JP4080665B2 - Infrared heating furnace - Google Patents

Infrared heating furnace Download PDF

Info

Publication number
JP4080665B2
JP4080665B2 JP2000054700A JP2000054700A JP4080665B2 JP 4080665 B2 JP4080665 B2 JP 4080665B2 JP 2000054700 A JP2000054700 A JP 2000054700A JP 2000054700 A JP2000054700 A JP 2000054700A JP 4080665 B2 JP4080665 B2 JP 4080665B2
Authority
JP
Japan
Prior art keywords
heating furnace
reflecting member
heat source
infrared
infrared heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000054700A
Other languages
Japanese (ja)
Other versions
JP2001242109A (en
Inventor
義博 高田
秀一 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2000054700A priority Critical patent/JP4080665B2/en
Publication of JP2001242109A publication Critical patent/JP2001242109A/en
Application granted granted Critical
Publication of JP4080665B2 publication Critical patent/JP4080665B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、熱分析装置等において試料の加熱に利用される赤外線加熱炉に関する。
【0002】
【従来の技術】
熱天秤等の熱分析装置においては、試料を加熱するために赤外線加熱炉が利用されている。従来の分析装置に利用される赤外線加熱炉は、棒状の熱源から放射された赤外線を、その周囲に配設した反射部材により反射させて試料に収束させる構成となっていたが、小さな試料ホルダに充填された試料に対し、棒状の熱源から放射される赤外線はその一部が試料に収束するのみで、多くの赤外線は、試料の加熱に寄与していないのが実状であった。
【0003】
そこで、特開平1−163594号公報や特開平5−288697号公報に開示された如きリング状の赤外線光源(熱源)を有する赤外線加熱炉が提案されている。この種の赤外線加熱炉を利用すれば、試料に対し効率的に赤外線を収束させることが可能となる。
【0004】
【発明が解決しようとする課題】
しかし、これらの従来公報に開示された赤外線光源は、同公報には具体的な説明はないものの、一般にアルミニウム等からなる炉本体の内部を楕円面形状に切削して反射面を形成しているため、製作コストが高価格であり製品としては量産に適さないという課題があった。また、炉本体中に冷却媒体通路が形成されているものの、該通路と反射面(炉本体の内面)とが離間しており、赤外線の照射により加熱する反射面の周辺部位を充分に冷却することができず、その結果、炉本体の膨張により反射面の歪み等が生じ、その結果、赤外線の収束点のズレが生じて試料を効率的に加熱できなくなるおそれがあった。
【0005】
本発明はこのような事情に鑑みてなされたもので、試料を効率的に加熱することができ、しかも製作が容易で量産に適し、且つ充分な冷却能力を備えた赤外線加熱炉の提供を目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は、加熱炉本体と、この加熱炉本体の内部に設けられた反射部材と、該反射部材に囲まれた室内に配置され赤外線を放射する環状の熱源とを備えた赤外線加熱炉であって、反射部材を薄肉の金属材料で形成するとともに、この反射部材の周囲に、冷却媒体を供給する冷却空間を形成したことを特徴とする。
【0007】
環状の熱源から放出される赤外線は、その周囲に設けられた反射部材の内面で反射して試料に照射される。反射部材は、薄肉の板状部材で形成してあり、その周囲に冷却空間を形成してあるので、反射面(内面)の近傍に充分な量の冷却媒体を供給することができ、効率的に反射部材を冷却することができる。
【0008】
ここで、反射部材の内面を、楕円の一方の焦点を中心とする回転楕円面に形成し、該回転楕円面の焦点円に沿って環状の熱源を配置するとともに、回転楕円面の中心となる焦点又はその近傍に試料配置部を設け、且つ、環状の熱源と試料配置部とを略同一平面上に配置すれば、熱源からの赤外線を効率的に試料へと収束させることが可能となる。
【0009】
上記反射部材は、絞り加工により形成することで、容易且つ安価に製作することが可能となる。なお、反射部材の内面に金メッキを施すことで、熱源からの赤外線を効率的に反射させることができる。このように、絞り加工により反射部材を形成する場合は、反射部材を絞り加工性能に優れた薄肉の銅合金で形成することが好ましい。また、銅合金の内面に金メッキを施すことで、赤外線の反射性能を向上させることが好ましい。
【0010】
さらに、本発明の赤外線加熱炉は、熱源の位置調節手段を備えることを特徴とする。特に回転楕円面を有する反射部材により熱源からの赤外線を試料に収束する場合は、回転楕円面の一方の焦点円に熱源を配置し、他方の焦点に試料を配置する。この位置関係がずれると、熱源からの赤外線を試料へ収束することができず、加熱効率が低下するおそれがある。そこで、熱源の位置調節手段を備えることで、特に熱源の位置調整を可能とし、適正な加熱状態を実現することができる。
【0011】
例えば、熱源を、赤外線放射用のヒータ線と、このヒータ線を密封するガラス管とを含み、ガラス管内に所定のガス封入部から不活性ガスを封入した構成とし、熱源のガス封入部を加熱炉本体の外部まで延出して位置調節手段として利用すれば、簡易な構成にて該位置調節手段を付加することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は本発明の実施形態に係る赤外線加熱炉の全体構成を示す正面断面図、図2は図1における矢視A−A線図である。なお、本実施の形態では、熱分析装置の一つである熱天秤に、本発明の赤外線加熱炉を適用した構成を示す。
【0013】
図1に示すように、赤外線加熱炉は、加熱炉本体10、反射部材20、及び熱源30を備えている。加熱炉本体10は、図1のA−A線部分を境として上部本体10aと下部本体10bに分かれており、これら上部本体10a及び下部本体10bの各開口縁部が接合板11及びネジ等の締結具12によって接合されて中空の加熱炉本体10が形成される。また、各部本体10a,10bにおける接合面(開口面)と対向する壁の中心部には、熱天秤の保護管1を挿通するための透孔13a,13bが形成してある。各部本体10a,10bは、例えば、アルミダイカスト成形により形成することができる。
【0014】
反射部材20も、上部本体10a及び下部本体10bに対応して上側反射部材20aと下側反射部材20bに分かれており、各反射部材20a,20bの周縁部が、対応する各部本体10a,10bの接合面(開口面)の縁部に溶接されている。また、各反射部材20a,20bの中央壁部には筒状部21a,21bが形成してあり、この筒状部21a,21bの端縁が、対応する各部本体10a,10bの透孔13a,13b部分に溶接されている。これにより、上部本体10aと上側反射部材20aの間、及び下部本体10bと下側反射部材20bの間に、それぞれ密閉空間14が形成されている。各反射部材20a,20bは、図1に示すごとく各部本体10a,10bを接合したとき、周縁部がそれぞれ密着するとともに、加熱炉本体10の中空部内で対称配置となって、反射部材20を形成する。
【0015】
加熱炉本体10の内部に形成された密閉空間14は、反射部材20の冷却空間を形成しており、この密閉空間14内に水等の冷却媒体が供給される。すなわち、上部本体10a及び下部本体10bには、図1に示すごとく、それぞれ冷却媒体の供給口15及び排出口16が形成してあり、水等の冷却媒体を供給口15に送るとともに、密閉空間14を通して排出口16から排出する冷却構造が併設されている。
【0016】
各反射部材20a,20bは、薄肉(例えば、厚さ2mm程度)の銅合金板を絞り加工して形成されている。銅合金板は、アルミ合金等に比べ絞り加工による加工性能が優れており、絞り加工後の戻り変形も少なく、高精度に所定の形状を形成することが可能である。このような特性を有する銅合金板を用いることにより、絞り加工により各反射部材20a,20bを所望の形状に成形することができる。さらに、各反射部材20a,20bの内面は、後述するように赤外線の反射面を形成するため、この内面には絞り加工後に金メッキを施し、赤外線の反射特性を向上させてある。
【0017】
各反射部材20a,20bの内面22a,22bは、図3に示すごとく回転楕円面に形成してある。すなわち、仮想楕円Qの一方の焦点aを回転中心として、当該仮想楕円Qを回転して描かれる回転楕円面に沿って、反射部材20の内面が形成されている。
【0018】
熱源30は、サークルラインヒータと称する円環状の赤外線ヒータを用いている。その構造は、図2に示すごとく、石英ガラスで形成された密封管31内にコイル状のタングステンフィラメント32(ヒータ線)を配置するとともに、密封管31内に適量の不活性ガスを封入した構造となっている。封入する不活性ガスとしては、アルゴンガス、クリプトンガス、キセノンガス等が用いられる。熱源30の基端部は、ガイドブッシュ33を介して反射部材20に支持されている。
【0019】
この熱源30は、図3に示した反射部材20における回転楕円面(内面22a,22b)の焦点円bに沿って配設してある。また、反射部材20における回転楕円面(内面22a,22b)の他方の焦点a付近を、試料Sの配置部としてある。
【0020】
次に、上述した赤外線加熱炉の作用を説明する。
図1に示すごとく、熱天秤は、試料Sを先端に保持する棒状の試料ホルダ2の周囲に保護管1を配置した構造を有しており、これら保護管1及び試料ホルダ2を、下側反射部材20bの筒状部21bから挿入することで、試料Sが反射部材20の試料配置部へ配置される。上述したように、試料配置部は反射部材20における回転楕円面(内面)の他方の焦点a付近に設定してあり、しかも熱源30は反射部材20における回転楕円面(内面22a,22b)の一方の焦点円bに沿って配設してあるので、熱源30から放射された赤外線は、反射部材20の内面22a,22bで反射して試料配置部に収束する。したがって、熱源30からの赤外線が試料Sに集中して、効率的に加熱することができる。
【0021】
熱源30から放射された赤外線の影響により、反射部材20は加熱する。そこで、加熱炉本体10内の密閉空間14に、供給口15から水等の冷却媒体を供給し、反射部材20を冷却する。密閉空間14は反射部材20の裏面側に接しており、しかも反射部材20は薄肉の銅合金板により形成されているので、赤外線が直接当たる反射部材20の内面22a,22bと冷却媒体との間の距離が短い。したがって、反射部材20に生じた熱をすみやかに冷却媒体が吸収し、効率的に反射部材20を冷却することができる。
【0022】
図4及び図5は本発明の他の実施形態に係る赤外線加熱炉を示す図である。なお、先に示した図2と同一部分又は相当する部分には同一符号を付し、その部分の詳細な説明は省略する。
本実施形態の赤外線加熱炉には、熱源30の位置調整手段が次のような構成で形成してある。
すなわち、既述した熱源30の製作において、密封管31内にハロゲンガスを封入するために、密封管31の一部に突起状のガス封入部34が形成される。一般に、このガス封入部34は、図2に示すごとく密封管31の周面から僅かに突き出しているに過ぎないが、本実施形態では、このガス封入部34を加熱炉本体10の外部まで延出する長さに形成して、熱源30の位置調節手段として利用している(図4参照)。
【0023】
反射部材20には、図5に示すごとくガイド孔23が形成してあり、このガイド孔23の内面でガス封入部34を支持するとともに、このガイド孔23からガス封入部34を外部へ延出させている。ガイド孔23は、ガス封入部34を熱源30の径方向及び周方向に移動させ得る大きさに形成してある。また、熱源30の基端部を支持するガイドブッシュ33には、熱源30の移動調整を許容するために、熱源30を比較的ルーズに嵌め合わせてある。
以上の構成により、ガス封入部34を加熱炉本体10の外部から操作して、熱源30の位置を調節することが可能となる。この調節により、反射部材20の焦点円に対する熱源30の位置合わせが容易となる。
【0024】
なお、本発明は上述した実施形態に限定されるものではない。
例えば、熱源30の位置調節手段としては、密封管31のガス封入部34を利用する以外にも、熱源30を外部から移動させ得る突出し部を独自に形成する等、他の構成を採用することもできる。
また、反射部材20の内面を放物面状に形成すれば、反射部材20で反射した赤外線を平行ビームとして試料に照射することができる。
【0025】
【発明の効果】
以上説明したように、本発明の赤外線加熱炉によれば、環状の熱源から放出される赤外線を反射部材の内面で反射して試料に照射する構成としたので、試料を効率的に加熱することができる。しかも、反射部材を薄肉の金属材料で構成し、且つ、反射部材の周囲に冷却媒体を供給する冷却空間を形成したので、反射部材を効率的に冷却することができる。
また、反射部材を絞り加工により形成することで、同部材を容易に製作でき量産が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る赤外線加熱炉の全体構成を示す正面断面図である。
【図2】図1における矢視A−A線図である。
【図3】反射部材の形状を示す正面断面図である。
【図4】本発明の他の実施形態に係る赤外線加熱炉の内部構造を、図2に対応して示す平面図である。
【図5】図4の要部を拡大して示す平面図である。
【符号の説明】
1:保護管
2:試料ホルダ
10:加熱炉本体
10a:上部本体
10b:下部本体
13a,13b:透孔
14:密閉空間
15:供給口
16:排出口
20:反射部材
20a:上側反射部材
20b:下側反射部材
21a,21b:筒状部
22a、22b:内面
23:ガイド孔
30:熱源
31:密封管
32:タングステンフィラメント
33:ガイドブッシュ
34:ガス封入部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an infrared heating furnace used for heating a sample in a thermal analyzer or the like.
[0002]
[Prior art]
In a thermal analyzer such as a thermobalance, an infrared heating furnace is used to heat a sample. Infrared heating furnaces used in conventional analyzers are configured to reflect infrared rays radiated from a rod-shaped heat source by a reflecting member arranged around them to converge on a sample. In contrast to the filled sample, only a part of the infrared rays emitted from the rod-shaped heat source converged on the sample, and many infrared rays did not contribute to the heating of the sample.
[0003]
In view of this, an infrared heating furnace having a ring-shaped infrared light source (heat source) as disclosed in JP-A-1-163594 and JP-A-5-28897 has been proposed. If this type of infrared heating furnace is used, it is possible to efficiently focus infrared rays on the sample.
