JP4080288B2 - Merocyanine dyes for solar cells - Google Patents

Merocyanine dyes for solar cells Download PDF

Info

Publication number
JP4080288B2
JP4080288B2 JP2002280105A JP2002280105A JP4080288B2 JP 4080288 B2 JP4080288 B2 JP 4080288B2 JP 2002280105 A JP2002280105 A JP 2002280105A JP 2002280105 A JP2002280105 A JP 2002280105A JP 4080288 B2 JP4080288 B2 JP 4080288B2
Authority
JP
Japan
Prior art keywords
group
alkyl group
general formula
substituent
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002280105A
Other languages
Japanese (ja)
Other versions
JP2004115636A (en
Inventor
保 堀内
偉俊 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002280105A priority Critical patent/JP4080288B2/en
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to EP08012146A priority patent/EP2009064B1/en
Priority to AT03771315T priority patent/ATE471356T1/en
Priority to DE60333014T priority patent/DE60333014D1/en
Priority to EP08012144A priority patent/EP1997855A3/en
Priority to PCT/JP2003/009408 priority patent/WO2004011555A1/en
Priority to EP03771315A priority patent/EP1526159B1/en
Priority to US10/488,047 priority patent/US20040256002A1/en
Publication of JP2004115636A publication Critical patent/JP2004115636A/en
Priority to US11/984,199 priority patent/US7615640B2/en
Priority to US11/984,198 priority patent/US7795529B2/en
Application granted granted Critical
Publication of JP4080288B2 publication Critical patent/JP4080288B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メロシアニン色素に関するものである。
【0002】
【従来の技術】
色素は人間の目に色を認識させる物質であり、布などの染色の目的で古くから草木や貝類の天然色素が使われていた。合成染料は、1856年にPerkinによって偶然発見されたモーベインに始まり、今日までに様々な目的に応じた色素がデザインされ合成されている。
【0003】
例えばフタロシアニン化合物は非常に堅牢性の高い色素として有名であるが、中心金属を有しているために、特殊な廃棄処理が必要となるだけでなく、種々の溶媒に対する溶解性が著しく劣っているため、取り扱いが困難であり、その結果用途が限定されてしまう欠点がある。また、置換基等を導入することにより溶解性を挙げることも可能であるが、置換基の導入により堅牢性が著しき低下してしまう。一方、写真用増感剤として有名なシアニン色素やメロシアニン色素は溶解性が高く、吸光係数も大きく写真用増感剤に広く使われている。それ以外の用途としては、有機太陽電池等に用いることが記載されている(例えば、特許文献1〜3参照)。しかし、写真用のシアニンやメロシアニン色素は耐久性が著しく劣るため、長期間光に露光される太陽電池用途には適用が困難であった。
【0004】
【特許文献1】
特開平11−238905号公報
【特許文献2】
特開2001−52766号公報
【特許文献3】
特開2001−76773号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は高耐久性の色素を提供することである。
【0006】
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意検討した結果、一般式(1)で示されるメロシアニン色素が高い耐久性を有することを見出した。
【0007】
【化4】

Figure 0004080288
【0008】
一般式(1)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。 1 とR 2 は、連結して環状構造を形成しない。3、R4は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環を示し、置換基を有していてもよい。X 1はアミノ基と共に環状構造を形成するエチレン基を示し、置換基を有していても良い。mは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
【0009】
【化5】
Figure 0004080288
【0010】
一般式(2)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。R 1 とR 2 は、連結して環状構造を形成しない。X 4 は5〜7員環を形成する2価のアルキレン基を示す。mは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
【0011】
【化6】
Figure 0004080288
【0012】
一般式(3)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。 1 とR 2 は、連結して環状構造を形成しない。4は5〜7員環を形成する2価のアルキレン基を示す。nは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
【0013】
【発明の実施の形態】
ここで、R1の具体例としては、メチル基、エチル基、イソプロピル基等のアルキル基、ベンジル基、1−ナフチルメチル基等のアラルキル基、ビニル基、シクロヘキセニル基等のアルケニル基、フェニル基、ナフチル基等のアリール基、フリル基、チエニル基、インドリル基等のヘテロ環を挙げることができる。また、R1は置換基を有していてもよく、その置換基の具体例としては、上述のアルキル基、メトキシ基、エトキシ基、n−ヘキシルオキシ基等のアルコキシ基、メチルチオ基、n−ヘキシルチオ基等のアルキルチオ基、フェノキシ基、1−ナフチルオキシ基等のアリールオキシ基、フェニルチオ基等のアリールチオ基、塩素、臭素等のハロゲン原子、ジメチルアミノ基、ジフェニルアミノ基等のジ置換アミノ基、上述のアリール基、上述の複素環、カルボキシル基、カルボキシメチル基のようなカルボキシアルキル基、スルホニルプロピル基のようなスルホニルアルキル基、リン酸基、ヒドロキサム酸基等の酸性基、シアノ基、ニトロ基、トリフルオロメチル基等の電子吸引性基を挙げることができる。R2の具体例としては、上述のアルキル基、上述のアルコキシ基、上述のハロゲン原子を挙げることができる。また、R2は置換基を有していてもよく、その具体例としては上述のアルキル基、上述のアルコキシ基、上述のハロゲン原子、上述のアリール基を挙げることができる。R3、R4の具体例としては水素原子、上述のアルキル基、上述のアルコキシ基、上述のアルキルチオ基、上述のアリール基、上述のアリールオキシ基、上述のアリールチオ基、上述のヘテロ環を示す。また、R3、R4は置換基を有していてもよく、その置換基の具体例としては上述のアルキル基、上述のアルコキシ基、上述のアリール基、上述のヘテロ環、上述のハロゲン原子を挙げることができる。 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。その具体例としては、−R 6 −COOHを挙げることができ、R 6 の具体例としては、メチレン基、エチレン基等の2価のアルキレン基、1,4−フェニレン基、1,5−ナフチレン基等の2価のアリーレン基を挙げることができる。1の具体例は(4)、(6)〜(8)、(10)、(13)、(15)、(20)に挙げることができる。(5)、(9)、(11)、(12)、(14)、(16)、(17)、(18)、(19)は参考例である。5の具体例としては(32)、(34)〜(38)、(42)、(44)に示すものを挙げることができる。しかし、これらの具体例は限定されるものではない。(21)〜(31)、(33)、(39)〜(41)、(43)、(45)〜( 48)は参考例である。
【0014】
【化7】
Figure 0004080288
【0015】
【化8】
Figure 0004080288
【0016】
【化9】
Figure 0004080288
【0017】
一般式(2)において、R1、R2 3 、R 4 、R 5 一般式(1)と同じである。X 4の具体例としては、(49)〜(52)を示すものを挙げることができる
【0018】
一般式(3)において、R1、R2 、R 5 は一般式(1)と同じである。X 4の具体例としては、(49)〜(52)を示すものを挙げることができる
【0019】
【化10】
Figure 0004080288
【0020】
次に、本発明のメロシアニン色素の具体例をA−7〜A−14、A−16〜A−18、A−20、A−24〜A−25、A−28〜A−34に挙げるが、これらに限定されるものではない。A−1〜A−6、A−15、A−19、A−21〜A−23、A−26〜A−27、A−35は参考例である。
【0021】
【化11】
Figure 0004080288
【0022】
【化12】
Figure 0004080288
【0023】
【化13】
Figure 0004080288
【0024】
【化14】
Figure 0004080288
【0025】
【化15】
Figure 0004080288
【0026】
【化16】
Figure 0004080288
【0027】
【化17】
Figure 0004080288
【0028】
【化18】
Figure 0004080288
【0029】
本発明のメロシアニン色素の合成ルートを図1に示す。化合物(I)、あるいは化合物(III)から化合物(II)を合成し、次いで酸性基や酸性基前駆体を有する化合物と反応することで目的物(IV)を得ることができる。
【0030】
化合物(I)のカルボニル化反応による化合物(II)の合成方法としては、Friedel-Crafts反応に代表されるアシル化反応、Vilsmeiyer反応に代表されるホルミル化反応、あるいは一度ニトリル化を行い、ニトリル基をカルボニル基へ変換する方法が挙げられるが、カルボニル化合物を得られる条件であれば、どのような反応を用いても構わない。しかし、本発明では、Vilsmeiyer反応によりホルミル化が最も好適である。1927年、Vilsmeiyerらによって報告されたこのホルミル化反応は、オキシ塩化リン、ホスゲン、塩化チオニル等の存在下、N,N−ジメチルホルムアミド、N−メチル−ホルムアニリド等を作用させ、ホルミル基を導入する方法である。操作が簡便であり、反応条件が穏和なことから広く利用されているものである。
【0031】
化合物(III)から化合物(II)を合成する方法としては、種々の方法が挙げられる。R´がメチル基の場合、二酸化セレン、クロム酸、次亜ハロゲン酸等による酸化反応、ハロゲン化メチルへ変換した後にジメチルスルホキシド、ニトロアルカンナトリウム塩、ヘキサメチレンテトラミン等を用いた酸化反応、ジハロゲン化メチルへ変換した後に酸またはアルカリ性で加水分解する反応が挙げられる。R´がハロゲン原子の場合、グルニャール試薬や有機リチウムハロゲン原子をMgやLiに変換した後、ホルミル化剤としてギ酸エステルやホルムアミドを用いてホルミル化する方法、Pd触媒下、水素と一酸化炭素と反応させる方法等が挙げられる。
【0032】
化合物(II)と酸性基あるいは酸性基前駆体を有する化合物を縮合して目的物(IV)を得る方法としては、アルドール縮合やknoevenagel等のカルボニル化合物と活性メチレンの反応による方法、Wittig反応によるオレフィン合成の方法が挙げられる。カルボニル化合物と活性メチレンの縮合反応は、塩基または酸触媒下において合成されるものである。反応条件によっては、ヒドロキシル化合物とその脱水によって生成する不飽和化合物が得られるが、反応に用いる塩基や酸、そして反応温度を制御することで不飽和化合物を優先的に得ることが出来る。
【0033】
Wittig反応はカルボニル基をオレフィンへ変換するのに非常に優れた反応である。通常、反応はアルカリ性条件下、緩和な温度で進行する。本発明においては、カルボニル基を有する中間体(II)と、酸性基あるいは酸性基の前駆体を有する亜リン酸ジエステル、ホスホランあるいはリンイリドと反応させることによって容易に目的物を得ることが出来る。
【0034】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。
【0035】
【化19】
Figure 0004080288
【0036】
【化20】
Figure 0004080288
【0037】
参考合成例1 例示化合物(A−3)の合成
化合物(B−1)(1.18g)、シアノ酢酸(0.46g)、酢酸アンモニウム(0.77g)を酢酸2.5gに溶解し、120℃で加熱攪拌。30分後、加熱を停止し室温まで冷却後、水(100ml)、酢酸エチル(100ml)を加えて分液ロートに移した。有機層を分離し、無水硫酸ナトリウムで乾燥後、溶媒を留去。粗結晶を酢酸エチルで洗浄し、例示化合物(A−3)を得た。0.54g。収率34.8%。融点=208.1〜210.1℃。エタノール中のUV吸収スペクトルを図2に示す。最大吸収波長(λmax)=399.6nm。最大モル吸収率(εmax)=23100l/mol・cm。
【0038】
参考合成例2 例示化合物(A−6)の合成
化合物(B−2)(1.82g)、ローダニン−3−酢酸(1.59g)、酢酸アンモニウム(1.27g)を酢酸3.9gに溶解し、120℃で加熱攪拌。30分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(100ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)
で2回洗浄。次いでイソプロピルエーテルで攪拌洗浄し、例示化合物(A−6)を得た。3.2g。収率99%。融点=271.9〜274.0℃。エタノール中のUV吸収スペクトルを図3に示す。最大吸収波長(λmax)=430.8nm。最大モル吸収率(εmax)=32700l/mol・cm。
【0039】
合成例3 例示化合物(A−8)の合成
化合物(B−1)(10.1g)、ローダニン−3−酢酸(7.4g)、酢酸アンモニウム(2.56g)を酢酸15.9gに溶解し、120℃で加熱攪拌。30分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(100ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(500ml)で2回洗浄し、次いで2−プロパノール(100ml)で2回洗浄。粗結晶をメチルセロソルブ(約50ml)で再結晶し、例示化合物(A−8)を得た。11.0g。収率66%。融点=249.2〜253.7℃(分解)。エタノール中のUV吸収スペクトルを図4に示す。最大吸収波長(λmax)=481.0nm。最大モル吸収率(εmax)=31000l/mol・cm。
【0040】
合成例4 例示化合物(A−9)の合成
化合物(B−3)(2.6g)、ローダニン−3−酢酸(1.7g)、酢酸アンモニウム(0.5g)を酢酸2.2gに溶解し、120℃で加熱攪拌。30分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(50ml)で2回洗浄し、例示化合物(A−9)を得た。2.9g。収率69%。融点=235.8〜238.1℃(分解)。エタノール中のUV吸収スペクトルを図5に示す。最大吸収波長(λmax)=482.6nm。最大モル吸収率(εmax)=43300l/mol・cm。
【0041】
合成例5 例示化合物(A−10)の合成
化合物(B−4)(1.64g)、ローダニン−3−酢酸(1.40g)、酢酸アンモニウム(0.96g)を酢酸4.4gに溶解し、120℃で加熱攪拌。15分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(50ml)で2回洗浄し、例示化合物(A−10)を得た。2.78g。収率94.6%。融点=251.9〜255.9℃。エタノール中のUV吸収スペクトルを図6に示す。最大吸収波長(λmax)=472.8nm。最大モル吸収率(εmax)=25600l/mol・cm。
【0042】
合成例6 例示化合物(A−14)の合成
化合物(B−5)(0.58g)、ローダニン−3−酢酸(0.26g)、酢酸アンモニウム(0.46g)を酢酸2.0gに溶解し、120℃で加熱攪拌。30分後、加熱を停止し室温まで冷却後、水(100ml)、酢酸エチル(100ml)を加えて分液ロートに移した。有機層を分離し、無水硫酸ナトリウムで乾燥後、溶媒を留去。得た粗結晶を2−プロパノール洗浄し、例示化合物(A−14)を得た。0.66g。収率80.7%。融点=175.3〜176.9℃。エタノール中のUV吸収スペクトルを図7に示す。最大吸収波長(λmax)=485.6nm。最大モル吸収率(εmax)=43000l/mol・cm。
【0043】
参考合成例7 例示化合物(A−19)の合成
化合物(B−6)(0.77g)、ローダニン−3−酢酸(0.56g)、酢酸アンモニウム(0.76g)を酢酸2.5gに溶解し、120℃で加熱攪拌。15分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(50ml)で洗浄し、例示化合物(A−19)を得た。1.08g。収率84.3%。融点=244.0〜246.4℃。エタノール中のUV吸収スペクトルを図8に示す。最大吸収波長(λmax)=412.8nm。最大モル吸収率(εmax)=12300l/mol・cm。
【0044】
合成例8 例示化合物(A−28)の合成
化合物(B−1)(2.63g)、ローダニン−3−プロピオン酸(2.05g)、酢酸アンモニウム(0.52g)を酢酸2.2gに溶解し、120℃で加熱攪拌。15分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(100ml)で洗浄し、例示化合物(A−28)を得た。4.08g。収率90.6%。融点=215.6〜220.2℃。エタノール中のUV吸収スペクトルを図9に示す。最大吸収波長(λmax)=486.0nm。最大モル吸収率(εmax)=43700l/mol・cm。
【0045】
合成例9 例示化合物(A−29)の合成
化合物(B−7)(1.55g)、ローダニン−3−酢酸(1.38g)、酢酸アンモニウム(0.52g)を酢酸2.2gに溶解し、120℃で加熱攪拌。2時間後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(50ml)で洗浄し、例示化合物(A−29)を得た。1.81g。収率58.9%。融点=152.4〜154.4℃。エタノール中のUV吸収スペクトルを図10に示す。最大吸収波長(λmax)=482.4nm。最大モル吸収率(εmax)=25000l/mol・cm。
【0046】
合成例10 例示化合物(A−30)の合成
化合物(B−8)(1.07g)、ローダニン−3−酢酸(0.84g)、酢酸アンモニウム(1.33g)を酢酸4.1gに溶解し、120℃で加熱攪拌。30分後、加熱を停止し室温まで冷却後、水(100ml)、酢酸エチル(100ml)を加えて分液ロートに移した。有機層を分離し、無水硫酸ナトリウムで乾燥後、溶媒を留去。得た粗結晶をイソプロピルエーテルで攪拌洗浄し、例示化合物(A−30)を得た。1.49g。収率81.3%。融点=223.5〜224.4℃。エタノール中のUV吸収スペクトルを図11に示す。最大吸収波長(λmax)=484.4nm。最大モル吸収率(εmax)=35700l/mol・cm。
【0047】
合成例11 例示化合物(A−31)の合成
化合物(B−9)(2.26g)、ローダニン−3−酢酸(1.33g)、酢酸アンモニウム(1.27g)を酢酸4.3gに溶解し、120℃で加熱攪拌。30分後、加熱を停止し室温まで冷却後、水(100ml)、酢酸エチル(100ml)を加えて分液ロートに移した。有機層を分離し、無水硫酸ナトリウムで乾燥後、溶媒を留去。得た粗結晶をイソプロピルエーテルで攪拌洗浄し、例示化合物(A−31)を得た。3.02g。収率87.4%。融点=160.5〜163.5℃。エタノール中のUV吸収スペクトルを図12に示す。最大吸収波長(λmax)=484.0nm。最大モル吸収率(εmax)=48500l/mol・cm。
【0048】
合成例12 例示化合物(A−32)の合成
化合物(B−10)(1.07g)、ローダニン−3−酢酸(0.47g)、酢酸アンモニウム(0.73g)を酢酸3.6gに溶解し、120℃で加熱攪拌。30分後、加熱を停止し室温まで冷却後、水(100ml)、酢酸エチル(100ml)を加えて分液ロートに移した。有機層を分離し、無水硫酸ナトリウムで乾燥後、溶媒を留去。得た粗結晶をイソプロピルエーテルで攪拌洗浄し、例示化合物(A−32)を得た。1.25g。収率83.9%。融点=131.1〜133.4℃。エタノール中のUV吸収スペクトルを図13に示す。最大吸収波長(λmax)=485.8nm。最大モル吸収率(εmax)=38800l/mol・cm。
【0049】
合成例13 例示化合物(A−33)の合成
化合物(B−11)(2.01g)、ローダニン−3−酢酸(1.91g)、酢酸アンモニウム(0.95g)を酢酸2.8gに溶解し、120℃で加熱攪拌。15分後、加熱を停止すると直ぐに固化。室温まで冷却後、水(50ml)を加えて攪拌し、結晶を濾取。結晶をビーカーに移し、水(100ml)で2回洗浄し、次いで2−プロパノール(50ml)で洗浄し、例示化合物(A−33)を得た。2.95g。収率78.9%。融点=248.5〜249.9℃。エタノール中のUV吸収スペクトルを図14に示す。最大吸収波長(λmax)=480.4nm。最大モル吸収率(εmax)=34800l/mol・cm。
【0050】
実施例1
色素の耐久性は、サイクリックボルタンメトリーにより、安定な酸化還元サイクルで測ることができる。一部の例外を除き、写真用シアニン、メロシアニン色素は安定な酸化還元サイクルが観測できない。
合成例4の化合物(A−9)のサイクリックボルタンメトリー特性を測定した。測定条件を以下に示す。
測定条件
掃引速度:200mV/秒
溶媒 :アセトニトリル
電解液 :過塩素酸テトラ−n−ブチルアンモニウム(0.1mol/l)
作用電極:白金静止電極
参照電極:飽和カロメル電極
【0051】
測定した結果を図15に示す。図15より、化合物(A−9)の酸化電位は0.85Vにピークを示した。その後、電位を逆方向へ走査すると0.79Vにピークが観測され、酸化された色素が再び還元されて酸化前の状態へ戻ったことがわかる。すなわち、この色素は酸化→還元による分解が無く、耐久性が高いことを示している。
【0052】
【化21】
Figure 0004080288
【0053】
比較例1
化合物(C−1)で示されるメロシアニン色素を用いた以外は実施例1と同様にしてサイクリックボルタンメトリーを測定した。結果を図16に示す。図16より、化合物(C−1)の酸化電位は0.71Vにピークを示した。その後、電位を逆方向へ走査してもピークは観測されなかった。すなわち、全ての色素が酸化によって完全に分解したことを示している。
【0054】
【発明の効果】
以上から明らかなように、本発明の化合物は高い耐久性に優れ、光電変換材料など各種用途での優れた特性を有する色素を提供することができる。
【図面の簡単な説明】
【図1】 色素の合成ルートの概略図。
【図2】 参考合成例1で得た色素のUV吸収スペクトル。
【図3】 参考合成例2で得た色素のUV吸収スペクトル。
【図4】 合成例3で得た色素のUV吸収スペクトル。
【図5】 合成例4で得た色素のUV吸収スペクトル。
【図6】 合成例5で得た色素のUV吸収スペクトル。
【図7】 合成例6で得た色素のUV吸収スペクトル。
【図8】 参考合成例7で得た色素のUV吸収スペクトル。
【図9】 合成例8で得た色素のUV吸収スペクトル。
【図10】 合成例9で得た色素のUV吸収スペクトル。
【図11】 合成例10で得た色素のUV吸収スペクトル。
【図12】 合成例11で得た色素のUV吸収スペクトル。
【図13】 合成例12で得た色素のUV吸収スペクトル。
【図14】 合成例13で得た色素のUV吸収スペクトル。
【図15】 例示化合物(A−9)のサイクリックボルタンメトリー特性図。
【図16】 比較化合物(C−1)のサイクリックボルタンメトリー特性図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a merocyanine dye.
[0002]
[Prior art]
Pigments are substances that make the human eye recognize colors, and natural dyes from plants and shells have been used for a long time for the purpose of dyeing fabrics. Synthetic dyes began with Mobein, discovered by chance by Perkin in 1856. To date, pigments for various purposes have been designed and synthesized.
[0003]
For example, phthalocyanine compounds are famous as very fast pigments, but because they have a central metal, they do not only require special disposal but also have very poor solubility in various solvents. Therefore, it is difficult to handle, and as a result, there is a drawback that the application is limited. In addition, the solubility can be increased by introducing a substituent or the like, but the fastness is significantly reduced by the introduction of the substituent. On the other hand, cyanine dyes and merocyanine dyes well known as photographic sensitizers have high solubility and a large extinction coefficient, and are widely used in photographic sensitizers. As other uses, it is described that it is used for an organic solar battery or the like (for example, see Patent Documents 1 to 3). However, since cyanine and merocyanine dyes for photography are extremely inferior in durability, it has been difficult to apply them to solar cell applications that are exposed to light for a long period of time.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-238905 [Patent Document 2]
JP 2001-52766 A [Patent Document 3]
Japanese Patent Laid-Open No. 2001-76773
[Problems to be solved by the invention]
An object of the present invention is to provide a highly durable pigment.
[0006]
[Means for Solving the Problems]
The present inventors have result of intensive investigation to achieve the above object and found to have a merocyanine dye has high durability represented by one general formula (1).
[0007]
[Formula 4]
Figure 0004080288
[0008]
In the general formula (1), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom, and may have a substituent. R 1 and R 2 are not linked to form a cyclic structure. R 3 and R 4 represent a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryloxy group, an arylthio group, or a heterocyclic ring, and may have a substituent . X 1 represents an ethylene group that forms a cyclic structure with an amino group, and may have a substituent. m represents 0 or 1; The carbon-carbon double bond may be either E-type or Z-type. R 5 represents a substituent having an acidic group represented by the general formula (53). In the general formula (53), l represents 0 or 1. R 7 and R 8 represent an alkyl group or an aryl group having an alkyl group or an acidic group. However, at least one of R 7 and R 8 is an alkyl group or an aryl group having an acidic group.
[0009]
[Chemical formula 5]
Figure 0004080288
[0010]
In the general formula (2), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom, and may have a substituent . R 1 and R 2 are not linked to form a cyclic structure. X 4 represents a divalent alkylene group that forms a 5- to 7-membered ring. m represents 0 or 1; The carbon-carbon double bond may be either E-type or Z-type. R 5 represents a substituent having an acidic group represented by the general formula (53). In the general formula (53), l represents 0 or 1. R 7 and R 8 represent an alkyl group or an aryl group having an alkyl group or an acidic group. However, at least one of R 7 and R 8 is an alkyl group or an aryl group having an acidic group.
[0011]
[Chemical 6]
Figure 0004080288
[0012]
In General Formula (3), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom, and may have a substituent. R 1 and R 2 are not linked to form a cyclic structure. X 4 represents a divalent alkylene group that forms a 5- to 7-membered ring. n represents 0 or 1; The carbon-carbon double bond may be either E-type or Z-type. R 5 represents a substituent having an acidic group represented by the general formula (53). In the general formula (53), l represents 0 or 1. R 7 and R 8 represent an alkyl group or an aryl group having an alkyl group or an acidic group. However, at least one of R 7 and R 8 is an alkyl group or an aryl group having an acidic group.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Here, specific examples of R 1 include alkyl groups such as methyl group, ethyl group, and isopropyl group, aralkyl groups such as benzyl group and 1-naphthylmethyl group, alkenyl groups such as vinyl group and cyclohexenyl group, phenyl group, and the like. And heterocycles such as aryl groups such as naphthyl group, furyl group, thienyl group and indolyl group. R 1 may have a substituent. Specific examples of the substituent include alkoxy groups such as the aforementioned alkyl group, methoxy group, ethoxy group, and n-hexyloxy group, methylthio group, n- Alkylthio groups such as hexylthio group, aryloxy groups such as phenoxy group, 1-naphthyloxy group, arylthio groups such as phenylthio group, halogen atoms such as chlorine and bromine, disubstituted amino groups such as dimethylamino group and diphenylamino group, The above aryl group, the above-mentioned heterocyclic ring, carboxyl group, carboxyalkyl group such as carboxymethyl group, sulfonylalkyl group such as sulfonylpropyl group, acidic group such as phosphoric acid group, hydroxamic acid group, cyano group, nitro group And an electron-withdrawing group such as a trifluoromethyl group. Specific examples of R 2 include the above alkyl group, the above alkoxy group, and the above halogen atom. R 2 may have a substituent, and specific examples thereof include the above alkyl group, the above alkoxy group, the above halogen atom, and the above aryl group. Specific examples of R 3 and R 4 include a hydrogen atom, the above alkyl group, the above alkoxy group, the above alkylthio group, the above aryl group, the above aryloxy group, the above arylthio group, and the above heterocycle. . R 3 and R 4 may have a substituent, and specific examples of the substituent include the above alkyl group, the above alkoxy group, the above aryl group, the above hetero ring, and the above halogen atom. Can be mentioned. At least one of R 7 and R 8 is an alkyl group or an aryl group having an acidic group. Specific examples thereof include —R 6 —COOH. Specific examples of R 6 include divalent alkylene groups such as methylene group and ethylene group, 1,4-phenylene group, 1,5-naphthylene. And a divalent arylene group such as a group. Specific examples of X 1 can be listed in (4) , (6) to (8), (10), (13), (15), and (20). (5), (9), (11), (12), (14), (16), (17), (18), (19) are reference examples. Specific examples of R 5 include those shown in (32), (34) to (38), (42), (44) . However, these specific examples are not limited. (21)-(31), (33), (39)-(41), (43), (45)-( 48) are reference examples.
[0014]
[Chemical 7]
Figure 0004080288
[0015]
[Chemical 8]
Figure 0004080288
[0016]
[Chemical 9]
Figure 0004080288
[0017]
In the general formula (2), R 1 , R 2 , R 3 , R 4 and R 5 are the same as those in the general formula (1) . Specific examples of X 4 include those represented by ( 49) to (52) .
[0018]
In the general formula (3), R 1 , R 2 and R 5 are the same as those in the general formula (1) . Specific examples of X 4 include those represented by ( 49) to (52) .
[0019]
[Chemical Formula 10]
Figure 0004080288
[0020]
Next, specific examples of the merocyanine dye of the present invention are listed in A-7 to A-14, A-16 to A-18, A-20, A-24 to A-25, and A-28 to A-34. However, it is not limited to these. A-1 to A-6, A-15, A-19, A-21 to A-23, A-26 to A-27, and A-35 are reference examples.
[0021]
Embedded image
Figure 0004080288
[0022]
Embedded image
Figure 0004080288
[0023]
Embedded image
Figure 0004080288
[0024]
Embedded image
Figure 0004080288
[0025]
Embedded image
Figure 0004080288
[0026]
Embedded image
Figure 0004080288
[0027]
Embedded image
Figure 0004080288
[0028]
Embedded image
Figure 0004080288
[0029]
The synthesis route of the merocyanine dye of the present invention is shown in FIG. Compound (II) is synthesized from compound (I) or compound (III), and then reacted with a compound having an acidic group or acidic group precursor to obtain target compound (IV).
[0030]
Compound (II) can be synthesized by carbonylation reaction of compound (I) by acylation reaction represented by Friedel-Crafts reaction, formylation reaction represented by Vilsmeiyer reaction, or once nitrification, Can be used, but any reaction may be used as long as the carbonyl compound can be obtained. However, in the present invention, formylation is most preferred by the Vilsmeiyer reaction. In 1927, this formylation reported by Vilsmeiyer et al. Introduced N, N-dimethylformamide, N-methyl-formanilide, etc. in the presence of phosphorus oxychloride, phosgene, thionyl chloride and the like to introduce a formyl group. It is a method to do. Since the operation is simple and the reaction conditions are mild, it is widely used.
[0031]
As a method for synthesizing compound (II) from compound (III), various methods can be mentioned. When R ′ is a methyl group, oxidation reaction with selenium dioxide, chromic acid, hypohalous acid, etc., conversion to halogenated methyl, oxidation reaction with dimethyl sulfoxide, nitroalkane sodium salt, hexamethylenetetramine, etc., dihalogenation Examples of the reaction include hydrolysis after acid or alkali conversion after conversion to methyl. In the case where R ′ is a halogen atom, after converting a Gragnar reagent or an organolithium halogen atom to Mg or Li, a formylation using a formate or formamide as a formylating agent, hydrogen and carbon monoxide under a Pd catalyst The method of making it react is mentioned.
[0032]
Methods for condensing compound (II) with a compound having an acidic group or acidic group precursor to obtain target compound (IV) include aldol condensation, a method of reacting a carbonyl compound such as knoevenagel with active methylene, and an olefin by Wittig reaction. A synthesis method is mentioned. The condensation reaction of a carbonyl compound and active methylene is synthesized under a base or acid catalyst. Depending on the reaction conditions, a hydroxyl compound and an unsaturated compound produced by its dehydration can be obtained, but the unsaturated compound can be obtained preferentially by controlling the base and acid used in the reaction and the reaction temperature.
[0033]
The Wittig reaction is an excellent reaction for converting carbonyl groups to olefins. Usually, the reaction proceeds at a mild temperature under alkaline conditions. In the present invention, the desired product can be easily obtained by reacting the intermediate (II) having a carbonyl group with an acid group or a phosphorous acid diester, phosphorane or phosphorus ylide having an acid group precursor.
[0034]
【Example】
EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not limited to these at all.
[0035]
Embedded image
Figure 0004080288
[0036]
Embedded image
Figure 0004080288
[0037]
Reference Synthesis Example 1 Synthesis of Exemplary Compound (A-3) Compound (B-1) (1.18 g), cyanoacetic acid (0.46 g) and ammonium acetate (0.77 g) were dissolved in 2.5 g of acetic acid, and 120 Heat and stir at ℃. After 30 minutes, heating was stopped and cooled to room temperature, water (100 ml) and ethyl acetate (100 ml) were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off. The crude crystals were washed with ethyl acetate to obtain Exemplified Compound (A-3). 0.54g. Yield 34.8%. Melting point = 208.1-210.1 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 399.6 nm. Maximum molar absorption rate (εmax) = 23100 l / mol · cm.
[0038]
Reference Synthesis Example 2 Synthesis of Exemplary Compound (A-6) Compound (B-2) (1.82 g), rhodanine-3-acetic acid (1.59 g), and ammonium acetate (1.27 g) were dissolved in 3.9 g of acetic acid. And stirring at 120 ° C. After 30 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (100 ml) was added and stirred, and the crystals were collected by filtration. Transfer the crystals to a beaker and water (100 ml)
Wash twice. Next, the mixture was washed with stirring with isopropyl ether to obtain Exemplary Compound (A-6). 3.2 g. Yield 99%. Melting point = 271.9-274.0 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 430.8 nm. Maximum molar absorption rate (εmax) = 32700 l / mol · cm.
[0039]
Synthesis Example 3 Synthesis of Exemplary Compound (A-8) Compound (B-1) (10.1 g), rhodanine-3-acetic acid (7.4 g), and ammonium acetate (2.56 g) were dissolved in 15.9 g of acetic acid. And stirring at 120 ° C. After 30 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (100 ml) was added and stirred, and the crystals were collected by filtration. The crystals are transferred to a beaker and washed twice with water (500 ml) and then twice with 2-propanol (100 ml). The crude crystals were recrystallized with methyl cellosolve (about 50 ml) to obtain Exemplary Compound (A-8). 11.0 g. Yield 66%. Melting point = 249.2-253.7 ° C. (decomposition). The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 481.0 nm. Maximum molar absorption rate (εmax) = 31000 l / mol · cm.
[0040]
Synthesis Example 4 Synthesis of Exemplary Compound (A-9) Compound (B-3) (2.6 g), rhodanine-3-acetic acid (1.7 g), and ammonium acetate (0.5 g) were dissolved in 2.2 g of acetic acid. And stirring at 120 ° C. After 30 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker and washed twice with water (100 ml) and then twice with 2-propanol (50 ml) to obtain exemplary compound (A-9). 2.9 g. Yield 69%. Melting point = 235.8-238.1 ° C (decomposition). The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 482.6 nm. Maximum molar absorptivity (εmax) = 43300 l / mol · cm.
[0041]
Synthesis Example 5 Synthesis of Exemplary Compound (A-10) Compound (B-4) (1.64 g), rhodanine-3-acetic acid (1.40 g), and ammonium acetate (0.96 g) were dissolved in 4.4 g of acetic acid. And stirring at 120 ° C. After 15 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker and washed twice with water (100 ml) and then twice with 2-propanol (50 ml) to obtain Exemplified Compound (A-10). 2.78 g. Yield 94.6%. Melting point = 251.9-255.9 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 472.8 nm. Maximum molar absorption rate (εmax) = 25600 l / mol · cm.
[0042]
Synthesis Example 6 Synthesis of Exemplary Compound (A-14) Compound (B-5) (0.58 g), rhodanine-3-acetic acid (0.26 g), and ammonium acetate (0.46 g) were dissolved in 2.0 g of acetic acid. And stirring at 120 ° C. After 30 minutes, heating was stopped and cooled to room temperature, water (100 ml) and ethyl acetate (100 ml) were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained crude crystals were washed with 2-propanol to obtain Exemplary Compound (A-14). 0.66g. Yield 80.7%. Melting point = 175.3-176.9 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 485.6 nm. Maximum molar absorption rate (εmax) = 43000 l / mol · cm.
[0043]
Reference Synthesis Example 7 Synthesis of Exemplary Compound (A-19) Compound (B-6) (0.77 g), rhodanine-3-acetic acid (0.56 g), and ammonium acetate (0.76 g) were dissolved in 2.5 g of acetic acid. And stirring at 120 ° C. After 15 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (100 ml), and then washed with 2-propanol (50 ml) to obtain Exemplified Compound (A-19). 1.08 g. Yield 84.3%. Melting point = 244.0-246.4C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 412.8 nm. Maximum molar absorption rate (εmax) = 12300 l / mol · cm.
[0044]
Synthesis Example 8 Synthesis of Exemplary Compound (A-28) Compound (B-1) (2.63 g), rhodanine-3-propionic acid (2.05 g), and ammonium acetate (0.52 g) were dissolved in 2.2 g of acetic acid. And stirring at 120 ° C. After 15 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (100 ml), and then washed with 2-propanol (100 ml) to give Exemplary Compound (A-28). 4.08 g. Yield 90.6%. Melting point = 215.6-220.2C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 486.0 nm. Maximum molar absorption rate (εmax) = 43700 l / mol · cm.
[0045]
Synthesis Example 9 Synthesis of Exemplary Compound (A-29) Compound (B-7) (1.55 g), rhodanine-3-acetic acid (1.38 g), and ammonium acetate (0.52 g) were dissolved in 2.2 g of acetic acid. And stirring at 120 ° C. After 2 hours, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (100 ml), and then washed with 2-propanol (50 ml) to obtain exemplary compound (A-29). 1.81 g. Yield 58.9%. Melting point = 152.4-154.4.degree. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 482.4 nm. Maximum molar absorption rate (εmax) = 25000 l / mol · cm.
[0046]
Synthesis Example 10 Synthesis of Exemplary Compound (A-30) Compound (B-8) (1.07 g), rhodanine-3-acetic acid (0.84 g), and ammonium acetate (1.33 g) were dissolved in 4.1 g of acetic acid. And stirring at 120 ° C. After 30 minutes, heating was stopped and cooled to room temperature, water (100 ml) and ethyl acetate (100 ml) were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained crude crystals were washed by stirring with isopropyl ether to obtain Exemplary Compound (A-30). 1.49 g. Yield 81.3%. Melting point = 223.5 to 224.4 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 484.4 nm. Maximum molar absorption rate (εmax) = 35700 l / mol · cm.
[0047]
Synthesis Example 11 Synthesis of Exemplary Compound (A-31) Compound (B-9) (2.26 g), rhodanine-3-acetic acid (1.33 g), and ammonium acetate (1.27 g) were dissolved in 4.3 g of acetic acid. And stirring at 120 ° C. After 30 minutes, heating was stopped and cooled to room temperature, water (100 ml) and ethyl acetate (100 ml) were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained crude crystals were washed by stirring with isopropyl ether to obtain Exemplary Compound (A-31). 3.02 g. Yield 87.4%. Melting point = 160.5-163.5 ° C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 484.0 nm. Maximum molar absorption rate (εmax) = 48500 l / mol · cm.
[0048]
Synthesis Example 12 Synthesis of Exemplary Compound (A-32) Compound (B-10) (1.07 g), rhodanine-3-acetic acid (0.47 g), and ammonium acetate (0.73 g) were dissolved in 3.6 g of acetic acid. And stirring at 120 ° C. After 30 minutes, heating was stopped and cooled to room temperature, water (100 ml) and ethyl acetate (100 ml) were added, and the mixture was transferred to a separatory funnel. The organic layer was separated and dried over anhydrous sodium sulfate, and the solvent was distilled off. The obtained crude crystals were washed by stirring with isopropyl ether to obtain Exemplary Compound (A-32). 1.25 g. Yield 83.9%. Melting point = 131.1-133.4.degree. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 485.8 nm. Maximum molar absorption rate (εmax) = 38800 l / mol · cm.
[0049]
Synthesis Example 13 Synthesis of Exemplary Compound (A-33) Compound (B-11) (2.01 g), rhodanine-3-acetic acid (1.91 g), and ammonium acetate (0.95 g) were dissolved in 2.8 g of acetic acid. And stirring at 120 ° C. After 15 minutes, solidify as soon as heating is stopped. After cooling to room temperature, water (50 ml) was added and stirred, and the crystals were collected by filtration. The crystals were transferred to a beaker, washed twice with water (100 ml) and then washed with 2-propanol (50 ml) to obtain Exemplified Compound (A-33). 2.95 g. Yield 78.9%. Melting point = 248.5-249.9C. The UV absorption spectrum in ethanol is shown in FIG. Maximum absorption wavelength (λmax) = 480.4 nm. Maximum molar absorption rate (εmax) = 34800 l / mol · cm.
[0050]
Example 1
The durability of the dye can be measured with a stable redox cycle by cyclic voltammetry. With some exceptions, a stable redox cycle cannot be observed for photographic cyanine and merocyanine dyes.
The cyclic voltammetry characteristic of the compound (A-9) of Synthesis Example 4 was measured. The measurement conditions are shown below.
Measurement conditions Sweep speed: 200 mV / sec Solvent: Acetonitrile electrolyte: Tetra-n-butylammonium perchlorate (0.1 mol / l)
Working electrode: Platinum stationary electrode Reference electrode: Saturated calomel electrode
The measurement results are shown in FIG. From FIG. 15, the oxidation potential of compound (A-9) peaked at 0.85V. Thereafter, when the potential is scanned in the reverse direction, a peak is observed at 0.79 V, and it can be seen that the oxidized dye is reduced again and returned to the state before oxidation. In other words, this dye has no degradation due to oxidation → reduction, indicating high durability.
[0052]
Embedded image
Figure 0004080288
[0053]
Comparative Example 1
Cyclic voltammetry was measured in the same manner as in Example 1 except that the merocyanine dye represented by the compound (C-1) was used. The results are shown in FIG. From FIG. 16, the oxidation potential of compound (C-1) peaked at 0.71V. Thereafter, no peak was observed even when the potential was scanned in the reverse direction. That is, all the dyes were completely decomposed by oxidation.
[0054]
【The invention's effect】
As is apparent from the above, the compound of the present invention is excellent in high durability and can provide a dye having excellent properties in various applications such as a photoelectric conversion material.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a synthesis route of a dye.
2 is a UV absorption spectrum of the dye obtained in Reference Synthesis Example 1. FIG.
FIG. 3 is a UV absorption spectrum of the dye obtained in Reference Synthesis Example 2.
4 is a UV absorption spectrum of the dye obtained in Synthesis Example 3. FIG.
FIG. 5 is a UV absorption spectrum of the dye obtained in Synthesis Example 4.
6 is a UV absorption spectrum of the dye obtained in Synthesis Example 5. FIG.
7 is a UV absorption spectrum of the dye obtained in Synthesis Example 6. FIG.
8 is a UV absorption spectrum of the dye obtained in Reference Synthesis Example 7. FIG.
9 is a UV absorption spectrum of the dye obtained in Synthesis Example 8. FIG.
10 is a UV absorption spectrum of the dye obtained in Synthesis Example 9. FIG.
11 is a UV absorption spectrum of the dye obtained in Synthesis Example 10. FIG.
12 is a UV absorption spectrum of the dye obtained in Synthesis Example 11. FIG.
13 is a UV absorption spectrum of the dye obtained in Synthesis Example 12. FIG.
14 is a UV absorption spectrum of the dye obtained in Synthesis Example 13. FIG.
FIG. 15 is a cyclic voltammetry characteristic diagram of exemplary compound (A-9).
FIG. 16 is a cyclic voltammetry characteristic diagram of a comparative compound (C-1).

Claims (3)

下記一般式(1)で示されることを特徴とする太陽電池用メロシアニン色素。
Figure 0004080288
(一般式(1)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。 1 とR 2 は、連結して環状構造を形成しない。3、R4は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環を示し、置換基を有していてもよい。X 1はアミノ基と共に環状構造を形成するエチレン基を示し、置換基を有していても良い。mは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
A merocyanine dye for solar cells , represented by the following general formula (1):
Figure 0004080288
(In General Formula (1), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom. R 1 and R 2 are not linked to form a cyclic structure R 3 and R 4 are a hydrogen atom, an alkyl group, an alkoxy group, an alkylthio group, an aryl group, an aryl group An oxy group, an arylthio group, or a heterocycle, which may have a substituent, X 1 represents an ethylene group which forms a cyclic structure with an amino group, and may have a substituent, and m is 0 . The carbon-carbon double bond may be either E-type or Z-type R 5 represents a substituent having an acidic group represented by the general formula (53). In (53), l represents 0 or 1. R 7 , R 8 represents an alkyl group or an alkyl group or an aryl group having an acidic group, provided that at least one of R 7 and R 8 is an alkyl group or an aryl group having an acidic group.
前記一般式(1)で示される化合物が、下記一般式(2)で示されることを特徴とする太陽電池用メロシアニン色素。
Figure 0004080288
(一般式(2)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。R 1 とR 2 は、連結して環状構造を形成しない。X 4 は5〜7員環を形成する2価のアルキレン基を示す。mは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
The merocyanine dye for solar cells, wherein the compound represented by the general formula (1) is represented by the following general formula (2).
Figure 0004080288
(In General Formula (2), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom. R 1 and R 2 are not linked to form a cyclic structure, X 4 is a divalent alkylene group forming a 5- to 7-membered ring, m is 0 The carbon-carbon double bond may be either E-type or Z-type R 5 represents a substituent having an acidic group represented by the general formula (53). In (53), l represents 0 or 1. R 7 and R 8 represent an alkyl group or an alkyl group or an aryl group having an acidic group, provided that at least one of R 7 and R 8 represents an acidic group. An alkyl group or an aryl group.
前記一般式(1)で示される化合物が、下記一般式(3)で示されることを特徴とする太陽電池用メロシアニン色素。
Figure 0004080288
(一般式(3)において、R1はアルキル基、アラルキル基、アルケニル基、アリール基、ヘテロ環を示し、置換基を有していてもよい。R2はアルキル基、アルコキシ基、ハロゲン原子を示し、置換基を有していてもよい。 1 とR 2 は、連結して環状構造を形成しない。4は5〜7員環を形成する2価のアルキレン基を示す。nは0、1を示す。炭素−炭素二重結合は、E型、またはZ型の何れであってもよい。 5 は、一般式(53)で示される酸性基を有する置換基を示す。一般式(53)において、lは0、1を示す。R 7 、R 8 は、アルキル基または酸性基を有するアルキル基若しくはアリール基を示す。但し、R 7 、R 8 のうち少なくともひとつは酸性基を有するアルキル基若しくはアリール基である。
The merocyanine dye for solar cells, wherein the compound represented by the general formula (1) is represented by the following general formula (3).
Figure 0004080288
(In General Formula (3), R 1 represents an alkyl group, an aralkyl group, an alkenyl group, an aryl group, or a heterocyclic ring, and may have a substituent. R 2 represents an alkyl group, an alkoxy group, or a halogen atom. R 1 and R 2 are not linked to form a cyclic structure X 4 is a divalent alkylene group forming a 5- to 7-membered ring, n is 0 The carbon-carbon double bond may be either E-type or Z-type R 5 represents a substituent having an acidic group represented by the general formula (53). In (53), l represents 0 or 1. R 7 and R 8 represent an alkyl group or an alkyl group or an aryl group having an acidic group, provided that at least one of R 7 and R 8 represents an acidic group. An alkyl group or an aryl group.
JP2002280105A 2002-07-29 2002-09-26 Merocyanine dyes for solar cells Expired - Fee Related JP4080288B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2002280105A JP4080288B2 (en) 2002-09-26 2002-09-26 Merocyanine dyes for solar cells
US10/488,047 US20040256002A1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
DE60333014T DE60333014D1 (en) 2002-07-29 2003-07-24 ORGANIC DYE, PHOTOELECTRIC SIGNALING MATERIAL, SEMICONDUCTOR ELECTRODE AND PHOTOELECTRIC SIGNALING DEVICE
EP08012144A EP1997855A3 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
PCT/JP2003/009408 WO2004011555A1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP03771315A EP1526159B1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
EP08012146A EP2009064B1 (en) 2002-07-29 2003-07-24 Organic dye, photoelectric transducing material, semiconductor electrode, and photoelectric transducing device
AT03771315T ATE471356T1 (en) 2002-07-29 2003-07-24 ORGANIC DYE, PHOTOELECTRICAL SIGNALING MATERIAL, SEMICONDUCTOR ELECTRODE AND PHOTOELECTRICAL SIGNALING MATERIAL
US11/984,199 US7615640B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device
US11/984,198 US7795529B2 (en) 2002-07-29 2007-11-14 Organic dye, photoelectric conversion material, semiconductor electrode and photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280105A JP4080288B2 (en) 2002-09-26 2002-09-26 Merocyanine dyes for solar cells

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007310771A Division JP4445994B2 (en) 2007-11-30 2007-11-30 Merocyanine dyes for solar cells

Publications (2)

Publication Number Publication Date
JP2004115636A JP2004115636A (en) 2004-04-15
JP4080288B2 true JP4080288B2 (en) 2008-04-23

Family

ID=32274892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280105A Expired - Fee Related JP4080288B2 (en) 2002-07-29 2002-09-26 Merocyanine dyes for solar cells

Country Status (1)

Country Link
JP (1) JP4080288B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134607A1 (en) 2009-05-22 2010-11-25 パナソニック電工株式会社 Light-absorbing material and photoelectric conversion element
US9748044B2 (en) 2014-06-20 2017-08-29 Chemicrea Inc. Photosensitizer and photoelectric conversion device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5914514B2 (en) * 2010-12-10 2016-05-11 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation COMPOUND HAVING HOLE CONDUCTIVITY, COADSORBENT HAVING HOLE CONDUCTIVITY CONTAINING THE SAME, AND DYE-SENSITIZED SOLAR CELL CONTAINING THE SAME
JP5981802B2 (en) * 2011-08-23 2016-08-31 保土谷化学工業株式会社 Sensitizing dye for photoelectric conversion, photoelectric conversion element using the same, and dye-sensitized solar cell
US9368288B2 (en) 2013-10-11 2016-06-14 Panasonic Corporation Photoelectric conversion element
JP6337561B2 (en) 2014-03-27 2018-06-06 株式会社リコー Perovskite solar cell
EP3133657B1 (en) 2014-04-16 2021-12-08 Ricoh Company, Ltd. Photoelectric conversion element
CN108496258B (en) 2016-01-25 2022-04-26 株式会社理光 Photoelectric conversion element
US10651390B2 (en) 2016-06-08 2020-05-12 Ricoh Company, Ltd. Tertiary amine compound, photoelectric conversion element, and solar cell
CN110073508B (en) 2016-12-07 2023-12-26 株式会社理光 Photoelectric conversion element
CN112055882A (en) 2018-03-19 2020-12-08 株式会社理光 Photoelectric conversion device, process cartridge, and image forming apparatus
EP4000098A1 (en) 2019-07-16 2022-05-25 Ricoh Company, Ltd. Solar cell module, electronic device, and power supply module
US20220342327A1 (en) 2019-09-26 2022-10-27 Ricoh Company, Ltd. Electronic device and method for producing the same, image forming method, and image forming apparatus
US20210167287A1 (en) 2019-11-28 2021-06-03 Tamotsu Horiuchi Photoelectric conversion element, photoelectric conversion module, electronic device, and power supply module
JP2021113901A (en) 2020-01-20 2021-08-05 株式会社リコー Electronic device and method for manufacturing the same, image forming method, and image forming apparatus
JP7413833B2 (en) 2020-02-27 2024-01-16 株式会社リコー Photoelectric conversion element and photoelectric conversion module
US11502264B2 (en) 2020-02-27 2022-11-15 Ricoh Company, Ltd. Photoelectric conversion element and photoelectric conversion module
JP2022144443A (en) 2021-03-19 2022-10-03 株式会社リコー Photoelectric conversion element, electronic device, and power supply module
EP4064355A1 (en) 2021-03-23 2022-09-28 Ricoh Company, Ltd. Solar cell module
EP4092704A1 (en) 2021-05-20 2022-11-23 Ricoh Company, Ltd. Photoelectric conversion element and method for producing photoelectric conversion element, photoelectric conversion module, and electronic device
WO2023008085A1 (en) 2021-07-29 2023-02-02 Ricoh Company, Ltd. Photoelectric conversion element and solar cell module
JP2023019661A (en) 2021-07-29 2023-02-09 株式会社リコー Photoelectric conversion element, photoelectric conversion module, and electronic apparatus
CN115915793A (en) 2021-09-30 2023-04-04 株式会社理光 Photoelectric conversion element, photoelectric conversion module, and electronic device
CN116096111A (en) 2021-10-29 2023-05-09 株式会社理光 Photoelectric conversion element and photoelectric conversion element module
EP4188053A1 (en) 2021-11-26 2023-05-31 Ricoh Company, Ltd. Photoelectric conversion element, photoelectric conversion module, electronic device, and partition
JP2023137773A (en) 2022-03-18 2023-09-29 株式会社リコー Photoelectric conversion elements, photoelectric conversion modules, electronic equipment, and solar cell modules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134607A1 (en) 2009-05-22 2010-11-25 パナソニック電工株式会社 Light-absorbing material and photoelectric conversion element
US8729532B2 (en) 2009-05-22 2014-05-20 Panasonic Corporation Light-absorbing material and photoelectric conversion element
US9748044B2 (en) 2014-06-20 2017-08-29 Chemicrea Inc. Photosensitizer and photoelectric conversion device

Also Published As

Publication number Publication date
JP2004115636A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4080288B2 (en) Merocyanine dyes for solar cells
Jean-Gérard et al. Recent advances in the synthesis of [a]-benzo-fused BODIPY fluorophores
JP3383839B2 (en) Novel mercapto-substituted imidazolyl porphyrin metal complex monomer, polymer having the same as a repeating unit, and methods for producing them
Levitz et al. Introduction of various substitutions to the methine bridge of heptamethine cyanine dyes Via substituted dianil linkers
Owens et al. A microwave-assisted and environmentally benign approach to the synthesis of near-infrared fluorescent pentamethine cyanine dyes
Gräf et al. Synthesis of donor-substituted meso-phenyl and meso-ethynylphenyl BODIPYs with broad absorption
áM Lui et al. Preparation, solution behaviour and electrical properties of octasubstituted phthalocyaninato and 2, 3-naphthalocyaninato oxotitanium (IV) complexes
CN101555246A (en) Halogen-containing asymmetry phthalocyanines compound, preparation method and application thereof
EP3519386B1 (en) Novel pi-conjugated materials, methods for preparing same and uses thereof as semiconductors
Koraiem et al. Theoretical and experimental spectroscopic investigation of new polymethine donor-π-acceptor cyanine dyes: Synthesis, photophysical, and TDDFT studies
Didukh et al. Flexible BODIPY platform that offers an unexpected regioselective heterocyclization reaction toward preparation of 2-pyridone [a]-fused BODIPYs
Liu et al. ACQ-to-AIE Transformation by Regioisomerization of Rofecoxib Derivatives for Developing Novel Mechanochromic and Acidochromic Materials
Belgodere et al. Synthesis and fluorescence of some thiazole and benzothiazole derivatives
JP4445994B2 (en) Merocyanine dyes for solar cells
Motoyoshiya et al. C-phosphonoketenimines, characterization and synthetic application to heterocycles
Irngartinger et al. Substituent Effects on Redox Properties and Photoinduced Electron Transfer in Isoxazolo‐Fullerenes
JP6056605B2 (en) Organic dye and photosensitive element
Saeva et al. Comparative photochemical behavior of some anthracenyl and naphthacenyl sulfonium salt derivatives
CN113501836A (en) Star BODIPY near-infrared fluorescent dye and preparation method thereof
CN112341453A (en) Fluorescent probe based on coumarin and preparation method and application thereof
JP2007112748A (en) Chlorine-substituted porphyrin compound and method for producing chlorine-substituted porphyrin compound
Zach et al. Tuning photophysical properties of phosphorescent benzoporphyrin complexes via 1-step π-extension
Li et al. Two-photon optical properties of novel branched conjugated derivatives carrying benzophenone moiety with various electron donor-acceptor substituent groups
KR100591984B1 (en) Heptamethine cyanine compounds as near infrared absorbing blue dyes and a preparation method of the same
Maeda Squaraine dyes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees