {111} <011> plane have been found to be effective to optimize the X-ray random intensity. The present invention has been made based on the above findings, and the gist thereof is as follows.

(1) 質量%で、C:0.001〜0.010%、Si:0.01〜1.00%、Mn:0.01〜1.00%、P:0.040%以下、S:0.010%未満、Al:0.005〜0.100%、N:0.001〜0.015%、Cr:10.0〜20.0%、Ti:0.05〜0.40%を含有し、残部がFe及び不可避的不純物からなり、板面に垂直な方向の{111}<112>面のX線ランダム強度比Iaと{111}<011>面のX線ランダム強度比Ibが、Ia≧7.0、Ib≧7.0、Ia/Ib:0.6〜1.5の関係を満足し、{100}<011>面のランダム強度比Icが2.0未満であり、鋼板の圧延方向から90°の方向まで、10°毎に測定したr値の単純平均値が2.0以上であり、該r値の最大値と最小値の差が0.5以下であることを特徴とする、深絞り性に優れたフェライト系ステンレス鋼板。
(2) さらに、質量%で、Mg:0.0001〜0.0100%を含有することを特徴とする、上記(1)に記載の深絞り性に優れたフェライト系ステンレス鋼板。
(3) さらに、質量%で、B:0.0005〜0.0050%を含有することを特徴とする、上記(1)または(2)に記載の深絞り性に優れたフェライト系ステンレス鋼板。
(4) さらに、質量%で、Mo:0.10〜2.50%を含有することを特徴とする、上記(1)〜(3)の何れか1項に記載の深絞り性に優れたフェライト系ステンレス鋼板。
(5) 平均結晶粒径が30〜60μmであることを特徴とする、上記(1)〜(4)の何れか1項に記載の深絞り性に優れたフェライト系ステンレス鋼板。
(1) By mass%, C: 0.001 to 0.010%, Si: 0.01 to 1.00%, Mn: 0.01 to 1.00%, P: 0.040% or less, S: Less than 0.010%, Al: 0.005-0.100%, N: 0.001-0.015%, Cr: 10.0-20.0%, Ti: 0.05-0.40% And the balance is made of Fe and inevitable impurities, and the {111} <112> plane X-ray random intensity ratio Ia and the {111} <011> plane X-ray random intensity ratio Ib in the direction perpendicular to the plate surface are Ia ≧ 7.0, Ib ≧ 7.0, Ia / Ib: satisfying the relationship of 0.6 to 1.5, the random intensity ratio Ic of {100} <011> plane is less than 2.0, From the rolling direction of the steel sheet to the direction of 90 °, the simple average value of the r value measured every 10 ° is 2.0 or more. Wherein the difference between the values is 0.5 or less, deep drawing excellent in ferritic stainless steel.
(2) The ferritic stainless steel sheet having excellent deep drawability as described in (1) above, further containing Mg: 0.0001 to 0.0100% by mass.
(3) The ferritic stainless steel sheet having excellent deep drawability as described in (1) or (2) above, further containing, by mass%, B: 0.0005 to 0.0050%.
(4) Furthermore, it is excellent in the deep drawability as described in any one of (1) to (3) above, characterized by containing Mo: 0.10 to 2.50% by mass%. Ferritic stainless steel sheet.
(5) The ferritic stainless steel sheet excellent in deep drawability according to any one of (1) to (4) above, wherein the average crystal grain size is 30 to 60 μm.

(6) 上記(1)〜(4)の何れか1項に記載の成分からなるフェライト系ステンレス鋼片を1050〜1250℃の範囲に加熱し、総圧下率80%以上の粗熱延を行って粗熱延板とし、そのまま1050℃以下で総圧下率80〜95%の仕上熱延を行い、700℃以下の温度で巻き取った後、焼鈍することなく酸洗し、圧延率40%以上の1次冷延を行って1次冷延板とし、750〜850℃で中間焼鈍を実施し、さらに冷間圧延率60%以上の最終冷延を行って最終冷延板とし、800〜900℃で最終焼鈍し、鋳片の厚みt1、粗熱延板の板厚t2、1次冷延板の板厚t3、最終冷延板の板厚t4が下記式(1)〜(3)式を満足することを特徴とする、深絞り性に優れたフェライト系ステンレス鋼板の製造方法。
ただし、
t2/t1≦0.2 ・・・ (1)
t3/t2≦0.15 ・・・ (2)
t4/t3≦0.35 ・・・ (3)
である。
(6) A ferritic stainless steel piece made of the component described in any one of (1) to (4) above is heated to a range of 1050 to 1250 ° C. and subjected to rough hot rolling with a total rolling reduction of 80% or more. The hot-rolled sheet is subjected to finish hot rolling at a temperature of 1050 ° C. or lower and a total rolling reduction of 80 to 95%, wound at a temperature of 700 ° C. or lower, pickled without annealing, and rolled at a rolling rate of 40% or higher. The primary cold-rolled sheet is made into a primary cold-rolled sheet, subjected to intermediate annealing at 750 to 850 ° C., and further subjected to a final cold-rolled sheet with a cold rolling rate of 60% or more to form a final cold-rolled sheet, 800 to 900 Final annealing at ℃, the thickness t1 of the slab, the thickness t2 of the rough hot-rolled sheet, the thickness t3 of the primary cold-rolled sheet, and the thickness t4 of the final cold-rolled sheet are the following formulas (1) to (3) A method for producing a ferritic stainless steel sheet excellent in deep drawability, characterized by satisfying
However,
t2 / t1 ≦ 0.2 (1)
t3 / t2 ≦ 0.15 (2)
t4 / t3 ≦ 0.35 (3)
It is.

本発明により、深絞り性に優れ、耳高さが低減されたフェライト系ステンレス鋼板およびその製造方法の提供が可能になるとともに、フェライト系ステンレス鋼の用途を拡大できるなど、産業上の貢献が極めて顕著である。   The present invention makes it possible to provide a ferritic stainless steel sheet with excellent deep drawability and reduced ear height and a method for producing the same, and can greatly expand the application of ferritic stainless steel, making industrial contributions extremely high. It is remarkable.

本発明者らは、まず種々の条件で製造した17%Cr−0.20%Ti−0.002%C−0.008%Nフェライト系ステンレス鋼を用いて耳高さと相関する指標を調査した。0.8mm厚の鋼板から、長手方向を圧延方向から10°ずつ変化させて、JIS Z 2201の13号B引張試験片を採取し、それぞれの方向のr値をJIS Z 2254に準拠して測定した。また、円筒深絞り試験を行い、得られた成形品サンプルより耳高さを求めた。耳高さは、図3に示した深絞り後の端部に生じる凹凸の最も高い部分と最も低い部分の差である。なお、円筒深絞り試験は、以下に示す条件で行った。
ポンチ:φ50mm、肩半径5mm
ダイス:φ52mm、肩半径5mm
潤滑油:40℃における動粘度が1200mm2/sec
絞り比:2.20(ブランク径:φ110mm)
The inventors first investigated an index correlating with the ear height using 17% Cr-0.20% Ti-0.002% C-0.008% N ferritic stainless steel manufactured under various conditions. . From a 0.8 mm thick steel plate, the longitudinal direction was changed by 10 ° from the rolling direction, and JIS Z 2201 No. 13 B tensile test specimens were collected, and the r value in each direction was measured according to JIS Z 2254. did. Further, a cylindrical deep drawing test was performed, and the ear height was determined from the obtained molded product sample. The ear height is the difference between the highest and lowest portions of the irregularities generated at the end after deep drawing shown in FIG. The cylindrical deep drawing test was performed under the following conditions.
Punch: φ50mm, shoulder radius 5mm
Dice: φ52mm, shoulder radius 5mm
Lubricating oil: kinematic viscosity at 40 ° C. 1200 mm 2 / sec
Aperture ratio: 2.20 (blank diameter: φ110mm)

結果を図4(a)、(b)に示す。図4(a)には、L方向、D方向、C方向のr値により測定したΔrと耳高さの関係を示すが、Δrと耳高さには相関が認められない。一方、圧延方向から10°毎に測定したr値の最大値rmaxと最小値rminの差rmax−rminと耳高さとの関係は、図4(b)に示すように耳高さと良い相関が認められた。即ち、rmax−rminを小さくする方法を確立すれば、耳高さを低減できることがわかった。 The results are shown in FIGS. 4 (a) and 4 (b). FIG. 4A shows the relationship between Δr measured by the r values in the L direction, the D direction, and the C direction and the ear height, but there is no correlation between Δr and the ear height. On the other hand, the relationship between the difference r max −r min between the maximum value r max and the minimum value r min of the r value measured every 10 ° from the rolling direction and the ear height is as shown in FIG. A good correlation was observed. That is, it was found that the ear height can be reduced by establishing a method for reducing r max −r min .

次に、面内異方性を確保しながら、深絞り性を向上させる方法について検討を行った。一般に、{111}<112>面の集積によって、r値が向上することは良く知られている。しかし、{111}<112>面のみの集積度を高めると、45°方向のr値が低下し、C方向のr値が高まるため、面内異方性は大きくなる。   Next, a method for improving the deep drawability while ensuring in-plane anisotropy was examined. In general, it is well known that the r value is improved by accumulation of {111} <112> planes. However, if the degree of integration of only the {111} <112> plane is increased, the r value in the 45 ° direction decreases and the r value in the C direction increases, so that the in-plane anisotropy increases.

そこで、本発明者らは、平均r値を低下させずに、面内異方性を低くするために、{111}<112>面を板面方向を軸に30°回転した{111}<011>面の集積度を{111}<112>面の集積度と同程度に高める方法を指向した。これは、{111}<112>面と{111}<011>面とが、逆方向の面内異方性を持つためである。即ち、{111}<112>面と{111}<011>面の両方の集積度を高めると、面内異方性を打ち消し合う効果が発現すると考えられる。   Therefore, the present inventors have rotated the {111} <112> plane by 30 ° about the plate direction to reduce the in-plane anisotropy without reducing the average r value. The method of increasing the degree of integration of the 011> plane to the same degree as the degree of integration of the {111} <112> plane was directed. This is because the {111} <112> plane and the {111} <011> plane have in-plane anisotropies in opposite directions. That is, it is considered that when the degree of integration of both the {111} <112> plane and the {111} <011> plane is increased, the effect of canceling out the in-plane anisotropy appears.

さらに、r値を高めるには、r値を低減させる{100}<011>方位は好ましくないため、{100}<011>方位の集積度を低減することが有効であると考えられる。   Furthermore, in order to increase the r value, the {100} <011> orientation that reduces the r value is not preferable, and it is considered effective to reduce the degree of integration of the {100} <011> orientation.

上記のイメージを模式的に説明する。まず、結晶方位の表現はイメージが沸きにくいため、簡潔に図5に示す。フェライト系ステンレス鋼は体心立方構造であり、{111}面および{100}面はそれぞれ図5(a)、(b)にハッチングで示す面である。{100}<011>方位とは、前述の{100}面が板面方向に向いて、かつ板面内の<011>方向が圧延方向に向いていることを示す(図5(c))。{111}<112>および{111}<011>方位とは{111}面が板面方向に向き、圧延方向にそれぞれ<112>方向(図5(d))、<011>方向(図5(e))が向いていることを示している。従来、r値を向上させるには、r値の高い{111}<112>方位を有する結晶粒の存在確率を高める、すなわち図6(a)のような結晶粒の存在状態を目指していた。しかし、このような結晶粒方位分布ではr値が高くなるが面内異方性も大きく、深絞り成形した際の耳高さは大きかった。本発明では{111}<112>方位と同様にr値が高く、該方位と逆方向の面内異方性をもつ{111}<011>方位粒の存在確率を{111}<112>方位粒と同程度に高めることに成功し、本発明に至っている。本発明における結晶粒の存在状態を概念的に示すと、図6(b)のようになる。   The above image will be schematically described. First, the representation of crystal orientation is shown in FIG. Ferritic stainless steel has a body-centered cubic structure, and the {111} plane and {100} plane are hatched planes in FIGS. 5 (a) and 5 (b), respectively. The {100} <011> orientation indicates that the above-mentioned {100} plane is directed in the plate surface direction, and the <011> direction in the plate surface is directed in the rolling direction (FIG. 5C). . The {111} <112> and {111} <011> orientations mean that the {111} plane faces the plate surface direction, and the <112> direction (FIG. 5 (d)) and <011> direction (FIG. 5) in the rolling direction, respectively. (E)) indicates that it is suitable. Conventionally, in order to improve the r value, the existence probability of a crystal grain having a {111} <112> orientation with a high r value has been increased, that is, the existence state of the crystal grain as shown in FIG. However, in such a crystal grain orientation distribution, the r value is high, but the in-plane anisotropy is large, and the ear height when deep drawing is large. In the present invention, similarly to the {111} <112> orientation, the r value is high, and the presence probability of {111} <011> orientation grains having in-plane anisotropy in the direction opposite to the orientation is set to {111} <112> orientation. It succeeded in raising to the same extent as a grain, and has reached the present invention. FIG. 6 (b) conceptually shows the existence state of crystal grains in the present invention.

以上の検討に基づいて、本発明者らは、平均r値を2.0以上とし、かつrmax−rminを低減するための最適な集合組織、及びそれを得るための製造方法を検討し、下記の知見を得た。 Based on the above examination, the present inventors examined an optimum texture for reducing the average r value to 2.0 or more and reducing r max −r min , and a manufacturing method for obtaining it. The following findings were obtained.

まず、平均r値の向上には、
(1) 板面に垂直方向の{111}<112>面のX線ランダム強度比を高くし、{100}<011>面のX線ランダム強度比を低減すること
が必要であり、そのためには、1次冷間圧延後に板面に垂直方向の{111}<112>面が集積した圧延集合組織を発達させることが有効である。このような集合組織を得るためには、
(a)熱間圧延の粗圧延の圧延率を高くすること、
(b)熱間圧延の仕上圧延温度および巻取り温度を低くして再結晶を抑制し、熱延板焼鈍を省略して、1次冷間圧延すること、
(c)最終冷間圧延の冷延率を高くすること
が有効である。
First, to improve the average r value,
(1) It is necessary to increase the X-ray random intensity ratio of the {111} <112> plane perpendicular to the plate surface and reduce the X-ray random intensity ratio of the {100} <011> plane. It is effective to develop a rolling texture in which {111} <112> planes perpendicular to the plate surface are accumulated after primary cold rolling. In order to obtain such a texture,
(A) increasing the rolling ratio of hot rolling rough rolling,
(B) lowering the finish rolling temperature and coiling temperature of hot rolling to suppress recrystallization, omitting hot-rolled sheet annealing, and performing primary cold rolling,
(C) It is effective to increase the cold rolling rate of the final cold rolling.

次に、rmax−rminを小さくするには、
(2) {111}<011>面のX線ランダム強度を{111}<112>面のX線ランダム強度比とほぼ同等にすること
が必要であり、そのためには、製造条件として、
(d)1次冷間圧延、中間焼鈍、最終冷間圧延、最終焼鈍からなる2回冷延法
が有効である。
Next, to reduce r max −r min ,
(2) It is necessary to make the X-ray random intensity of the {111} <011> plane substantially equal to the X-ray random intensity ratio of the {111} <112> plane.
(D) A two-time cold rolling method comprising primary cold rolling, intermediate annealing, final cold rolling, and final annealing is effective.

以下に、本発明について詳細に説明する。   The present invention is described in detail below.

まず、鋼成分の限定理由を説明する。なお、下記の説明において%は質量%を示す。   First, the reasons for limiting the steel components will be described. In the following description,% indicates mass%.

C、N:C、Nを多量に添加すると成形性を低下させ、これらを固定するために必要とされるTi量が増加し、製造コストが高くなる。したがって、C、Nの添加量の上限は、それぞれC:0.010%以下、N:0.015%以下とした。また、C、Nの添加量の下限は低いほど好ましいが、精錬コストを考慮し、C、Nいずれも0.001%以上とした。   C, N: If a large amount of C, N is added, the moldability is lowered, the amount of Ti required for fixing them is increased, and the production cost is increased. Therefore, the upper limits of the amount of C and N added are C: 0.010% or less and N: 0.015% or less, respectively. Moreover, although the lower limit of the addition amount of C and N is preferable, in consideration of the refining cost, both C and N are set to 0.001% or more.

Si:Siは脱酸元素として用いられる元素である。Siの添加量が1.0%を超えると成形性低下が著しいため、Si量の上限を1.00%以下とした。精錬工程でのコストを考えた場合、0.01%以上のSi量は不可避的に混入するため、Si添加量の下限を0.01%以上とした。   Si: Si is an element used as a deoxidizing element. When the amount of Si exceeds 1.0%, the moldability is remarkably lowered, so the upper limit of the amount of Si is set to 1.00% or less. Considering the cost in the refining process, since the Si amount of 0.01% or more is inevitably mixed, the lower limit of the Si addition amount is set to 0.01% or more.

Mn:Mnを多量に添加した場合、成形性が劣化するため、1.00%以下をMn添加量の上限とした。Mn添加量の下限は精錬工程コストを考慮し、0.01%とした。   Mn: When a large amount of Mn is added, the moldability deteriorates, so 1.00% or less was made the upper limit of the Mn addition amount. The lower limit of the Mn addition amount is set to 0.01% in consideration of the refining process cost.

P:Pは多量に添加した場合、深絞り性が低下するため、0.040%以下をP量の上限とする。なお、P量は、低い方ほど深絞り性に有利な集合組織が形成されるため、P量を0.020%以下とすることが好ましい。   P: When P is added in a large amount, the deep drawability deteriorates, so 0.040% or less is made the upper limit of the P amount. In addition, since the texture which is advantageous for deep drawability is formed as the P content is lower, the P content is preferably 0.020% or less.

S:Sは多量に添加すると耐食性を劣化させるため0.010%未満をS量の上限とした。S量の下限は低いほど好ましいため、特に規定しないが、S量を0.0001%未満にするには精錬工程のコストが増大するため、S量の下限を0.0001%以上とすることが好ましい。   S: When S is added in a large amount, the corrosion resistance deteriorates, so less than 0.010% was made the upper limit of the S amount. Since the lower limit of the amount of S is preferably as low as possible, it is not particularly specified. However, if the amount of S is less than 0.0001%, the cost of the refining process increases, so the lower limit of the amount of S may be made 0.0001% or more. preferable.

Al:Alは脱酸に用いられる元素であり、脱酸可能なレベルとして、Al量の下限を0.005%以上とした。一方、Alを多量に添加すると成形性が劣化するため、Al量の上限を0.100%以下とした。   Al: Al is an element used for deoxidation, and the lower limit of the amount of Al is set to 0.005% or more as a deoxidizable level. On the other hand, when a large amount of Al is added, the formability deteriorates, so the upper limit of the Al amount is set to 0.100% or less.

Cr:Crはステンレス鋼の基本的特性である耐食性を確保するために必要な元素であり、10.0%以上の添加で耐食性が著しく向上するため、Cr添加量の下限を10.0%以上とした。一方、Crを20.0%超添加すると成形性が劣化するため、20.0%以下をCr添加量の上限とした。   Cr: Cr is an element necessary for ensuring corrosion resistance, which is a basic characteristic of stainless steel. Since addition of 10.0% or more significantly improves corrosion resistance, the lower limit of Cr addition is 10.0% or more. It was. On the other hand, if adding more than 20.0% of Cr, the formability deteriorates, so 20.0% or less was made the upper limit of the Cr addition amount.

Ti:Tiは、C、N等と結合して析出物をつくることで鋼素地(マトリックス)を高純化して、成形性を向上させる元素である。成形性向上に必要なTi添加量のレベルは0.05%以上であり、これをTi添加量の下限とした。一方、Tiを0.40%を超えて添加すると、逆に成形性を劣化させる場合があるため、Ti量の上限を0.40%以下とした。   Ti: Ti is an element that combines with C, N, etc. to produce precipitates, thereby purifying the steel substrate (matrix) and improving formability. The level of the Ti addition amount necessary for improving the moldability is 0.05% or more, and this is set as the lower limit of the Ti addition amount. On the other hand, when Ti is added in excess of 0.40%, the formability may be adversely deteriorated. Therefore, the upper limit of Ti content is set to 0.40% or less.

以下さらに、選択的に添加できる元素、Mg、B、Moについて説明する。   Hereinafter, the elements that can be selectively added, Mg, B, and Mo will be described.

Mg:Mgは、溶接部の組織を微細化して溶接部の成形性を向上させ、成形時のリジングの発生を抑制する元素である。Mgの添加による溶接部の成形性の向上効果は0.0001%以上で発揮されるため、Mg添加量の下限を0.0001%以上とすることが好ましい。一方、Mgを0.0100%超添加すると、原料コストが増大するため、Mg添加量の上限を0.0100%以下とすることが好ましい。   Mg: Mg is an element that refines the structure of the welded portion to improve the formability of the welded portion and suppresses the generation of ridging during forming. Since the effect of improving the formability of the welded portion due to the addition of Mg is exhibited at 0.0001% or more, the lower limit of the Mg addition amount is preferably set to 0.0001% or more. On the other hand, if Mg is added in excess of 0.0100%, the raw material cost increases, so the upper limit of the amount of Mg added is preferably 0.0100% or less.

B:Bは、二次加工性を向上させる元素であり、成形が複数工程になる場合、添加すると効果的である。Bの添加による二次加工性の向上効果を得るには、下限を0.0005%以上とすることが好ましい。一方、Bを0.0050%超添加した場合には、靭性が劣化する場合があるため、0.0050%を上限とすることが好ましい。   B: B is an element that improves the secondary workability, and it is effective to add it when molding is performed in a plurality of steps. In order to obtain the effect of improving the secondary workability by adding B, the lower limit is preferably made 0.0005% or more. On the other hand, when B is added in excess of 0.0050%, the toughness may deteriorate, so 0.0050% is preferable as the upper limit.

Mo:Moは耐食性を向上させる元素である。Moの添加による耐食性の向上効果が発揮されるには0.10%以上のMoの添加が好ましい。また、Moを2.50%超添加すると深絞り性が低下する場合があるため、上限を2.50%以下とすることが好ましい。   Mo: Mo is an element that improves corrosion resistance. In order to exhibit the effect of improving the corrosion resistance due to the addition of Mo, addition of 0.10% or more of Mo is preferable. Further, if Mo is added in excess of 2.50%, deep drawability may be lowered, so the upper limit is preferably made 2.50% or less.

次に、本発明のフェライト系ステンレス鋼板の集合組織について説明する。   Next, the texture of the ferritic stainless steel sheet of the present invention will be described.

本発明の鋼板の集合組織として、板面に垂直方向の{111}<112>面のX線ランダム強度比Iaと{111}<011>面のX線ランダム強度比Ibは、Ia≧7.0、Ib≧7.0を満足する必要がある。また、Ia/Ib:0.6〜1.5の関係を満足する必要がある。これは、互いに異なる面内異方性を有する{111}<112>面のX線ランダム強度比Iaと{111}<011>面のX線ランダム強度比を7.0以上に高め、かつ、Ia/Ibを0.6〜1.5にすることによって、平均r値を2.0以上に高めることができるためである。一方、IaおよびIbは高いほどr値が高くなるため、上限はとくに規定するものではないが、現存する設備能力を考慮すると両者とも22.0が上限として好ましい。   As the texture of the steel sheet of the present invention, the X-ray random intensity ratio Ia of the {111} <112> plane perpendicular to the plate surface and the X-ray random intensity ratio Ib of the {111} <011> plane are Ia ≧ 7. 0, Ib ≧ 7.0 must be satisfied. Moreover, it is necessary to satisfy the relationship of Ia / Ib: 0.6-1.5. This increases the X-ray random intensity ratio Ia of the {111} <112> plane having different in-plane anisotropies and the X-ray random intensity ratio of the {111} <011> plane to 7.0 or more, and This is because the average r value can be increased to 2.0 or more by setting Ia / Ib to 0.6 to 1.5. On the other hand, since the r value increases as Ia and Ib increase, the upper limit is not particularly specified. However, in consideration of the existing equipment capacity, 22.0 is preferable as the upper limit.

なお、{111}<112>面のX線ランダム強度比Iaは、ランダムな結晶方位を有する標準試料の{111}<112>面のX線強度比を基準とした、{111}<112>面のX線強度の比である。同様に、{111}<011>面のX線ランダム強度比Ibは、ランダムな結晶方位を有する標準試料の{111}<011>面のX線強度比を基準とした、{111}<011>面のX線強度の比である。   The X-ray random intensity ratio Ia of the {111} <112> plane is {111} <112> based on the X-ray intensity ratio of the {111} <112> plane of a standard sample having a random crystal orientation. It is the ratio of the X-ray intensity of the surface. Similarly, the X-ray random intensity ratio Ib of the {111} <011> plane is {111} <011 based on the X-ray intensity ratio of the {111} <011> plane of a standard sample having a random crystal orientation. > The ratio of the X-ray intensity of the surface.

また、{100}<011>面は、r値を低減させる方位であるため、{100}<011>面の集積度を2.0未満にする必要がある。なお、{100}<011>面のX線ランダム強度比は、ランダムな結晶方位を有する標準試料の{100}<011>面のX線強度を基準とした{100}<011>面のX線強度の比であるため、{100}<011>面のX線ランダム強度比の下限は0である。   Further, since the {100} <011> plane is an orientation that reduces the r value, the integration degree of the {100} <011> plane needs to be less than 2.0. Note that the X-ray random intensity ratio of the {100} <011> plane is the X of the {100} <011> plane based on the X-ray intensity of the {100} <011> plane of a standard sample having a random crystal orientation. Since this is the ratio of the line intensities, the lower limit of the X-ray random intensity ratio of the {100} <011> plane is zero.

なお、本発明のフェライト系ステンレス鋼板のX線ランダム強度比の測定方法は、得られた製品板の板厚中心部の板面に平行な面(ND面)を透過法又は反射法によりX線回折法やEBSP等の結晶方位解析装置を用いて、結晶粒方位分布関数(crystallite Orientation Distribution Function、ODFとも呼称される。)表示する。この関数は、長島晋一編著「集合組織」丸善株式会社より昭和59年1月20日発行、P29〜39に記載のように材料座標軸系に対して結晶粒の方位を一義的に指定する三つの変数(φ、φ1、φ2)の関数である。φ、φ1、φ2はBungeの手法により定義したオイラー角とする。図7に示したφ2=45°断面上で、{111}<011>面の強度は、φ=54.7°、φ1=0°における{111}<1−10>面とφ=54.7°、φ1=60°における{111}<0−11>面のX線ランダム強度比の平均値を用いる。{111}<112>面の強度は、φ=54.7°、φ1=30°における{111}<1−21>面とφ=54.7°、φ1=90°における{111}<−1−12>面のX線ランダム強度比の平均値を用いる。{100}<011>面の強度は、φ=0°、φ1=0°における{100}<1−10>面とφ=0°、φ1=90°における{100}<−1−10>面のX線ランダム強度比の平均値を用いる。   The method for measuring the X-ray random strength ratio of the ferritic stainless steel sheet according to the present invention is such that the surface (ND surface) parallel to the plate surface at the center of the thickness of the product plate obtained is X-rayed by the transmission method or the reflection method. Using a crystal orientation analyzer such as a diffraction method or EBSP, a crystal grain orientation distribution function (also called ODF) is displayed. This function is published in January 20, 1984 from Maruzen Co., Ltd., written by Junichi Nagashima, as described in P29-39. This function uniquely specifies the crystal grain orientation with respect to the material coordinate axis system. It is a function of variables (φ, φ1, φ2). φ, φ1, and φ2 are Euler angles defined by the Bunge method. On the φ2 = 45 ° cross section shown in FIG. 7, the intensity of the {111} <011> plane is φ = 54.7 °, and the {111} <1-10> plane at φ1 = 0 ° and φ = 54. The average value of the X-ray random intensity ratio of the {111} <0-11> plane at 7 ° and φ1 = 60 ° is used. The intensity of the {111} <112> plane is {111} <1-21 plane when φ = 54.7 ° and φ1 = 30 °, and {111} <− when φ = 54.7 ° and φ1 = 90 °. The average value of the X-ray random intensity ratio of the 1-12> plane is used. The intensity of the {100} <011> plane is {100} <1-10> plane at φ = 0 ° and φ1 = 0 ° and {100} <− 1-10> at φ = 0 ° and φ1 = 90 °. The average value of the X-ray random intensity ratio of the surface is used.

また、鋼板の平均結晶粒径は30〜60μmであることが好ましい。平均結晶粒径が30μm未満であると、前述したIa≧7.0、Ib≧7.0、Ia/Ib:0.6〜1.5を満足することが困難であるばかりか、材料強度が増加し、深絞り性を低下させる場合があるため、平均結晶粒径の下限を30μm以上とすることが好ましい。また、平均結晶粒径が60μm超であると深絞り成形時に「肌荒れ」と呼ばれる表面凹凸が生じる場合があるため、平均結晶粒径の上限を60μm以下とすることが好ましい。平均結晶粒径はJIS G 0552に基づき算出する。   Moreover, it is preferable that the average grain size of a steel plate is 30-60 micrometers. If the average crystal grain size is less than 30 μm, it is difficult not only to satisfy the aforementioned Ia ≧ 7.0, Ib ≧ 7.0, Ia / Ib: 0.6 to 1.5, but also the material strength is Since it may increase and the deep drawability may be reduced, the lower limit of the average grain size is preferably 30 μm or more. Further, if the average crystal grain size is more than 60 μm, surface irregularities called “skin roughness” may occur during deep drawing, so the upper limit of the average crystal grain size is preferably 60 μm or less. The average crystal grain size is calculated based on JIS G 0552.

次に、本発明において、フェライト系ステンレス鋼板のr値は次のように限定する。r値の測定方法は、JIS13号B引張試験片の長手方向を、圧延方向(L方向)から、10°毎に、圧延方向と垂直な方向(C方向)まで、計10方向変化させて採取し、それぞれJIS Z 2254に基づいて測定し、単純平均値を平均r値とする。また、面内異方性の指標は、10方向のr値のうち、最大r値rmaxと最小r値rminの差rmax−rminで表示する。なお、r値を試験によって求めるには、大量の試験片と時間を要する。そのため、最近では、集合組織からr値が計算できるプログラム、例えば、井上博史、稲数直次著、「集合組織の定量的解析によるアルミニウム合金板のr値の評価」、軽金属、第44巻、第2号、日本軽金属学会、1994年2月28日発行、p.97〜103、が開発されており、このような手法を用いれば、実際にr値を測定しなくてもr値を計算することができる。但し、このプログラムを用いる場合には、L方向、D方向、C方向のr値を実測し、計算で求めたr値との差が±5%以内であることを確認する必要がある。 Next, in this invention, r value of a ferritic stainless steel plate is limited as follows. The measurement method of the r value is obtained by changing the longitudinal direction of the JIS No. 13 B tensile specimen from the rolling direction (L direction) every 10 ° to a direction perpendicular to the rolling direction (C direction) in a total of 10 directions. Each is measured based on JIS Z 2254, and a simple average value is defined as an average r value. In addition, the in-plane anisotropy index is represented by the difference r max −r min between the maximum r value r max and the minimum r value r min among the r values in 10 directions. In addition, in order to obtain | require r value by a test, a lot of test pieces and time are required. Therefore, recently, a program that can calculate the r value from the texture, for example, Hiroshi Inoue, Naoji Inaba, “Evaluation of the r value of the aluminum alloy sheet by quantitative analysis of the texture”, Light Metal, Vol. 44, No. 2, The Japan Institute of Light Metals, February 28, 1994, p. 97 to 103 have been developed. If such a method is used, the r value can be calculated without actually measuring the r value. However, when this program is used, it is necessary to actually measure the r values in the L direction, the D direction, and the C direction and confirm that the difference from the r value obtained by the calculation is within ± 5%.

平均r値は2.0未満であると深絞り用途としては不十分な場合があるため、2.0以上とする。また平均r値の上限はとくに規定するものでは無いが、現状の設備や生産性を考慮すると上限は3.0以下とすることが好ましい。   If the average r value is less than 2.0, it may be insufficient for deep drawing applications. The upper limit of the average r value is not particularly specified, but the upper limit is preferably set to 3.0 or less in consideration of the current facilities and productivity.

max−rminは、0.50以上であると深絞り成形時の耳高さが高く、歩留まりが大きく低下するため、0.50未満とする。この基準は、10°毎のr値によって決定されるため、L方向、D方向、C方向から計算したΔrよりも、耳高さとの良い相関が見られる。 If r max −r min is 0.50 or more, the ear height at the time of deep drawing is high and the yield is greatly reduced. Since this reference is determined by the r value every 10 °, a better correlation with the ear height is seen than Δr calculated from the L direction, the D direction, and the C direction.

本発明のフェライト系ステンレス鋼板の製造方法について、以下に説明する。   The manufacturing method of the ferritic stainless steel sheet of this invention is demonstrated below.

熱間圧延の加熱温度:フェライト系ステンレス鋼片を、1050〜1250℃の範囲に加熱する。熱間圧延の加熱温度の下限を1050℃以上とするのは、該加熱温度が1050℃未満であると変形抵抗が高いため、熱間圧延途中に焼きつき疵を発生する可能性があるためである。また、熱間圧延の加熱温度の上限を1250℃以下とするのは、該加熱温度が1250℃超であると結晶粒が粗大化し、製品板で必要な集合組織が得られないためである。   Hot rolling heating temperature: Ferritic stainless steel pieces are heated to a range of 1050 to 1250 ° C. The lower limit of the heating temperature for hot rolling is set to 1050 ° C. or more because when the heating temperature is lower than 1050 ° C., deformation resistance is high, and thus seizure flaws may occur during hot rolling. is there. Moreover, the reason why the upper limit of the heating temperature for hot rolling is 1250 ° C. or less is that when the heating temperature is higher than 1250 ° C., the crystal grains become coarse and the texture necessary for the product plate cannot be obtained.

粗熱延の総圧下率:熱間圧延工程において、まず、複数パスを要する粗熱延を実施する。粗熱延の総圧下率、すなわち鋳片の厚みt1と粗熱延板の厚みt2の比t2/t1が0.2超であると粗熱延終了後の結晶粒が大きくなり、深絞り性に有利な集合組織が得られない。t2/t1の下限はとくに規定するものでは無いが、粗熱延後に仕上熱延をするため、生産性を考慮すると0.07以上とすることが好ましい。   Total rolling reduction of rough hot rolling: In the hot rolling step, first, rough hot rolling requiring a plurality of passes is performed. If the total rolling reduction ratio of the rough hot rolling, that is, the ratio t2 / t1 of the thickness t1 of the slab and the thickness t2 of the rough hot rolled sheet is more than 0.2, the crystal grains after the completion of the rough hot rolling become large and deep drawability It is not possible to obtain a texture that is advantageous to the above. The lower limit of t2 / t1 is not particularly specified, but it is preferably set to 0.07 or more in consideration of productivity because finish hot rolling is performed after rough hot rolling.

仕上熱延温度:粗熱延後、1050℃以下の温度において複数パスの仕上熱延を行う。これは、再結晶させることなく仕上熱延を実施するためであり、1050℃超で仕上熱延を行うとパス間で再結晶し、圧延集合組織の発達を阻害するためである。   Finishing hot rolling temperature: After rough hot rolling, finishing hot rolling of a plurality of passes is performed at a temperature of 1050 ° C. or lower. This is because the finish hot rolling is performed without recrystallization, and when the finish hot rolling is performed at a temperature higher than 1050 ° C., recrystallization occurs between passes to inhibit the development of the rolling texture.

熱間圧延の巻取温度:仕上熱延終了後、再結晶を抑制するため、700℃以下の温度で巻き取る。これは、巻取温度が700℃超であると巻取り中に再結晶が進行するためである。   Winding temperature of hot rolling: After finishing hot rolling, winding is performed at a temperature of 700 ° C. or lower in order to suppress recrystallization. This is because recrystallization proceeds during winding when the winding temperature exceeds 700 ° C.

熱延板焼鈍:熱延板焼鈍は実施しない。熱延板焼鈍で再結晶組織とすると、狙いとする製品板の集合組織が得られないためである。   Hot-rolled sheet annealing: Hot-rolled sheet annealing is not performed. This is because if the recrystallized structure is obtained by hot-rolled sheet annealing, the target texture of the product sheet cannot be obtained.

熱間圧延後の酸洗は、硫酸や硝フッ酸などの通常の液で行えば良い。酸洗前にショットやサンドブラストを行うと酸洗性は向上する。   The pickling after hot rolling may be performed with a normal liquid such as sulfuric acid or nitric hydrofluoric acid. Pickling and sandblasting before pickling improves pickling performance.

冷間圧延は、1次冷延と、最終冷延からなり、1次冷延と最終冷延の間には、中間焼鈍を行う。   Cold rolling consists of primary cold rolling and final cold rolling, and intermediate annealing is performed between the primary cold rolling and final cold rolling.

冷間圧延機は、可逆式の20段ゼンジミア圧延機や6段あるいは12段圧延機でも、複数パスを連続的に圧延するタンデム圧延機でも良い。但し、ワークロール径は大きい方が圧延時のせん断歪の導入が少なく、圧延集合組織が発達し易いため、ワークロール径は200mm以上の圧延機を使うことが好ましい。   The cold rolling mill may be a reversible 20-stage Sendzimir mill, 6-stage or 12-stage mill, or a tandem mill that continuously rolls a plurality of passes. However, the larger the work roll diameter, the less the introduction of shear strain during rolling and the easier development of the rolling texture. Therefore, it is preferable to use a rolling mill having a work roll diameter of 200 mm or more.

1次冷延:1次冷延後の板厚、即ち、1次冷延板の板厚t3と、仕上熱延前の粗圧延後の板厚t2との比t3/t2は、仕上熱延と1次冷延との総圧下率である。t3/t2は、本発明において重要な因子であり、仕上熱延の開始から終了まで再結晶させないため、中間焼鈍前の未再結晶域圧延の総圧下率として取り扱うことができる。t3/t2が0.15超であると中間焼鈍での組織が粗粒化し、r値が低下して製品板での深絞り性が劣化する。t3/t2が低い方ほど、深絞り性は向上し、0.11以下とすることが望ましい。下限は特に規定するものでは無いが、生産性および最終冷延の圧下率を考慮すると0.05とすることが好ましい。   Primary cold rolling: The thickness t1 / t2 of the thickness after primary cold rolling, that is, the thickness t3 of the primary cold rolled plate and the thickness t2 after rough rolling before finish hot rolling is the finish hot rolling. And the total rolling reduction of the first cold rolling. t3 / t2 is an important factor in the present invention, and since it is not recrystallized from the start to the end of finish hot rolling, it can be handled as the total reduction ratio of the non-recrystallized zone rolling before intermediate annealing. When t3 / t2 is more than 0.15, the structure in the intermediate annealing is coarsened, the r value is lowered, and the deep drawability in the product plate is deteriorated. The lower the t3 / t2, the better the deep drawability, and it is desirable to set it to 0.11 or less. The lower limit is not particularly specified, but it is preferably 0.05 in consideration of productivity and final cold rolling reduction.

最終冷延:1次冷延板の板厚t3と、最終冷延終了後の板厚、即ち最終冷延板の板厚t4との比t4/t3を0.35以下とする。t4/t3は最終冷延における圧下率であり、0.35超であると製品板での深絞り性が劣化する。t4/t3も低いほど好ましく、0.30以下が望ましい。下限は、製品板厚によって決まるが、通常の0.2〜1.2mm厚の場合には0.15が好ましい。   Final cold rolling: The ratio t4 / t3 between the thickness t3 of the primary cold rolled sheet and the thickness after the final cold rolling, that is, the thickness t4 of the final cold rolled sheet is set to 0.35 or less. t4 / t3 is the rolling reduction in the final cold rolling, and if it exceeds 0.35, the deep drawability of the product plate deteriorates. The lower t4 / t3 is preferable, and 0.30 or less is desirable. The lower limit is determined by the product plate thickness, but 0.15 is preferable in the case of a normal thickness of 0.2 to 1.2 mm.

中間焼鈍:中間焼鈍温度が750℃未満であると未再結晶が残存し、製品板の深絞り性が低下するばかりか、成形時にリジングが発生する。また、中間焼鈍温度が850℃以上であると再結晶粒が粗大化し、製品板での深絞り性が劣化する。したがって、中間焼鈍は、750〜850℃で実施する。   Intermediate annealing: When the intermediate annealing temperature is less than 750 ° C., unrecrystallized remains, and not only the deep drawability of the product plate is lowered, but also ridging occurs during molding. Further, if the intermediate annealing temperature is 850 ° C. or higher, the recrystallized grains are coarsened and the deep drawability in the product plate is deteriorated. Therefore, the intermediate annealing is performed at 750 to 850 ° C.

最終焼鈍:最終冷延後の最終焼鈍は、800〜900℃で焼鈍する。これは、最終焼鈍温度が800℃未満であると平均結晶粒径が細かくなり、深絞り性が劣化し、900℃超であると製品板の結晶粒径が60μm超に粗粒化し、成形時に肌荒れが生じるためである。   Final annealing: Final annealing after the final cold rolling is performed at 800 to 900 ° C. When the final annealing temperature is less than 800 ° C., the average crystal grain size becomes fine and the deep drawability deteriorates. When it exceeds 900 ° C., the crystal grain size of the product plate becomes coarser than 60 μm, This is because rough skin occurs.

本発明によって得られた鋼板の表面仕上げは、JIS G 4305記載の2D、2B、BA、No.4などいずれの仕上げでも適用できる。2BやBAのように3%以内の伸び率で調質圧延を実施しても集合組織はほとんど変化せず同様の効果が期待できる。   The surface finish of the steel sheet obtained by the present invention is 2D, 2B, BA, No. JIS G 4305. Any finish such as 4 can be applied. Even if temper rolling is performed at an elongation rate of 3% or less like 2B or BA, the texture is hardly changed and the same effect can be expected.

本発明によって得られた鋼板は、深絞り性および面内異方性に優れた鋼板であるが、深絞り性を更に向上させるため、あるいは色調等に変化を持たせるために表層に潤滑皮膜を塗布しても構わない。   The steel sheet obtained by the present invention is a steel sheet having excellent deep drawability and in-plane anisotropy, but a lubricating film is applied to the surface layer in order to further improve the deep drawability or to change the color tone or the like. You may apply.

表1に示すフェライト系ステンレス鋼を溶製し、熱間圧延、酸洗、冷延、中間焼鈍、冷延、最終焼鈍によって板厚0.3〜1.1mmの鋼板を作製した。製造条件および製造途中の板厚は表2に示す。   Ferritic stainless steel shown in Table 1 was melted, and a steel plate having a thickness of 0.3 to 1.1 mm was produced by hot rolling, pickling, cold rolling, intermediate annealing, cold rolling, and final annealing. The manufacturing conditions and the plate thickness during the manufacturing are shown in Table 2.

得られた鋼板より、断面組織の結晶粒度をJIS G 0552に準拠して測定し、板厚中心部の集合組織をX線回折法によって測定した。また、得られた集合組織よりL方向からC方向まで、10°毎のr値を計算で求めた。また、L方向、C方向、D方向のr値をJIS Z 2254に準拠し、15%引張歪を導入して測定し、計算で求めたr値と実測値を比較した。鋼Aについては、L方向からC方向まで10°毎に長手方向を計10方向変化させて試験片を採取し、それぞれJIS Z 2254に基づいて15%引張後のr値を求めた。   From the obtained steel sheet, the crystal grain size of the cross-sectional structure was measured according to JIS G 0552, and the texture at the center of the plate thickness was measured by the X-ray diffraction method. Moreover, r value for every 10 degrees was calculated | required from the L direction to the C direction from the obtained texture. Further, r values in the L direction, the C direction, and the D direction were measured in accordance with JIS Z 2254 by introducing 15% tensile strain, and the r value obtained by calculation was compared with the actually measured value. For steel A, the test piece was sampled by changing the longitudinal direction in a total of 10 directions every 10 ° from the L direction to the C direction, and the r value after 15% tension was obtained based on JIS Z 2254, respectively.

比較結果を図8に示す。計算r値と実測r値は何れの方向においても良い一致を示す。面内異方性の指標は10方向のr値のうち、最大r値:rmaxと最少r値:rminの差rmax−rminで表示した。平均r値およびrmax−rminを合わせて表2に示す。また、得られた鋼板より下記の条件で円筒深絞り試験を行い、成形サンプルの耳高さを調査した。
ポンチ:φ50mm、肩半径5mm
ダイス:φ52mm、肩半径5mm
潤滑油:40℃における動粘度1200mm2/sec
絞り比:2.20(ブランク径:φ110mm)
The comparison results are shown in FIG. The calculated r value and the actually measured r value show good agreement in any direction. The in-plane anisotropy index was expressed as a difference r max −r min between the maximum r value: r max and the minimum r value: r min among the r values in 10 directions. The average r value and r max −r min are shown together in Table 2. Moreover, the cylindrical deep drawing test was performed on the obtained steel plate under the following conditions, and the ear height of the formed sample was investigated.
Punch: φ50mm, shoulder radius 5mm
Dice: φ52mm, shoulder radius 5mm
Lubricating oil: Kinematic viscosity at 40 ° C. 1200 mm 2 / sec
Aperture ratio: 2.20 (blank diameter: φ110mm)

得られた結果を表3に示す。本発明鋼は、平均r値が2.0以上であり、深絞り性に優れており、rmax−rminが0.5未満であり異方性が極めて小さい。 The obtained results are shown in Table 3. The steel of the present invention has an average r value of 2.0 or more, excellent deep drawability, r max -r min is less than 0.5, and anisotropy is extremely small.

深絞り成形後の耳発生を斜視図で概略的に説明する図である。It is a figure which illustrates roughly the generation | occurrence | production of the ear | edge after deep drawing by a perspective view. r値の板内異方性の典型的な3つの例を示す概略的に説明する図である。It is a figure explaining roughly which shows three typical examples of the in-plate anisotropy of r value. 耳高さの測定方法を概略的に説明する図である。It is a figure explaining the measuring method of ear height roughly. (a)で従来のΔrと耳高さの関係を、また、(b)で本発明で用いるrmax−rminと耳高さの関係を対比しながら説明する図である。It is a figure explaining the relationship between the conventional Δr and the ear height in (a), and comparing the relationship between r max −r min and the ear height used in the present invention in (b). 各結晶方位の結晶粒の存在状態を斜視図で概念的に説明する図である。It is a figure which illustrates notionally the existence state of the crystal grain of each crystal orientation with a perspective view. 各結晶方位の結晶粒の分布状態を従来技術(a)と本発明(b)とで対比しながら概念的に説明する図である。It is a figure which illustrates notionally the distribution state of the crystal grain of each crystal orientation, contrasting with a prior art (a) and this invention (b). φ2=45°断面における結晶方位の存在位置を示す図である。It is a figure which shows the existence position of the crystal orientation in (phi) 2 = 45 degree cross section. 実測のr値と計算より得られたr値を比較して示す図である。It is a figure which compares and shows r value obtained by measurement and r value obtained by calculation.

Claims (6)

質量%で、
C :0.001〜0.010%、
Si:0.01〜1.00%、
Mn:0.01〜1.00%、
P :0.040%以下、
S :0.010%未満、
Al:0.005〜0.100%、
N :0.001〜0.015%、
Cr:10.0〜20.0%、
Ti:0.05〜0.40%
を含有し、残部がFe及び不可避的不純物からなり、板面に垂直な方向の{111}<112>面のX線ランダム強度比Iaと{111}<011>面のX線ランダム強度比Ibが、
Ia≧7.0、
Ib≧7.0、
Ia/Ib:0.6〜1.5
の関係を満足し、{100}<011>面のランダム強度比Icが2.0未満であり、鋼板の圧延方向から90°の方向まで、10°毎に測定したr値の単純平均値が2.0以上であり、該r値の最大値と最小値の差が0.5以下であることを特徴とする、深絞り性に優れたフェライト系ステンレス鋼板。
% By mass
C: 0.001 to 0.010%,
Si: 0.01 to 1.00%,
Mn: 0.01 to 1.00%,
P: 0.040% or less,
S: less than 0.010%,
Al: 0.005 to 0.100%,
N: 0.001 to 0.015%,
Cr: 10.0-20.0%,
Ti: 0.05 to 0.40%
The balance is composed of Fe and inevitable impurities, and the {111} <112> plane X-ray random intensity ratio Ia and the {111} <011> plane X-ray random intensity ratio Ib in the direction perpendicular to the plate surface But,
Ia ≧ 7.0,
Ib ≧ 7.0,
Ia / Ib: 0.6 to 1.5
The random strength ratio Ic of the {100} <011> plane is less than 2.0, and the simple average value of r values measured every 10 ° from the rolling direction of the steel plate to the direction of 90 ° is A ferritic stainless steel sheet excellent in deep drawability, characterized in that it is 2.0 or more and the difference between the maximum value and the minimum value of the r value is 0.5 or less.
さらに、質量%で、
Mg:0.0001〜0.0100%
を含有することを特徴とする、請求項1記載の深絞り性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Mg: 0.0001 to 0.0100%
The ferritic stainless steel sheet excellent in deep drawability according to claim 1, characterized by comprising:
さらに、質量%で、
B :0.0005〜0.0050%
を含有することを特徴とする、請求項1または2に記載の深絞り性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
B: 0.0005 to 0.0050%
The ferritic stainless steel sheet excellent in deep drawability according to claim 1 or 2, characterized by comprising:
さらに、質量%で、
Mo:0.10〜2.50%
を含有することを特徴とする、請求項1〜3の何れか1項に記載の深絞り性に優れたフェライト系ステンレス鋼板。
Furthermore, in mass%,
Mo: 0.10 to 2.50%
The ferritic stainless steel sheet excellent in deep drawability according to any one of claims 1 to 3, characterized in that
平均結晶粒径が30〜60μmであることを特徴とする、請求項1〜4の何れか1項に記載の深絞り性に優れたフェライト系ステンレス鋼板。   The ferritic stainless steel sheet excellent in deep drawability according to any one of claims 1 to 4, wherein an average crystal grain size is 30 to 60 µm. 請求項1〜4の何れか1項に記載の成分からなるフェライト系ステンレス鋼片を1050〜1250℃の範囲に加熱し、総圧下率80%以上の粗熱延を行って粗熱延板とし、そのまま1050℃以下で総圧下率80〜95%の仕上熱延を行い、700℃以下の温度で巻き取った後、焼鈍することなく酸洗し、圧延率40%以上の1次冷延を行って1次冷延板とし、750〜850℃で中間焼鈍を実施し、さらに冷間圧延率60%以上の最終冷延を行って最終冷延板とし、800〜900℃で最終焼鈍し、鋳片の厚みt1、粗熱延板の板厚t2、1次冷延板の板厚t3、最終冷延板の板厚t4が下記式(1)〜(3)式を満足することを特徴とする、深絞り性に優れたフェライト系ステンレス鋼板の製造方法。
ただし、
t2/t1≦0.2 ・・・ (1)
t3/t2≦0.15 ・・・ (2)
t4/t3≦0.35 ・・・ (3)
である。
A ferritic stainless steel piece made of the component according to any one of claims 1 to 4 is heated to a range of 1050 to 1250 ° C and subjected to rough hot rolling with a total rolling reduction of 80% or more to obtain a rough hot rolled sheet. Then, finish hot rolling at a temperature of 1050 ° C. or lower and a total rolling reduction of 80 to 95%, winding at a temperature of 700 ° C. or lower, pickling without annealing, and performing primary cold rolling at a rolling rate of 40% or higher. To perform a primary cold-rolled sheet, intermediate annealing is performed at 750-850 ° C., further cold-rolled at a rate of 60% or more to obtain a final cold-rolled sheet, and finally annealed at 800-900 ° C., The thickness t1 of the slab, the thickness t2 of the rough hot-rolled sheet, the thickness t3 of the primary cold-rolled sheet, and the thickness t4 of the final cold-rolled sheet satisfy the following formulas (1) to (3). The manufacturing method of the ferritic stainless steel plate excellent in deep drawability.
However,
t2 / t1 ≦ 0.2 (1)
t3 / t2 ≦ 0.15 (2)
t4 / t3 ≦ 0.35 (3)
It is.
JP2003406085A 2003-12-04 2003-12-04 Ferritic stainless steel sheet excellent in deep drawability and method for producing the same Expired - Lifetime JP4083669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406085A JP4083669B2 (en) 2003-12-04 2003-12-04 Ferritic stainless steel sheet excellent in deep drawability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406085A JP4083669B2 (en) 2003-12-04 2003-12-04 Ferritic stainless steel sheet excellent in deep drawability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005163139A JP2005163139A (en) 2005-06-23
JP4083669B2 true JP4083669B2 (en) 2008-04-30

Family

ID=34728569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406085A Expired - Lifetime JP4083669B2 (en) 2003-12-04 2003-12-04 Ferritic stainless steel sheet excellent in deep drawability and method for producing the same

Country Status (1)

Country Link
JP (1) JP4083669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890961A (en) * 1994-09-20 1996-04-09 Hirohisa Shashin Kogyo Kk Paper for preparation of card by printer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4740021B2 (en) * 2006-04-20 2011-08-03 新日鐵住金ステンレス株式会社 Cr-containing thin steel sheet having excellent shape freezing property and method for producing the same
JP5196807B2 (en) * 2007-02-26 2013-05-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
JP2012012005A (en) * 2010-06-03 2012-01-19 Nippon Steel & Sumikin Stainless Steel Corp Oil feeding pipe and method of manufacturing the same
CN106795608B (en) * 2014-10-31 2018-06-19 新日铁住金不锈钢株式会社 Ferrite-group stainless steel steel plate, steel pipe and its manufacturing method
JP6261640B2 (en) * 2016-03-30 2018-01-17 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet and steel pipe for exhaust parts with excellent workability and manufacturing method thereof
ES2927592T3 (en) * 2018-03-30 2022-11-08 Nippon Steel Stainless Steel Corp Ferritic stainless steel sheet and production method thereof, and ferritic stainless steel element
WO2023136038A1 (en) 2022-01-11 2023-07-20 日鉄ステンレス株式会社 Ferritic stainless steel sheet for clad sheet, production method therefor, and clad sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0890961A (en) * 1994-09-20 1996-04-09 Hirohisa Shashin Kogyo Kk Paper for preparation of card by printer

Also Published As

Publication number Publication date
JP2005163139A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP5196807B2 (en) Ferritic stainless steel sheet excellent in formability with low roughness of processing surface and method for producing the same
JP4740099B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5924459B1 (en) Stainless steel for cold rolled steel
EP2048256B1 (en) Stainless steel sheet for parts and process for manufacturing the same
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
KR20020021401A (en) Steel pipe having high formability and method for producing the same
EP1990430A1 (en) High-strength hot rolled steel plate and manufacturing method thereof
US20110318217A1 (en) Cold-rolled steel sheet with excellent bending workability, method for manufacturing the same, and member using the same
JP2007291514A (en) Hot-rolled steel sheet with small in-plane anisotropy after cold rolling and recrystallization annealing, cold-rolled steel sheet with small in-plane anisotropy and production method therefor
JP4083669B2 (en) Ferritic stainless steel sheet excellent in deep drawability and method for producing the same
KR20120099507A (en) Steel plate having excellent moldability and shape retention, and method for producing same
WO2016060248A1 (en) Steel sheet for drawn can, and method for manufacturing same
RU2524021C2 (en) Cold-rolled steel sheet with perfect pliability and method of its production
JP2003013144A (en) Method for manufacturing high-carbon cold-rolled steel sheet superior in stretch flange formability
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP7226083B2 (en) wire and steel wire
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3455047B2 (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JPH02267242A (en) Low carbon aluminum killed cold rolled steel sheet having excellent workability, roughening resistance on the surface and earing properties and its manufacture
JP4824857B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JP4494653B2 (en) Manufacturing method of ferritic stainless steel sheet
JP2004217996A (en) Ferritic stainless steel sheet superior in formability, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080213

R150 Certificate of patent or registration of utility model

Ref document number: 4083669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term