[0004]
[Problems to be solved by the invention]
However, although the infrared light sources disclosed in these conventional publications do not have a specific description in the publication, generally the inside of the furnace body made of aluminum or the like is cut into an elliptical shape to form a reflecting surface. For this reason, there is a problem that the production cost is high and the product is not suitable for mass production. In addition, although a cooling medium passage is formed in the furnace body, the passage and the reflecting surface (the inner surface of the furnace body) are separated from each other, and the peripheral portion of the reflecting surface to be heated by infrared irradiation is sufficiently cooled. As a result, the distortion of the reflecting surface is caused by the expansion of the furnace body, and as a result, there is a possibility that the focal point of the infrared rays is shifted and the sample cannot be efficiently heated.
[0005]
The present invention has been made in view of such circumstances, and an object thereof is to provide an infrared heating furnace that can efficiently heat a sample, is easy to manufacture, is suitable for mass production, and has sufficient cooling capacity. And
[0006]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a heating furnace main body, a reflecting member provided inside the heating furnace main body, an annular heat source that radiates infrared rays disposed in a room surrounded by the reflecting member, and The reflection heating member is formed of a thin metal material, and a cooling space for supplying a cooling medium is formed around the reflection member.
[0007]
Infrared light emitted from the annular heat source is reflected by the inner surface of a reflecting member provided around the heat source and irradiated on the sample. Since the reflecting member is formed of a thin plate-like member and a cooling space is formed around it, a sufficient amount of cooling medium can be supplied in the vicinity of the reflecting surface (inner surface). The reflecting member can be cooled.
[0008]
Here, the inner surface of the reflecting member is formed into a spheroid with one focal point of the ellipse as the center, and an annular heat source is disposed along the focal circle of the spheroid and becomes the center of the spheroid. If the sample placement portion is provided at or near the focal point, and the annular heat source and the sample placement portion are disposed on substantially the same plane, the infrared rays from the heat source can be efficiently converged on the sample.
[0009]
The reflective member can be manufactured easily and inexpensively by forming by drawing. In addition, the infrared rays from a heat source can be efficiently reflected by performing gold plating on the inner surface of the reflecting member. Thus, when forming a reflection member by drawing, it is preferable to form a reflection member with the thin copper alloy excellent in drawing processing performance. Moreover, it is preferable to improve the infrared reflection performance by performing gold plating on the inner surface of the copper alloy.
[0010]
Furthermore, the infrared heating furnace of the present invention is characterized by comprising a heat source position adjusting means. In particular, when the infrared ray from the heat source is converged on the sample by the reflecting member having the spheroid, the heat source is arranged at one focal circle of the spheroid and the sample is arranged at the other focal point. If this positional relationship is shifted, infrared rays from the heat source cannot be converged on the sample, and the heating efficiency may be reduced. Therefore, by providing the heat source position adjusting means, it is possible to adjust the position of the heat source, and to realize an appropriate heating state.
[0011]
For example, the heat source includes a heater wire for infrared radiation and a glass tube that seals the heater wire, and an inert gas is sealed from a predetermined gas sealed portion in the glass tube, and the gas sealed portion of the heat source is heated. If it extends to the outside of the furnace body and is used as a position adjusting means, the position adjusting means can be added with a simple configuration.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a front cross-sectional view showing the overall configuration of an infrared heating furnace according to an embodiment of the present invention, and FIG. 2 is an arrow AA diagram in FIG. In the present embodiment, a configuration in which the infrared heating furnace of the present invention is applied to a thermobalance which is one of thermal analysis apparatuses is shown.
[0013]
As shown in FIG. 1, the infrared heating furnace includes a heating furnace body 10, a reflecting member 20, and a heat source 30. The heating furnace main body 10 is divided into an upper main body 10a and a lower main body 10b with the AA line portion in FIG. 1 as a boundary, and the opening edges of the upper main body 10a and the lower main body 10b are joined plates 11 and screws or the like. The hollow heating furnace main body 10 is formed by being joined by the fastener 12. Moreover, through-holes 13a and 13b for inserting the protective tube 1 of the thermobalance are formed in the central part of the wall facing the joint surface (opening surface) in each part main body 10a and 10b. Each part main body 10a, 10b can be formed by, for example, aluminum die casting.
[0014]
The reflecting member 20 is also divided into an upper reflecting member 20a and a lower reflecting member 20b corresponding to the upper main body 10a and the lower main body 10b, and the periphery of each reflecting member 20a, 20b is the corresponding part main body 10a, 10b. It is welded to the edge of the joint surface (opening surface). In addition, cylindrical portions 21a and 21b are formed in the central wall portions of the reflecting members 20a and 20b, and the end edges of the cylindrical portions 21a and 21b are the through holes 13a and 10a of the corresponding portion main bodies 10a and 10b. It is welded to 13b part. Thereby, the sealed space 14 is formed between the upper main body 10a and the upper reflecting member 20a and between the lower main body 10b and the lower reflecting member 20b, respectively. When each part main body 10a, 10b is joined as shown in FIG. 1, each of the reflection members 20a, 20b is in close contact with each other, and is symmetrically arranged in the hollow part of the heating furnace body 10 to form the reflection member 20. To do.
[0015]
The sealed space 14 formed inside the heating furnace body 10 forms a cooling space for the reflecting member 20, and a cooling medium such as water is supplied into the sealed space 14. That is, as shown in FIG. 1, a cooling medium supply port 15 and a discharge port 16 are formed in the upper main body 10a and the lower main body 10b, respectively. A cooling structure for discharging from the discharge port 16 through 14 is provided.
[0016]
Each of the reflecting members 20a and 20b is formed by drawing a thin (for example, about 2 mm thick) copper alloy plate. A copper alloy plate is superior in processing performance by drawing compared to aluminum alloy or the like, and has less return deformation after drawing, and can form a predetermined shape with high accuracy. By using a copper alloy plate having such characteristics, each reflecting member 20a, 20b can be formed into a desired shape by drawing. Further, the inner surface of each reflecting member 20a, 20b forms an infrared reflecting surface as will be described later, and the inner surface is gold-plated after drawing to improve the infrared reflecting characteristics.
[0017]
The inner surfaces 22a and 22b of the reflecting members 20a and 20b are formed as spheroidal surfaces as shown in FIG. That is, the inner surface of the reflecting member 20 is formed along a rotation ellipsoid drawn by rotating the virtual ellipse Q around one focal point a of the virtual ellipse Q.
[0018]
The heat source 30 uses an annular infrared heater called a circle line heater. As shown in FIG. 2, the structure is such that a coiled tungsten filament 32 (heater wire) is disposed in a sealed tube 31 formed of quartz glass, and an appropriate amount of inert gas is sealed in the sealed tube 31. It has become. Argon gas, krypton gas, xenon gas, or the like is used as the inert gas to be sealed. A base end portion of the heat source 30 is supported by the reflecting member 20 via a guide bush 33.
[0019]
The heat source 30 is disposed along the focal circle b of the spheroid (inner surfaces 22a, 22b) of the reflecting member 20 shown in FIG. Further, the vicinity of the other focal point “a” of the spheroid (inner surfaces 22 a, 22 b) of the reflecting member 20 is used as the arrangement portion of the sample S.
[0020]
Next, the operation of the above-described infrared heating furnace will be described.
As shown in FIG. 1, the thermobalance has a structure in which a protective tube 1 is arranged around a rod-shaped sample holder 2 that holds a sample S at the tip, and the protective tube 1 and the sample holder 2 are placed on the lower side. By inserting from the cylindrical portion 21b of the reflecting member 20b, the sample S is arranged on the sample arrangement portion of the reflecting member 20. As described above, the sample placement portion is set in the vicinity of the other focal point a of the spheroid (inner surface) of the reflecting member 20, and the heat source 30 is one of the spheroids (inner surfaces 22a and 22b) of the reflecting member 20. Therefore, the infrared rays emitted from the heat source 30 are reflected by the inner surfaces 22a and 22b of the reflecting member 20 and converge on the sample arrangement portion. Therefore, the infrared rays from the heat source 30 are concentrated on the sample S and can be efficiently heated.
[0021]
The reflection member 20 is heated by the influence of infrared rays emitted from the heat source 30. Therefore, a cooling medium such as water is supplied from the supply port 15 to the sealed space 14 in the heating furnace body 10 to cool the reflecting member 20. Since the sealed space 14 is in contact with the back surface side of the reflecting member 20, and the reflecting member 20 is formed of a thin copper alloy plate, the space between the inner surfaces 22a and 22b of the reflecting member 20 directly irradiated with infrared rays and the cooling medium is reduced. The distance is short. Therefore, the cooling medium quickly absorbs the heat generated in the reflecting member 20, and the reflecting member 20 can be efficiently cooled.
[0022]
4 and 5 are diagrams showing an infrared heating furnace according to another embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the part which is the same as that of FIG. 2 shown previously, or an equivalent part, and the detailed description of the part is abbreviate | omitted.
In the infrared heating furnace of this embodiment, the position adjusting means of the heat source 30 is formed as follows.
That is, in the manufacture of the heat source 30 described above, in order to enclose the halogen gas in the sealed tube 31, the protruding gas sealing portion 34 is formed in a part of the sealed tube 31. Generally, as shown in FIG. 2, the gas sealing part 34 protrudes only slightly from the peripheral surface of the sealed tube 31. In this embodiment, the gas sealing part 34 extends to the outside of the heating furnace body 10. It is formed in the length to be taken out and used as position adjusting means for the heat source 30 (see FIG. 4).
[0023]
A guide hole 23 is formed in the reflecting member 20 as shown in FIG. 5, and the gas sealing portion 34 is supported by the inner surface of the guide hole 23, and the gas sealing portion 34 extends outside from the guide hole 23. I am letting. The guide hole 23 is formed in such a size that the gas sealing portion 34 can be moved in the radial direction and the circumferential direction of the heat source 30. Further, the heat source 30 is relatively loosely fitted to the guide bush 33 that supports the base end portion of the heat source 30 in order to allow movement adjustment of the heat source 30.
With the above configuration, the position of the heat source 30 can be adjusted by operating the gas enclosure 34 from the outside of the heating furnace body 10. This adjustment facilitates the alignment of the heat source 30 with respect to the focal circle of the reflecting member 20.
[0024]
In addition, this invention is not limited to embodiment mentioned above.
For example, as the position adjusting means of the heat source 30, in addition to using the gas sealing portion 34 of the sealed tube 31, other configurations such as forming a protruding portion that can move the heat source 30 from the outside are adopted. You can also.
Further, if the inner surface of the reflecting member 20 is formed in a parabolic shape, the sample can be irradiated with infrared rays reflected by the reflecting member 20 as a parallel beam.
[0025]
【The invention's effect】
As described above, according to the infrared heating furnace of the present invention, since the infrared ray emitted from the annular heat source is reflected by the inner surface of the reflecting member and irradiated to the sample, the sample can be efficiently heated. Can do. Moreover, since the reflecting member is made of a thin metal material and a cooling space for supplying a cooling medium is formed around the reflecting member, the reflecting member can be efficiently cooled.
Further, by forming the reflecting member by drawing, the member can be easily manufactured and mass production is possible.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an overall configuration of an infrared heating furnace according to an embodiment of the present invention.
2 is an arrow AA diagram in FIG. 1. FIG.
FIG. 3 is a front sectional view showing the shape of a reflecting member.
FIG. 4 is a plan view showing the internal structure of an infrared heating furnace according to another embodiment of the present invention, corresponding to FIG.
5 is an enlarged plan view showing a main part of FIG. 4; FIG.
[Explanation of symbols]
1: Protective tube 2: Sample holder 10: Heating furnace body 10a: Upper body 10b: Lower body 13a, 13b: Through hole 14: Sealed space 15: Supply port 16: Discharge port 20: Reflective member 20a: Upper reflective member 20b: Lower reflective members 21a, 21b: cylindrical portions 22a, 22b: inner surface 23: guide hole 30: heat source 31: sealed tube 32: tungsten filament 33: guide bush 34: gas sealing portion

Claims (4)

加熱炉本体と、この加熱炉本体の内部に設けられた反射部材と、該反射部材に囲まれた室内に配置され赤外線を放射する環状の熱源とを備えた赤外線加熱炉であって、
前記反射部材は薄肉の金属材料からなり、
且つ、前記反射部材の周囲に、冷却媒体を供給する冷却空間が形成してあり、
前記熱源は、赤外線を放射するヒータ線と、このヒータ線を密封するガラス管とを含むとともに、前記ガラス管に形成したガス封入部から前記ガラス管内に不活性ガスを封入してなり、
さらに、前記ガス封入部を前記加熱炉本体の外部まで延出して前記熱源の位置調節手段を構成したことを特徴とする赤外線加熱炉。
An infrared heating furnace including a heating furnace body, a reflecting member provided inside the heating furnace body, and an annular heat source that radiates infrared rays disposed in a room surrounded by the reflecting member,
The reflecting member is made of a thin metal material,
And a cooling space for supplying a cooling medium is formed around the reflecting member ,
The heat source includes a heater wire that radiates infrared rays and a glass tube that seals the heater wire, and an inert gas is sealed in the glass tube from a gas sealing portion formed in the glass tube,
Furthermore, the infrared gas heating furnace characterized in that the gas sealing part is extended to the outside of the heating furnace main body to constitute a position adjusting means of the heat source .
請求項1記載の赤外線加熱炉において、
前記反射部材は、楕円の一方の焦点を中心とする回転楕円面を内面に有し、
該回転楕円面の焦点円に沿って前記環状の熱源を配置するとともに、
前記回転楕円面の中心となる焦点又はその近傍に試料配置部を設け、
且つ、前記環状の熱源と試料配置部とを、略同一平面上に配置したことを特徴とする赤外線加熱炉。
In the infrared heating furnace according to claim 1,
The reflection member has a spheroid on the inner surface centered on one focal point of the ellipse,
Arranging the annular heat source along the focal circle of the spheroid;
A sample placement part is provided at or near the focal point that is the center of the spheroid,
And the infrared heating furnace characterized by arrange | positioning the said cyclic | annular heat source and a sample arrangement | positioning part on substantially the same plane.
請求項1又は2記載の赤外線加熱炉において、
前記反射部材を絞り加工により形成したことを特徴とする赤外線加熱炉。
In the infrared heating furnace according to claim 1 or 2,
An infrared heating furnace, wherein the reflecting member is formed by drawing.
請求項3記載の赤外線加熱炉において、
前記反射部材は、薄肉の銅合金の内面に金メッキを施してなることを特徴とする赤外線加熱炉。
In the infrared heating furnace according to claim 3,
The infrared heating furnace, wherein the reflecting member is formed by applying gold plating to an inner surface of a thin copper alloy.
JP2000054700A 2000-02-29 2000-02-29 Infrared heating furnace Expired - Fee Related JP4080665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054700A JP4080665B2 (en) 2000-02-29 2000-02-29 Infrared heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054700A JP4080665B2 (en) 2000-02-29 2000-02-29 Infrared heating furnace

Publications (2)

Publication Number Publication Date
JP2001242109A JP2001242109A (en) 2001-09-07
JP4080665B2 true JP4080665B2 (en) 2008-04-23

Family

ID=18575919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054700A Expired - Fee Related JP4080665B2 (en) 2000-02-29 2000-02-29 Infrared heating furnace

Country Status (1)

Country Link
JP (1) JP4080665B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004179089A (en) * 2002-11-28 2004-06-24 Sanei Denki Seisakusho:Kk Separable reflection type heating device using ring heater
CN102538461B (en) * 2011-12-31 2013-08-14 东北电力大学 Small-sized burning furnace for on-line analysis of weightless method
CN109561522B (en) * 2018-10-11 2022-01-25 东莞材料基因高等理工研究院 High-temperature heating device based on three combination bowl
CN109561523B (en) * 2018-10-11 2022-06-07 东莞材料基因高等理工研究院 High-temperature heating device based on double-combination reflecting cover

Also Published As

Publication number Publication date
JP2001242109A (en) 2001-09-07

Similar Documents

Publication Publication Date Title
JP4275729B2 (en) Rapid heat treatment apparatus and method
JP6707467B2 (en) Laser driven shield beam lamp
US20080304542A1 (en) Infrared heated differential scanning calorimeter
JP3839528B2 (en) X-ray generator
JP2753566B2 (en) High intensity X-ray source using bellows
KR100970013B1 (en) Heat treating device
JP5765750B2 (en) Condenser mirror heating furnace
JP2000040479A (en) X-ray tube and method for cooling its bearing
JP4080665B2 (en) Infrared heating furnace
JP2005116534A (en) X ray generation apparatus
JPH06349813A (en) Apparatus for heating of substrate
JP2003017003A (en) Lamp and light source device
JP2011204957A (en) Light irradiation device
JP2004138320A (en) Reflection type heating device using ring heater
JP5405413B2 (en) Liquid cooling of X-ray tube
JP2002025305A (en) Projecting device using high pressure discharge lamp
JP2002064069A (en) Heat treatment device
JP2517218B2 (en) Radiant heating device
JPS62138383A (en) Crystal growing and producing device
JP5898258B2 (en) Heat treatment equipment
WO2008153910A1 (en) Infrared heated differential scanning calorimeter
JPH09161727A (en) Short arc lamp
JP2005228696A (en) Fixed anode x-ray tube
JP3275838B2 (en) Light irradiation device
JPS5918121A (en) Apparatus for welding glass parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees