JP4079795B2 - Water treatment control system - Google Patents

Water treatment control system Download PDF

Info

Publication number
JP4079795B2
JP4079795B2 JP2003037915A JP2003037915A JP4079795B2 JP 4079795 B2 JP4079795 B2 JP 4079795B2 JP 2003037915 A JP2003037915 A JP 2003037915A JP 2003037915 A JP2003037915 A JP 2003037915A JP 4079795 B2 JP4079795 B2 JP 4079795B2
Authority
JP
Japan
Prior art keywords
water treatment
water
ozone
ultraviolet irradiation
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037915A
Other languages
Japanese (ja)
Other versions
JP2004243265A (en
Inventor
部 法 光 阿
山 清 一 村
安 巨太郎 居
保 貴 恵 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003037915A priority Critical patent/JP4079795B2/en
Publication of JP2004243265A publication Critical patent/JP2004243265A/en
Application granted granted Critical
Publication of JP4079795B2 publication Critical patent/JP4079795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムに係り、例えば、上水用原水、下水の二次処理水、産業排水或いは廃棄物埋立地の浸出水などを処理するためのシステムに関するものである。
【0002】
【従来の技術】
近年、産業排水、生活排水などによる水の汚染が進んでおり、水環境汚染が社会問題になっている。具体的には、上水用の水源である上流河川において、フミン質、農薬、ダイオキシン、環境ホルモンなどの難分解性の汚染物質が微量含まれていることが指摘されている。また、河川の下流側ではさらに汚染が進んでおり、有機塩素系の洗剤、農薬、更には合成洗剤、染料など種々の化学物質の汚染が広がっている。また、産業・生活廃棄物埋立地からの浸出水の汚染はきわめて深刻な状況下にある。この様な背景のもとに、水環境保全技術の開発が活発に行われており、活性炭による処理、膜処理、オゾン処理、紫外線処理、生物学的な処理などの技術開発が行われている。
【0003】
それらの中で、総合的な処理として有望とされている技術として、オゾンと紫外線又は過酸化水素、或いは紫外線と過酸化水素とを組み合わせた促進酸化技術(AOP、Advanced Oxidation Process)がある。これらのうち、病原性原虫の除去、農薬、内分泌かく乱物質、フミン質などの難分解性有機物等を含む水に対して処理を行う場合は、オゾンと紫外線とを組み合わせた紫外線併用オゾン水処理制御システムが採用されることが多い(例えば、特許文献1参照)。このように、オゾン注入に加えて紫外線照射を行う主な目的は、注入後に所定時間以上経過して殺菌作用を終えたオゾンを除去することであるが、この紫外線照射によってオゾンより更に強い酸化力を持つヒドロキシラジカルを生成しようとすることも意図されている(例えば、特許文献2参照)。
【0004】
図14は、このような従来の紫外線併用オゾン水処理制御システム、すなわち被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムの構成を示すブロック図である。この図において、被処理水に対する処理が行われる処理槽としてオゾン処理槽101及び紫外線処理槽102が設置されている。オゾン処理槽101にはオゾン発生装置103が配設されており、また、オゾン処理槽101の排出側には溶存オゾン計104が配設されている。紫外線処理槽102には紫外線調光器105及び紫外線照度計106が配設されており、また、紫外線処理槽102の排出側には溶存オゾン計107及び水質計108が配設されている。この水質計108は、TOC(全有機体炭素)計又は紫外線吸光度(E260)計などを用いたものである。そして、水処理制御装置109は、これらの機器を介してオゾン処理槽101及び紫外線処理槽102内の水に対する水処理制御を行うものである。
【0005】
次に、図14の動作につき説明する。被処理水である原水がオゾン処理槽101に導入され、紫外線処理槽102から処理水が排出されると、この処理水の水質が水質計108により測定される。水処理制御装置109は、設定値とこの水質計108の測定値とに基づきオゾン発生装置103によるオゾン注入率を制御する。水処理制御装置109は、また、溶存オゾン計104,107の検出値と、紫外線照度計106の検出値とに基づき、紫外線調光器105を介して紫外線ランプの出力を制御している。
【0006】
【特許文献1】
特公昭63−2433号公報
【特許文献2】
特開2000−51875号公報
【0007】
【発明が解決しようとする課題】
上記のように、従来システムでは、水処理制御装置109がオゾン注入率及び紫外線照射量を制御することにより、原水水質の変動に対処する構成としている。しかし、オゾン注入率の制御と紫外線照射量の制御とは互いにそれほど関連性を有しているわけではなく、ほぼ独立に制御が行われているため、両者の組み合わせが最適なものであるかどうかは不明であり、また、処理中に大きな水質変化が生じた場合には速やかな対処が困難なものとなっている。
【0008】
すなわち、図14の構成では、オゾン処理槽101にて被処理水に対してオゾンが注入され、その後に別個の処理槽である紫外線処理槽102にて紫外線が照射され、更にこの紫外線処理槽102から排出される処理水の水質測定に基づいてオゾン注入率が制御されるようになっている。したがって、実際に被処理水の水質が変化し、この水質変化に対応したオゾン注入及び紫外線照射が行われるまでにはかなりの時間が経過してしまうことになる。
【0009】
また、図14の構成では、水質計108としてTOC(全有機体炭素)計や紫外線吸光度(E260)計を用いているが、これらの水質計は、溶存オゾン等の薬物などの影響を受けやすく測定精度が高いとは言い難いものである。特に、紫外線吸光度(E260)計を用いた場合は、フミン質等の難分解性有機物との相関性が低くなるため一層測定精度の低下が問題となる。
【0010】
本発明は上記事情に鑑みてなされたものであり、オゾン注入率と紫外線照射量との組み合わせを最適にすると共に、被処理水の水質変化に対して迅速に対応することができ、更に精度の高い水質測定を可能とする水処理制御システムを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記課題を解決するための手段として、請求項1記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記蛍光分析計の検出値に基づき決定し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、ことを特徴とする。
【0012】
請求項2記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽から排出される処理水の蛍光強度を検出する蛍光分析計と、前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記蛍光分析計の検出値に基づき決定し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、ことを特徴とする。
を備えたことを特徴とする。
【0013】
請求項3記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する第1の蛍光分析計と、前記水処理槽から排出される処理水の蛍光強度を検出する第2の蛍光分析計と、前記濁度計並びに前記第1及び第2の蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記第1の蛍光分析計の検出値に基づき決定し、更に、前記第2の蛍光分析計の検出値に基づき前記オゾン注入率を補正し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、ことを特徴とする。
【0014】
請求項4記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記水処理槽から排出される処理水に含まれる溶存オゾン濃度を検出する溶存オゾン濃度計と、前記濁度計及び前記蛍光分析計並びに前記溶存オゾン濃度計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記の蛍光分析計の検出値に基づき決定し、更に、前記溶存オゾン濃度計の検出値に基づき前記オゾン注入率を補正し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、ことを特徴とする。
【0015】
請求項5記載の発明は、請求項1又は2記載の発明において、前記水処理制御装置は、前記濁度計の検出値の変化量が所定レベル以下の場合に、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率の制御を、紫外線照射及びオゾン注入のために消費する電力量が最小となるように行うものである、ことを特徴とする。
【0016】
請求項6記載の発明は、被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、前記水処理槽に導入される被処理水の濁度を検出する濁度計と、前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、前記水処理槽の出口側に配設され該水処理槽から排出される処理水の通過を許容し、しかも前記紫外線照射器から導入した紫外線光のうち特定波長の紫外線光の吸収量を測定する紫外線測定槽と、前記濁度計及び前記蛍光分析計の各検出並びに前記紫外線測定槽での測定に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記の蛍光分析計の検出値に基づき決定し、更に、前記紫外線測定槽での測定値に基づき前記紫外線照射量又は前記オゾン注入率を増減し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、ことを特徴とする。
【0017】
【発明の実施の形態】
図1は、第1の発明の実施形態の構成を示すブロック図である。水処理槽1には紫外線照射器2及びオゾン注入器3の双方が配設されている。そして、水処理槽1に導入される被処理水の濁度は濁度計4により検出され、また、蛍光強度は蛍光分析計5により検出されるようになっている。水処理制御装置6は、これら濁度計4及び蛍光分析計5からの検出信号の入力に基づき、電源装置7及びオゾン発生装置8を制御するようになっている。これにより、水処理槽1内に導入された被処理水に対して、紫外線照射器2からの紫外線照射量及びオゾン注入器3からのオゾン注入率を制御することができる。
【0018】
図2は、水処理制御装置6の制御原理についての説明図であり、(a)は水中有機物濃度と蛍光強度との関係を示す特性図、(b)は紫外線照射量の各大きさ毎のオゾン注入率と蛍光強度との関係を示す特性図である。図2に示されている水中有機物濃度についての制御目標値Xは予め設定されており、この制御目標値Xに対応する目標蛍光強度をFLxとする。いま、蛍光分析計5により検出された現在の蛍光強度がFLiであるとすると、水処理制御装置6はこの現在の検出蛍光強度FLiのレベルをΔFLだけ低下させて目標値FLxのレベルまで減少させればよい。そして、蛍光強度を目標レベルFLxまで低減させるためには、図2(b)の特性に基づいてオゾン注入率を決定すればよい。
【0019】
すなわち、紫外線照射量が小さなときにはFLxのレベルと曲線Puv1との交点である 3 オゾン注入率とし、紫外線照射量が中程度のときにはFLxのレベルと曲線Puv2との交点であるI2をオゾン注入率とし、紫外線照射量が大きなときにはFLxのレベルと曲線Puv3との交点である 1 オゾン注入率とすればよい。このように、オゾン注入率が大きなときには紫外線照射量を小さくし、逆に、オゾン注入率が小さなときには紫外線照射量を大きくすることにより蛍光強度を目標レベルに到達させることができる。そして、紫外線照射量を大、中、小のいずれとするかについては、濁度計4の検出値に基づき決定すればよい。
【0020】
次に、図1の動作を図3のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び蛍光強度は、それぞれ濁度計4及び蛍光分析計5により検出される(ステップ1,2)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を例えばPuv1に決定する(ステップ3)。次いで、水処理制御装置6は、オゾン注入率をこの紫外線照射量Puv1に対応する値I3に決定する(ステップ4)。そして、水処理制御装置6は、このように決定した紫外線照射量Puv1及びオゾン注入率I3を目標値として制御を実行する(ステップ5)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入させる。
【0021】
なお、紫外線照射器2及びオゾン注入器3の動作タイミングについては、最初にオゾン注入器3を動作させてオゾン注入が終了した後に紫外線照射器2を動作させる場合、あるいは紫外線照射器2及びオゾン注入器3を同時に動作させる場合の2通りが考えられる。但し、後者の場合には、不要となったオゾン及びヒドロキシラジカルを除去するのに必要な時間だけオゾン注入終了後も紫外線照射を続行する必要がある。
【0022】
上記の構成では、紫外線照射器2及びオゾン注入器3が水処理槽1に配設されており、紫外線照射及びオゾン注入の双方が同一の水処理槽で行われている。したがって、処理を行っている間に被処理水の水質が変化したとしても、従来装置よりもはるかに迅速に対処することができる。また、図2(b)に示した特性例を利用して紫外線照射量及びオゾン注入率を決定しているので、両者は互いに関連性を持つようになり、最適の組み合わせで水処理制御を実行することができる。更に、上記の構成では、図2(a)に示したように、水中有機物濃度の制御目標値を蛍光強度の検出に基づいて決定しているが、蛍光強度の検出は溶存オゾン等の薬物などの影響を受けにくいものである。したがって、従来装置の構成よりもフミン質等の難分解性有機物との相関性を高くすることができ測定精度が向上したものとなっている。
【0023】
図4は、第2の発明の実施形態の構成を示すブロック図である。図4が図1と異なる点は、蛍光分析計5が水処理槽1から排出される処理水の蛍光強度を検出するようになっている点である。その他の構成及び動作内容は、図1の場合と同様であるため重複した説明を省略する。この実施形態の構成によれば、水処理槽1にて実際に水処理が行われた後の処理水について蛍光強度を検出しているので、より信頼性の高い検出となっている。
【0024】
図5は、第3の発明の実施形態の構成を示すブロック図である。図1及び図4では、蛍光分析計5が水処理槽1のそれぞれ入側及び出側の水について蛍光強度を検出する構成となっていたが、この図5では水処理槽1の入側及び出側の双方の水について蛍光強度を検出する第1の蛍光分析計5A及び第2の蛍光分析計5Bが設けられている。但し、この図5の構成における水処理制御装置6は、基本的には入側の第1の蛍光分析計5Aの検出に基づいてオゾン注入率を制御し、出側の第2の蛍光分析計5Bの検出に基づいてオゾン注入率の補正を行うようになっている。
【0025】
次に、図5の動作を図6のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び入側蛍光強度は、それぞれ濁度計4及び第1の蛍光分析計5Aにより検出される(ステップ21,22)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を決定する(ステップ23)。次いで、水処理制御装置6は、オゾン注入率をこの決定した紫外線照射量に対応する値に決定する(ステップ24)。そして、水処理制御装置6は、このように決定した紫外線照射量及びオゾン注入率を目標値として制御を実行する(ステップ25)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入する。
【0026】
ステップ25の制御が実行されている間、第2の蛍光分析計5Bは出側蛍光強度を検出してその検出信号を水処理制御装置6に出力している(ステップ26)。水処理制御装置6は、この検出信号に基づきオゾン注入率の補正量を演算し(ステップ27)、ステップ23に戻るようにする。つまり、図2(b)の特性に基づき、第1の蛍光分析計5Aの入側蛍光強度により決定したオゾン注入率を、第2の蛍光分析計5Bの出側蛍光強度により補正する。これにより、より精度の高い水処理制御を行うことができる。
【0027】
図7は、第4の発明の実施形態の構成を示すブロック図である。図7が図1と異なる点は、水処理槽1の出側に溶存オゾン濃度計9が設けられ、図1では省略されていた紫外線照射量演算手段10及びオゾン注入率演算手段11が図示されている点である。そして、溶存オゾン濃度計9の検出信号は、この紫外線照射量演算手段10及びオゾン注入率演算手段11に出力されるようになっている。
【0028】
次に、図7の動作を図8のフローチャートに基づき説明する。被処理水が水処理槽1に導入される際の濁度及び入側蛍光強度は、それぞれ濁度計4及び蛍光分析計5により検出される(ステップ31,32)。水処理制御装置6は、濁度計4からの検出信号を入力し、紫外線照射量を決定する(ステップ33)。次いで、水処理制御装置6は、オゾン注入率をこの決定した紫外線照射量に対応する値に決定する(ステップ34)。そして、水処理制御装置6は、このように決定した紫外線照射量及びオゾン注入率を目標値として制御を実行する(ステップ35)。つまり、電源装置7を制御して紫外線照射器2から紫外線を照射させると共に、オゾン発生装置8を制御してオゾン注入器3からオゾンを注入する。
【0029】
ステップ35の制御が実行されている間、溶存オゾン濃度計9は水処理槽1から排出される処理水に含まれる溶存オゾン濃度を検出して、その検出信号を水処理制御装置6の紫外線照射量演算手段10及びオゾン注入率演算手段11に出力している(ステップ36)。紫外線照射量演算手段10及びオゾン注入率演算手段11は、この検出信号の入力に基づき、それぞれ紫外線照射量及びオゾン注入率の補正量を演算し(ステップ37)、ステップ33,34に戻って再度紫外線照射量及びオゾン注入率を決定する。つまり、図7の構成では、水処理制御装置6が、当初は図2(b)の特性に基づき紫外線照射量及びオゾン注入率を決定したが、水処理槽1から排出される処理水に含まれる溶存オゾン濃度の検出に基づき、図2(b)の特性自体を修正するようにしている。
【0030】
図9は、第5の発明の実施形態の構成を示すブロック図である。図9が図1と異なる点は、水処理制御装置6が電力コスト演算手段12を有している点である。通常は、紫外線照射量及びオゾン注入率は濁度計4及び蛍光分析計5の検出に基づき決定すべきであるが、上水道などで、例えば、晴れの日が何日も続いたような場合、被処理水の濁度は安定したものとなる。したがって、このような場合は電力量が最小となるように紫外線照射量及びオゾン注入率を決定することがランニングコスト低減の観点から要求される。図9の構成はこのような要求に応えるためのものである。
【0031】
図10は、電力コストについての特性図であり、(a)は紫外線照射量と紫外線電力コストとの間の関係を示す特性図、(b)はオゾン注入率とオゾン電力コストとの間の関係を示す特性図である。図10(a)において、紫外線照射量Puv1,Puv2,Puv3に対応する紫外線電力コストの値はCuv1,Cuv2,Cuv3となっており、また、図10(b)において、オゾン注入率I1,I2,I3に対応するオゾン電力コストの値はCI1,CI2,CI3となっている。
【0032】
次に、図9の動作を図11のフローチャートに基づき説明する。いま、水処理制御装置6が濁度計4から入力した検出値の変化量が所定時間以上にわたって所定量以下であり、被処理水の濁度は安定状態にあるものとする。そして、水処理制御装置6の電力コスト演算手段12は、蛍光分析計5からの検出値を入力し(ステップ41)、紫外線照射量とオゾン注入率の組合せについて電力コストを演算する(ステップ42)。
【0033】
図10(a)において、例えば、紫外線照射量Puv3を選択したときの電力コストはCuv3であり、また、このとき選択されるオゾン注入率はI1であって(∵紫外線照射量が大きいときはオゾン注入率は小さくなる)、その電力コストはCI1である。したがって、合計電力コストはCuv3+CI1である。一方、紫外線照射量Puv1を選択したときの電力コストはCuv1であり、また、このとき選択されるオゾン注入率はI3であって(∵紫外線照射量が小さいときはオゾン注入率は大きくなる)、その電力コストはCI3である。したがって、合計電力コストはCuv1+CI3である。
【0034】
次いで、水処理制御装置6は、上記の演算結果のうち最小値に係る紫外線照射量及びオゾン注入率を制御実行値として決定し(ステップ43)、これに基づき制御を実行する(ステップ44)。例えば、Cuv3+CI1の方がCuv1+CI3よりも小さなものであったとすると、水処理制御装置6は、紫外線照射量をPuv3、オゾン注入率をI1と決定する。
【0035】
このように、この第5の発明によれば、濁度が安定状態にあるとの前提の下に、電力コストが最も低くなる紫外線照射量とオゾン注入率との組合せを選択することができる。したがって、ランニングコストを低減することができ、経済的に有利な水処理制御システムを実現することができる。
【0036】
図12は、第6の発明の実施形態の構成を示すブロック図である。この図12の構成は、図7の構成において、溶存オゾン濃度計9の代わりに紫外線測定槽13を用いたものと考えることができる。すなわち、水処理槽1の出口側には、内部に紫外線測定器14を有する紫外線測定槽13が配設されている。そして、この紫外線測定器14には、紫外線照射器2からの特定波長(この実施形態では、254nmの波長とする)の紫外線光が光導入管15により導入されるようになっている。
【0037】
図13は、図12における紫外線測定器14の詳細な構成を示す部分拡大図である。この図に示すように、紫外線測定器14は、略円筒形状の紫外線吸収セル16と、紫外線吸収セル16の周面上に取り付けられた受光器17とで構成されている。紫外線照射器2から光導入管15により導入された紫外線光は紫外線吸収セル16を透過して受光器17に到達し、受光器17の受光量に対応する信号が光電変換されて紫外線照射量演算手段10及びオゾン注入率演算手段11に送出されるようになっている。
【0038】
制御実行中に受光器17の受光量が低下した場合、水処理制御装置6は紫外線照射器2からの紫外線照射量が増加するように電源装置7の出力を増大させるフィードバック制御を行うが、それでも受光器17の受光量が上昇しない場合はオゾン注入器3からのオゾン注入率を低下させるようにオゾン発生装置8を制御する。このような制御により、蛍光や薬物の影響を回避し、紫外線照射量及びオゾン注入率の制御を高精度で行うことができる。
【0039】
なお、図12に示した例では、水処理槽1の出口側に紫外線測定槽13のみを配設した構成を示したが、図7に示した溶存オゾン濃度計9も併せて配設する構成とすることも可能である。これにより、一層高精度な制御を行うことができる。
【0040】
【発明の効果】
以上のように、本発明によれば、オゾン注入率と紫外線照射量との組み合わせを最適にすると共に、被処理水の水質変化に対して迅速に対応することができ、更に精度の高い水質測定を可能とする水処理制御システムを実現することができる。
【図面の簡単な説明】
【図1】第1の発明の実施形態の構成を示すブロック図。
【図2】水処理制御装置6の制御原理についての説明図であり、(a)は水中有機物濃度と蛍光強度との関係を示す特性図、(b)は紫外線照射量の各大きさ毎のオゾン注入率と蛍光強度との関係を示す特性図である。
【図3】図1の動作を説明するためのフローチャート。
【図4】第2の発明の実施形態の構成を示すブロック図。
【図5】第3の発明の実施形態の構成を示すブロック図。
【図6】図5の動作を説明するためのフローチャート。
【図7】第4の発明の実施形態の構成を示すブロック図。
【図8】図7の動作を説明するためのフローチャート。
【図9】第5の発明の実施形態の構成を示すブロック図。
【図10】電力コストについての特性図であり、(a)は紫外線照射量と紫外線電力コストとの間の関係を示す特性図、(b)はオゾン注入率とオゾン電力コストとの間の関係を示す特性図である。
【図11】図9の動作を説明するためのフローチャート。
【図12】第6の発明の実施形態の構成を示すブロック図。
【図13】図12における紫外線測定器14の詳細な構成を示す部分拡大図。
【図14】従来システムの構成を示すブロック図。
【符号の説明】
1 水処理槽
2 紫外線照射器
3 オゾン注入器
4 濁度計
5 蛍光分析計
5A 第1の蛍光分析計
5B 第2の蛍光分析計
6 水処理制御装置
7 電源装置
8 オゾン発生装置
9 溶存オゾン濃度計
10 紫外線照射量演算手段
11 オゾン注入率演算手段
12 電力コスト演算手段
13 紫外線測定槽
14 紫外線測定器
15 光導入管
16 紫外線吸収セル
17 受光器
FLi 検出蛍光強度
FLx 目標蛍光強度
Puv1〜Puv3 紫外線照射量
I1〜I3 オゾン注入率
Cuv1〜Cuv3 紫外線電力コスト
CI1〜CI3 オゾン電力コスト
101 オゾン処理槽
102 紫外線処理槽
103 オゾン発生装置
104 溶存オゾン計
105 紫外線調光器
106 紫外線照度計
107 溶存オゾン計
108 水質計
109 水処理制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment control system for performing water treatment on water to be treated based on ozone injection and ultraviolet irradiation, for example, raw water for drinking water, secondary treated water for sewage, industrial wastewater or waste landfill. The present invention relates to a system for treating leachate and the like.
[0002]
[Prior art]
In recent years, water pollution due to industrial wastewater, domestic wastewater, etc. has progressed, and water environment pollution has become a social problem. Specifically, it has been pointed out that upstream rivers, which are water sources for clean water, contain trace amounts of persistent degradable pollutants such as humic substances, agricultural chemicals, dioxins and environmental hormones. In addition, pollution is further advanced on the downstream side of the river, and contamination of various chemical substances such as organochlorine detergents, agricultural chemicals, synthetic detergents, and dyes is spreading. In addition, the contamination of leachate from industrial and domestic waste landfills is extremely serious. Against this background, water environment conservation technologies are being actively developed, and technological developments such as treatment with activated carbon, membrane treatment, ozone treatment, ultraviolet treatment, and biological treatment are being carried out. .
[0003]
Among them, as a promising technique as a comprehensive treatment, there is an advanced oxidation process (AOP) which combines ozone and ultraviolet light or hydrogen peroxide, or a combination of ultraviolet light and hydrogen peroxide. Of these, when treating water containing pathogenic protozoa, pesticides, endocrine disrupting substances, refractory organic substances such as humic substances, etc., ozone combined ozone water treatment control combined with ozone and ultraviolet light A system is often employed (see, for example, Patent Document 1). As described above, the main purpose of performing ultraviolet irradiation in addition to ozone injection is to remove ozone that has been sterilized after a predetermined period of time after injection, but this ultraviolet irradiation has a stronger oxidizing power than ozone. It is also intended to generate a hydroxy radical having a valence (see, for example, Patent Document 2).
[0004]
FIG. 14 is a block diagram showing the configuration of such a conventional ultraviolet combined ozone water treatment control system, that is, a water treatment control system that performs water treatment on the treated water based on ozone injection and ultraviolet irradiation. In this figure, an ozone treatment tank 101 and an ultraviolet treatment tank 102 are installed as treatment tanks for treating the water to be treated. An ozone generator 103 is disposed in the ozone treatment tank 101, and a dissolved ozone meter 104 is disposed on the discharge side of the ozone treatment tank 101. An ultraviolet light dimmer 105 and an ultraviolet illuminance meter 106 are disposed in the ultraviolet treatment tank 102, and a dissolved ozone meter 107 and a water quality meter 108 are disposed on the discharge side of the ultraviolet treatment tank 102. The water quality meter 108 uses a TOC (total organic carbon) meter, an ultraviolet absorbance (E260) meter, or the like. And the water treatment control apparatus 109 performs water treatment control with respect to the water in the ozone treatment tank 101 and the ultraviolet treatment tank 102 through these devices.
[0005]
Next, the operation of FIG. 14 will be described. When raw water as treatment water is introduced into the ozone treatment tank 101 and the treated water is discharged from the ultraviolet treatment tank 102, the quality of the treated water is measured by the water quality meter 108. The water treatment control device 109 controls the ozone injection rate by the ozone generator 103 based on the set value and the measured value of the water quality meter 108. The water treatment control device 109 also controls the output of the ultraviolet lamp via the ultraviolet dimmer 105 based on the detection values of the dissolved ozone meters 104 and 107 and the detection value of the ultraviolet illuminance meter 106.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 63-2433
[Patent Document 2]
JP 2000-51875 A
[0007]
[Problems to be solved by the invention]
As described above, in the conventional system, the water treatment control device 109 is configured to cope with fluctuations in the raw water quality by controlling the ozone injection rate and the ultraviolet irradiation amount. However, the control of the ozone injection rate and the control of the UV irradiation dose are not so related to each other and are controlled almost independently, so whether the combination of the two is optimal Is unknown, and it is difficult to quickly deal with changes in water quality during treatment.
[0008]
That is, in the configuration of FIG. 14, ozone is injected into the water to be treated in the ozone treatment tank 101, and thereafter ultraviolet rays are irradiated in the ultraviolet treatment tank 102, which is a separate treatment tank. The ozone injection rate is controlled based on the quality measurement of the treated water discharged from the water. Accordingly, the quality of the water to be treated actually changes, and a considerable amount of time will elapse before ozone injection and ultraviolet irradiation corresponding to the water quality change are performed.
[0009]
In the configuration of FIG. 14, a TOC (total organic carbon) meter and an ultraviolet absorbance (E260) meter are used as the water quality meter 108, but these water quality meters are easily affected by drugs such as dissolved ozone. It is hard to say that the measurement accuracy is high. In particular, when an ultraviolet absorbance (E260) meter is used, since the correlation with a hardly decomposable organic substance such as humic substance is lowered, there is a problem that the measurement accuracy is further lowered.
[0010]
The present invention has been made in view of the above circumstances, can optimize the combination of the ozone injection rate and the amount of ultraviolet irradiation, can respond quickly to changes in the quality of the water to be treated, and can be more accurate. It aims at providing the water treatment control system which enables high water quality measurement.
[0011]
[Means for Solving the Problems]
  As a means for solving the above-mentioned problems, the invention according to claim 1 is a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for water to be treated, wherein the ultraviolet irradiator and the ozone injector are arranged. A water treatment tank for introducing the treated water, a turbidimeter for detecting the turbidity of the treated water introduced into the water treatment tank, and the treated water introduced into the water treatment tank And a water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on the detection of the turbidimeter and the fluorescence analyzer. When,And determining the ultraviolet irradiation amount based on the detected value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detected value of the fluorescence analyzer. Both UV irradiation and ozone injection were performed in the same water treatment tank so that the UV irradiation amount and ozone injection rate were achieved.Features.
[0012]
  The invention according to claim 2 is a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for the water to be treated, wherein an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is A water treatment tank to be introduced, a turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank, a fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank, Based on each detection of the turbidimeter and the fluorescence analyzer, a water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector;And determining the ultraviolet irradiation amount based on the detected value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detected value of the fluorescence analyzer. Both UV irradiation and ozone injection were performed in the same water treatment tank so that the UV irradiation amount and ozone injection rate were achieved.Features.
It is provided with.
[0013]
  According to a third aspect of the present invention, in the water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for the water to be treated, an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is A water treatment tank to be introduced, a turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank, and a first fluorescence for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank Based on the detection of the analyzer, the second fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank, the turbidity meter and the first and second fluorescence analyzers, A water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector;And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the first fluorescence analyzer, Further, the ozone injection rate is corrected based on the detection value of the second fluorescence analyzer, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment tank so that the determined ultraviolet irradiation amount and ozone injection rate are obtained. To do with thatFeatures.
[0014]
  According to a fourth aspect of the present invention, in the water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for the water to be treated, an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is A water treatment tank to be introduced, a turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank, and a fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank; , The dissolved ozone concentration meter for detecting the dissolved ozone concentration contained in the treated water discharged from the water treatment tank, and the ultraviolet irradiation based on the detection of the turbidity meter, the fluorescence analyzer, and the dissolved ozone concentration meter. A water treatment control device for controlling the ultraviolet irradiation amount of the vessel and the ozone injection rate of the ozone injector;And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the fluorescence analyzer, The ozone injection rate is corrected based on the detected value of the dissolved ozone concentration meter, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment tank so that the determined ultraviolet irradiation amount and ozone injection rate are obtained. Did thatFeatures.
[0015]
  According to a fifth aspect of the present invention, in the first or second aspect of the invention, the water treatment control device is configured to irradiate the ultraviolet irradiator with an ultraviolet ray when the amount of change in the detected value of the turbidimeter is not more than a predetermined level. Control of the amount and ozone injection rate of the ozone injector,The amount of power consumed for UV irradiation and ozone injectionIt is characterized in that it is performed so as to be minimized.
[0016]
  The invention according to claim 6 is a water treatment control system for performing water treatment based on ozone injection and ultraviolet irradiation for water to be treated, wherein an ultraviolet irradiator and an ozone injector are provided, and the water to be treated is A water treatment tank to be introduced, a turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank, and a fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank; , Which allows the passage of treated water disposed on the outlet side of the water treatment tank to be discharged from the water treatment tank, and measures the amount of absorption of ultraviolet light having a specific wavelength out of ultraviolet light introduced from the ultraviolet irradiator. And a water for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on the detection of the turbidimeter and the fluorescence analyzer and the measurement in the ultraviolet measuring tank. A processing control device;And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the fluorescence analyzer, The ultraviolet irradiation amount or the ozone injection rate is increased or decreased based on the measurement value in the ultraviolet measuring tank, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment so that the determined ultraviolet irradiation amount and the ozone injection rate are obtained. I did it in the tankFeatures.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing the configuration of the embodiment of the first invention. Both the ultraviolet irradiator 2 and the ozone injector 3 are disposed in the water treatment tank 1. The turbidity of the water to be treated introduced into the water treatment tank 1 is detected by the turbidimeter 4, and the fluorescence intensity is detected by the fluorescence analyzer 5. The water treatment control device 6 controls the power supply device 7 and the ozone generator 8 based on the input of detection signals from the turbidimeter 4 and the fluorescence analyzer 5. Thereby, the ultraviolet irradiation amount from the ultraviolet irradiator 2 and the ozone injection rate from the ozone injector 3 can be controlled for the water to be treated introduced into the water treatment tank 1.
[0018]
FIG. 2 is an explanatory diagram of the control principle of the water treatment control device 6, (a) is a characteristic diagram showing the relationship between the concentration of organic matter in water and the fluorescence intensity, and (b) is a graph for each magnitude of ultraviolet irradiation amount. It is a characteristic view which shows the relationship between an ozone injection rate and fluorescence intensity. The control target value X for the concentration of organic substances in water shown in FIG. 2 is set in advance, and the target fluorescence intensity corresponding to this control target value X is FLx. Now, assuming that the current fluorescence intensity detected by the fluorescence analyzer 5 is FLi, the water treatment control device 6 reduces the level of the current detected fluorescence intensity FLi by ΔFL to the target value FLx level. Just do it. In order to reduce the fluorescence intensity to the target level FLx, the ozone injection rate may be determined based on the characteristics shown in FIG.
[0019]
  That is, it is the intersection of the FLx level and the curve Puv1 when the UV irradiation amount is small.I Three TheThe ozone injection rate is the intersection of the FLx level and the curve Puv2 when the UV irradiation amount is medium, and the ozone injection rate is I2, which is the intersection of the FLx level and the curve Puv3 when the UV irradiation amount is large.I 1 TheThe ozone injection rate may be used. Thus, the fluorescence intensity can reach the target level by decreasing the ultraviolet irradiation amount when the ozone injection rate is large and conversely increasing the ultraviolet irradiation amount when the ozone injection rate is small. Then, whether the ultraviolet irradiation amount is large, medium or small may be determined based on the detection value of the turbidimeter 4.
[0020]
Next, the operation of FIG. 1 will be described based on the flowchart of FIG. Turbidity and fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the fluorescence analyzer 5, respectively (steps 1 and 2). The water treatment control device 6 inputs the detection signal from the turbidimeter 4 and determines the UV irradiation amount to, for example, Puv1 (step 3). Next, the water treatment control device 6 determines the ozone injection rate to a value I3 corresponding to the ultraviolet ray irradiation amount Puv1 (step 4). Then, the water treatment control device 6 executes control with the ultraviolet irradiation amount Puv1 and the ozone injection rate I3 determined in this way as target values (step 5). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0021]
As for the operation timing of the ultraviolet irradiator 2 and the ozone injector 3, when the ozone irradiator 2 is operated after the ozone injector 3 is first operated and the ozone injection is completed, or the ultraviolet irradiator 2 and the ozone injector 3 are injected. There are two possible cases where the device 3 is operated simultaneously. However, in the latter case, it is necessary to continue the ultraviolet irradiation after the ozone injection is completed for the time necessary to remove ozone and hydroxyl radicals that are no longer needed.
[0022]
In said structure, the ultraviolet irradiation device 2 and the ozone injector 3 are arrange | positioned in the water treatment tank 1, and both ultraviolet irradiation and ozone injection are performed in the same water treatment tank. Therefore, even if the quality of the water to be treated changes during the treatment, it can be dealt with much faster than the conventional apparatus. In addition, since the UV irradiation amount and the ozone injection rate are determined by using the characteristic example shown in FIG. 2B, the two are related to each other, and the water treatment control is executed with the optimum combination. can do. Furthermore, in the above configuration, as shown in FIG. 2 (a), the control target value of the concentration of organic substances in water is determined based on the detection of the fluorescence intensity. The detection of the fluorescence intensity is performed by drugs such as dissolved ozone. It is difficult to be affected by. Therefore, the correlation with a hardly decomposable organic substance such as humic substance can be made higher than the configuration of the conventional apparatus, and the measurement accuracy is improved.
[0023]
FIG. 4 is a block diagram showing the configuration of the embodiment of the second invention. FIG. 4 is different from FIG. 1 in that the fluorescence analyzer 5 detects the fluorescence intensity of the treated water discharged from the water treatment tank 1. Other configurations and operation contents are the same as in the case of FIG. According to the configuration of this embodiment, since the fluorescence intensity is detected for the treated water after the water treatment is actually performed in the water treatment tank 1, the detection is more reliable.
[0024]
FIG. 5 is a block diagram showing the configuration of the embodiment of the third invention. In FIG.1 and FIG.4, although the fluorescence analyzer 5 became a structure which detects fluorescence intensity about the water of the entrance side and the exit side of the water treatment tank 1, respectively, in FIG. A first fluorescence analyzer 5 </ b> A and a second fluorescence analyzer 5 </ b> B are provided that detect fluorescence intensity for both waters on the outlet side. However, the water treatment control device 6 in the configuration of FIG. 5 basically controls the ozone injection rate based on the detection of the first fluorescence analyzer 5A on the entry side, and the second fluorescence analyzer on the exit side. The ozone injection rate is corrected based on the detection of 5B.
[0025]
Next, the operation of FIG. 5 will be described based on the flowchart of FIG. Turbidity and incoming fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the first fluorescence analyzer 5A, respectively (steps 21 and 22). The water treatment control device 6 inputs the detection signal from the turbidimeter 4 and determines the amount of ultraviolet irradiation (step 23). Next, the water treatment control device 6 determines the ozone injection rate to a value corresponding to the determined ultraviolet irradiation amount (step 24). And the water treatment control apparatus 6 performs control by setting the ultraviolet irradiation amount and the ozone injection rate thus determined as target values (step 25). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0026]
While the control in step 25 is being executed, the second fluorescence analyzer 5B detects the outgoing fluorescence intensity and outputs the detection signal to the water treatment controller 6 (step 26). The water treatment control device 6 calculates the correction amount of the ozone injection rate based on this detection signal (step 27), and returns to step 23. That is, based on the characteristics shown in FIG. 2B, the ozone injection rate determined by the incoming fluorescence intensity of the first fluorescence analyzer 5A is corrected by the outgoing fluorescence intensity of the second fluorescence analyzer 5B. Thereby, water treatment control with higher accuracy can be performed.
[0027]
FIG. 7 is a block diagram showing the configuration of the embodiment of the fourth invention. FIG. 7 is different from FIG. 1 in that a dissolved ozone concentration meter 9 is provided on the outlet side of the water treatment tank 1, and an ultraviolet irradiation amount calculating means 10 and an ozone injection rate calculating means 11 which are omitted in FIG. It is a point. The detection signal of the dissolved ozone concentration meter 9 is output to the ultraviolet irradiation amount calculation means 10 and the ozone injection rate calculation means 11.
[0028]
Next, the operation of FIG. 7 will be described based on the flowchart of FIG. Turbidity and incoming fluorescence intensity when the water to be treated is introduced into the water treatment tank 1 are detected by the turbidimeter 4 and the fluorescence analyzer 5 (steps 31 and 32), respectively. The water treatment control device 6 inputs the detection signal from the turbidimeter 4 and determines the amount of ultraviolet irradiation (step 33). Next, the water treatment control device 6 determines the ozone injection rate to a value corresponding to the determined ultraviolet irradiation amount (step 34). And the water treatment control apparatus 6 performs control by setting the ultraviolet irradiation amount and the ozone injection rate thus determined as target values (step 35). That is, the power supply device 7 is controlled to irradiate ultraviolet rays from the ultraviolet irradiator 2, and the ozone generator 8 is controlled to inject ozone from the ozone injector 3.
[0029]
While the control of step 35 is being executed, the dissolved ozone concentration meter 9 detects the dissolved ozone concentration contained in the treated water discharged from the water treatment tank 1, and uses the detection signal as an ultraviolet irradiation of the water treatment control device 6. It outputs to the quantity calculating means 10 and the ozone injection rate calculating means 11 (step 36). The ultraviolet irradiation amount calculation means 10 and the ozone injection rate calculation means 11 calculate the correction amount of the ultraviolet irradiation amount and the ozone injection rate based on the input of this detection signal, respectively (step 37), and return to steps 33 and 34 and again. Determine UV dose and ozone injection rate. That is, in the configuration of FIG. 7, the water treatment control device 6 initially determined the UV irradiation amount and the ozone injection rate based on the characteristics of FIG. 2B, but is included in the treated water discharged from the water treatment tank 1. Based on the detection of dissolved ozone concentration, the characteristic itself of FIG. 2B is corrected.
[0030]
FIG. 9 is a block diagram showing the configuration of the fifth embodiment. 9 is different from FIG. 1 in that the water treatment control device 6 has a power cost calculation means 12. Usually, the ultraviolet irradiation amount and the ozone injection rate should be determined based on the detection of the turbidimeter 4 and the fluorescence analyzer 5. However, in the case of a water supply, for example, when a sunny day continues for many days, The turbidity of the water to be treated is stable. Therefore, in such a case, it is required from the viewpoint of reducing the running cost to determine the ultraviolet ray irradiation amount and the ozone injection rate so that the amount of electric power is minimized. The configuration of FIG. 9 is for meeting such a demand.
[0031]
FIG. 10 is a characteristic diagram regarding the power cost, (a) is a characteristic diagram showing a relationship between the ultraviolet irradiation amount and the ultraviolet power cost, and (b) is a relationship between the ozone injection rate and the ozone power cost. FIG. In FIG. 10A, the values of the UV power costs corresponding to the UV irradiation amounts Puv1, Puv2, and Puv3 are Cuv1, Cuv2, and Cuv3. In FIG. 10B, the ozone injection rates I1, I2, The values of the ozone power cost corresponding to I3 are CI1, CI2, and CI3.
[0032]
Next, the operation of FIG. 9 will be described based on the flowchart of FIG. Now, it is assumed that the amount of change in the detected value input from the turbidimeter 4 by the water treatment control device 6 is not more than a predetermined amount over a predetermined time, and the turbidity of the water to be treated is in a stable state. Then, the power cost calculation means 12 of the water treatment control device 6 inputs the detection value from the fluorescence analyzer 5 (step 41), and calculates the power cost for the combination of the ultraviolet irradiation amount and the ozone injection rate (step 42). .
[0033]
In FIG. 10A, for example, the power cost when selecting the UV irradiation dose Puv3 is Cuv3, and the ozone injection rate selected at this time is I1 (when the UV irradiation dose is large, ozone is The injection rate is small), and its power cost is CI1. Therefore, the total power cost is Cuv3 + CI1. On the other hand, the power cost when the UV irradiation amount Puv1 is selected is Cuv1, and the ozone injection rate selected at this time is I3 (when the UV irradiation amount is small, the ozone injection rate increases). Its power cost is CI3. Therefore, the total power cost is Cuv1 + CI3.
[0034]
Next, the water treatment control device 6 determines the UV irradiation amount and the ozone injection rate relating to the minimum values among the above calculation results as control execution values (step 43), and executes control based on these values (step 44). For example, if Cuv3 + CI1 is smaller than Cuv1 + CI3, the water treatment control device 6 determines that the UV irradiation amount is Puv3 and the ozone injection rate is I1.
[0035]
As described above, according to the fifth aspect of the invention, it is possible to select a combination of the ultraviolet ray irradiation amount and the ozone injection rate at which the power cost is the lowest on the premise that the turbidity is in a stable state. Therefore, the running cost can be reduced, and an economically advantageous water treatment control system can be realized.
[0036]
FIG. 12 is a block diagram showing the configuration of the sixth embodiment. The configuration of FIG. 12 can be considered as using the ultraviolet ray measuring tank 13 instead of the dissolved ozone concentration meter 9 in the configuration of FIG. That is, on the outlet side of the water treatment tank 1, an ultraviolet ray measurement tank 13 having an ultraviolet ray measuring device 14 is disposed. Then, ultraviolet light having a specific wavelength (in this embodiment, a wavelength of 254 nm) from the ultraviolet irradiator 2 is introduced into the ultraviolet measuring device 14 by the light introducing tube 15.
[0037]
FIG. 13 is a partially enlarged view showing a detailed configuration of the ultraviolet ray measuring device 14 in FIG. As shown in this figure, the ultraviolet ray measuring device 14 includes a substantially cylindrical ultraviolet absorption cell 16 and a light receiver 17 attached on the peripheral surface of the ultraviolet absorption cell 16. The ultraviolet light introduced from the ultraviolet irradiator 2 through the light introducing tube 15 passes through the ultraviolet absorption cell 16 and reaches the light receiver 17, and a signal corresponding to the amount of light received by the light receiver 17 is photoelectrically converted to calculate the ultraviolet irradiation amount. It is sent to the means 10 and the ozone injection rate calculating means 11.
[0038]
When the amount of light received by the light receiver 17 decreases during the execution of the control, the water treatment control device 6 performs feedback control to increase the output of the power supply device 7 so that the amount of ultraviolet irradiation from the ultraviolet irradiator 2 increases. When the amount of light received by the light receiver 17 does not increase, the ozone generator 8 is controlled so as to decrease the ozone injection rate from the ozone injector 3. By such control, the influence of fluorescence and drugs can be avoided, and the ultraviolet irradiation amount and the ozone injection rate can be controlled with high accuracy.
[0039]
In addition, in the example shown in FIG. 12, although the structure which arrange | positioned only the ultraviolet-ray measuring tank 13 in the exit side of the water treatment tank 1 was shown, the structure which also arrange | positions the dissolved ozone concentration meter 9 shown in FIG. It is also possible. Thereby, control with higher accuracy can be performed.
[0040]
【The invention's effect】
As described above, according to the present invention, it is possible to optimize the combination of the ozone injection rate and the ultraviolet irradiation amount, to quickly respond to the water quality change of the treated water, and to measure the water quality with higher accuracy. It is possible to realize a water treatment control system that makes it possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing the configuration of an embodiment of the first invention.
FIGS. 2A and 2B are explanatory diagrams of a control principle of the water treatment control device 6; FIG. 2A is a characteristic diagram showing a relationship between the concentration of organic substances in water and fluorescence intensity; FIG. It is a characteristic view which shows the relationship between an ozone injection rate and fluorescence intensity.
FIG. 3 is a flowchart for explaining the operation of FIG. 1;
FIG. 4 is a block diagram showing a configuration of an embodiment of the second invention.
FIG. 5 is a block diagram showing the configuration of the embodiment of the third invention.
6 is a flowchart for explaining the operation of FIG. 5;
FIG. 7 is a block diagram showing the configuration of the embodiment of the fourth invention.
FIG. 8 is a flowchart for explaining the operation of FIG. 7;
FIG. 9 is a block diagram showing the configuration of the fifth embodiment.
FIG. 10 is a characteristic diagram regarding the power cost, (a) is a characteristic diagram showing a relationship between the ultraviolet irradiation amount and the ultraviolet power cost, and (b) is a relationship between the ozone injection rate and the ozone power cost. FIG.
FIG. 11 is a flowchart for explaining the operation of FIG. 9;
FIG. 12 is a block diagram showing the configuration of the embodiment of the sixth invention.
13 is a partially enlarged view showing a detailed configuration of the ultraviolet ray measuring device 14 in FIG. 12. FIG.
FIG. 14 is a block diagram showing a configuration of a conventional system.
[Explanation of symbols]
1 Water treatment tank
2 UV irradiator
3 Ozone injector
4 Turbidimeter
5 Fluorescence analyzer
5A First fluorescence analyzer
5B Second fluorescence analyzer
6 Water treatment control device
7 Power supply
8 Ozone generator
9 Dissolved ozone concentration meter
10 UV irradiation amount calculation means
11 Ozone injection rate calculation means
12 Electric power cost calculation means
13 UV measurement tank
14 UV meter
15 Light introduction tube
16 UV absorption cell
17 Receiver
FLi detection fluorescence intensity
FLx target fluorescence intensity
Puv1-Puv3 UV irradiation
I1 ~ I3 ozone injection rate
Cuv1 ~ Cuv3 UV power cost
CI1 ~ CI3 Ozone power cost
101 Ozone treatment tank
102 UV treatment tank
103 Ozone generator
104 Dissolved ozone meter
105 UV dimmer
106 UV illuminance meter
107 Dissolved ozone meter
108 Water quality meter
109 Water treatment controller

Claims (6)

被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記蛍光分析計の検出値に基づき決定し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、
ことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for water to be treated,
An ultraviolet irradiator and an ozone injector are arranged, and a water treatment tank for introducing the treated water;
A turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank;
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank;
Based on each detection of the turbidimeter and the fluorescence analyzer, a water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector;
And determining the ultraviolet irradiation amount based on the detected value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detected value of the fluorescence analyzer. Both the ultraviolet irradiation and the ozone injection were performed in the same water treatment tank so as to achieve the ultraviolet irradiation amount and the ozone injection rate.
Water treatment control system, characterized in that.
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽から排出される処理水の蛍光強度を検出する蛍光分析計と、
前記濁度計及び前記蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記蛍光分析計の検出値に基づき決定し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、
ことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for water to be treated,
An ultraviolet irradiator and an ozone injector are arranged, and a water treatment tank for introducing the treated water;
A turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank;
A fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank;
Based on each detection of the turbidimeter and the fluorescence analyzer, a water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector;
And determining the ultraviolet irradiation amount based on the detected value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detected value of the fluorescence analyzer. Both the ultraviolet irradiation and the ozone injection were performed in the same water treatment tank so as to achieve the ultraviolet irradiation amount and the ozone injection rate.
Water treatment control system, characterized in that.
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する第1の蛍光分析計と、
前記水処理槽から排出される処理水の蛍光強度を検出する第2の蛍光分析計と、
前記濁度計並びに前記第1及び第2の蛍光分析計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記第1の蛍光分析計の検出値に基づき決定し、更に、前記第2の蛍光分析計の検出値に基づき前記オゾン注入率を補正し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、
ことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for water to be treated,
An ultraviolet irradiator and an ozone injector are arranged, and a water treatment tank for introducing the treated water;
A turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank;
A first fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank;
A second fluorescence analyzer for detecting the fluorescence intensity of the treated water discharged from the water treatment tank;
A water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector based on the detection of the turbidimeter and the first and second fluorescence analyzers;
And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, and determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the first fluorescence analyzer, Further, the ozone injection rate is corrected based on the detection value of the second fluorescence analyzer, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment tank so that the determined ultraviolet irradiation amount and ozone injection rate are obtained. To do in,
A water treatment control system characterized by that.
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記水処理槽から排出される処理水に含まれる溶存オゾン濃度を検出する溶存オゾン濃度計と、
前記濁度計及び前記蛍光分析計並びに前記溶存オゾン濃度計の各検出に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記の蛍光分析計の検出値に基づき決定し、更に、前記溶存オゾン濃度計の検出値に基づき前記オゾン注入率を補正し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、
ことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for water to be treated,
An ultraviolet irradiator and an ozone injector are arranged, and a water treatment tank for introducing the treated water;
A turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank;
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank;
A dissolved ozone concentration meter for detecting the dissolved ozone concentration contained in the treated water discharged from the water treatment tank;
Based on each detection of the turbidimeter, the fluorescence analyzer, and the dissolved ozone concentration meter, a water treatment control device that controls the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector;
And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the fluorescence analyzer, The ozone injection rate is corrected based on the detected value of the dissolved ozone concentration meter, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment tank so that the determined ultraviolet irradiation amount and ozone injection rate are obtained. did,
Water treatment control system, characterized in that.
前記水処理制御装置は、前記濁度計の検出値の変化量が所定レベル以下の場合に、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率の制御を、紫外線照射及びオゾン注入のために消費する電力量が最小となるように行うものである、
ことを特徴とする請求項1又は2記載の水処理制御システム。
The water treatment control device, when the change amount of the detection value of the turbidimeter is below a predetermined level, the control of the amount of UV irradiation and ozone injection rate of the ozone injector of said ultraviolet irradiator, ultraviolet radiation and ozone The amount of power consumed for injection is minimized.
The water treatment control system according to claim 1 or 2 characterized by things.
被処理水に対してオゾン注入及び紫外線照射に基づく水処理を行う水処理制御システムにおいて、
紫外線照射器及びオゾン注入器が配設されており、前記被処理水を導入する水処理槽と、
前記水処理槽に導入される被処理水の濁度を検出する濁度計と、
前記水処理槽に導入される被処理水の蛍光強度を検出する蛍光分析計と、
前記水処理槽の出口側に配設され該水処理槽から排出される処理水の通過を許容し、しかも前記紫外線照射器から導入した紫外線光のうち特定波長の紫外線光の吸収量を測定する紫外線測定槽と、
前記濁度計及び前記蛍光分析計の各検出並びに前記紫外線測定槽での測定に基づき、前記紫外線照射器の紫外線照射量及び前記オゾン注入器のオゾン注入率を制御する水処理制御装置と、
を備え、前記濁度計の検出値に基づき前記紫外線照射量を決定すると共に、この決定した紫外線照射量に対応する前記オゾン注入率を前記の蛍光分析計の検出値に基づき決定し、更に、前記紫外線測定槽での測定値に基づき前記紫外線照射量又は前記オゾン注入率を増減し、これら決定した紫外線照射量及びオゾン注入率となるように、紫外線照射及びオゾン注入の双方を同一の水処理槽で行うようにした、
ことを特徴とする水処理制御システム。
In a water treatment control system that performs water treatment based on ozone injection and ultraviolet irradiation for water to be treated,
An ultraviolet irradiator and an ozone injector are arranged, and a water treatment tank for introducing the treated water;
A turbidimeter for detecting the turbidity of the water to be treated introduced into the water treatment tank;
A fluorescence analyzer for detecting the fluorescence intensity of the water to be treated introduced into the water treatment tank;
It is disposed on the outlet side of the water treatment tank and allows passage of treated water discharged from the water treatment tank, and measures the amount of absorption of ultraviolet light having a specific wavelength out of ultraviolet light introduced from the ultraviolet irradiator. A UV measuring tank;
Based on each detection of the turbidimeter and the fluorescence analyzer and measurement in the ultraviolet measurement tank, a water treatment control device for controlling the ultraviolet irradiation amount of the ultraviolet irradiator and the ozone injection rate of the ozone injector,
And determining the ultraviolet irradiation amount based on the detection value of the turbidimeter, determining the ozone injection rate corresponding to the determined ultraviolet irradiation amount based on the detection value of the fluorescence analyzer, The ultraviolet irradiation amount or the ozone injection rate is increased or decreased based on the measurement value in the ultraviolet measuring tank, and both the ultraviolet irradiation and the ozone injection are performed in the same water treatment so that the determined ultraviolet irradiation amount and the ozone injection rate are obtained. I did it in the tank,
Water treatment control system, characterized in that.
JP2003037915A 2003-02-17 2003-02-17 Water treatment control system Expired - Fee Related JP4079795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037915A JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037915A JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Publications (2)

Publication Number Publication Date
JP2004243265A JP2004243265A (en) 2004-09-02
JP4079795B2 true JP4079795B2 (en) 2008-04-23

Family

ID=33022575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037915A Expired - Fee Related JP4079795B2 (en) 2003-02-17 2003-02-17 Water treatment control system

Country Status (1)

Country Link
JP (1) JP4079795B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673709B2 (en) * 2005-09-22 2011-04-20 株式会社東芝 Water treatment system
JP4690976B2 (en) * 2006-09-08 2011-06-01 株式会社東芝 Water treatment system and water treatment method
JP4264111B2 (en) 2007-03-01 2009-05-13 株式会社東芝 UV irradiation system and water quality monitoring device
CA2699843A1 (en) * 2007-09-17 2009-03-26 Atlantium Technologies Ltd. Control of oxidation processes in ultraviolet liquid treatment systems
US20130078730A1 (en) * 2011-09-23 2013-03-28 Michael J. Murcia Method for monitoring and control of a wastewater process stream
US20140229414A1 (en) 2013-02-08 2014-08-14 Ebay Inc. Systems and methods for detecting anomalies
CN103482752A (en) * 2013-10-15 2014-01-01 无锡艾科瑞思产品设计与研究有限公司 Device and method for eliminating algal toxin in water body through ultraviolet light-micro ozone technology
CN104071879B (en) * 2014-06-27 2016-02-24 深圳市开天源自动化工程有限公司 The method utilizing ultraviolet source to bring out cupric ion to separate out continuously from copper body
WO2019127546A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization tip with light source monitoring function, and sterilization device
WO2019127541A1 (en) * 2017-12-29 2019-07-04 深圳前海小有技术有限公司 Sterilization head and sterilization device with light source monitoring function
JP6965196B2 (en) * 2018-03-27 2021-11-10 東京瓦斯株式会社 How to set the price of the range hood system and UV lamp

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3038926B2 (en) * 1990-12-28 2000-05-08 株式会社明電舎 Ozone treatment equipment
JPH1133567A (en) * 1997-07-25 1999-02-09 Meidensha Corp Ozone decomposing method and apparatus
JPH1147771A (en) * 1997-07-31 1999-02-23 Meidensha Corp Continuous water passing type water treatment apparatus
JP3666255B2 (en) * 1998-08-05 2005-06-29 富士電機システムズ株式会社 Water treatment operation control method by ozone and ultraviolet rays
JP3617334B2 (en) * 1998-10-16 2005-02-02 富士電機システムズ株式会社 Water treatment method and apparatus
JP4371602B2 (en) * 2001-04-16 2009-11-25 株式会社東芝 Accelerated oxidation treatment equipment

Also Published As

Publication number Publication date
JP2004243265A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
Miralles-Cuevas et al. Pharmaceuticals removal from natural water by nanofiltration combined with advanced tertiary treatments (solar photo-Fenton, photo-Fenton-like Fe (III)–EDDS complex and ozonation)
JP4079795B2 (en) Water treatment control system
CA2728754C (en) Method and plant for the treatment of wastewater with a view to eliminating the adverse endocrine effect and/or the toxic or genotoxic effect thereof
Del Moro et al. Comparison of UV/H2O2 based AOP as an end treatment or integrated with biological degradation for treating landfill leachates
Quiñones et al. Removal of emerging contaminants from municipal WWTP secondary effluents by solar photocatalytic ozonation. A pilot-scale study
KR101306155B1 (en) Autocontrol system and method of uv and hydrogen peroxide dose using real-time hydroxyl radical scavenging and hydroxyl radical reacting index measurement device
JP4673709B2 (en) Water treatment system
Chen et al. Decomposition of 2-naphthalenesulfonate in aqueous solution by ozonation with UV radiation
Wang et al. Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H2O2 process
Bertanza et al. Removal of endocrine disrupting compounds from wastewater treatment plant effluents by means of advanced oxidation
KR102281691B1 (en) Operation Apparatus and Method to Maximize Partial Nitritation by Controling Free Ammonia and Free Nitrous Acid Concentration in SBR Reactor for treating High Strength Nitrogen Wastewater
CN111615498A (en) Oxidation-promoting water treatment system and method
JP2010063954A (en) Liquid treatment apparatus
Gonzalez et al. Application of solar advanced oxidation processes to the degradation of the antibiotic sulfamethoxazole
JP4660211B2 (en) Water treatment control system and water treatment control method
Xiangwei et al. An improved hybrid strategy for online dosage of hydrogen peroxide in photo-Fenton processes
Sanchis et al. Solar photo-Fenton with simultaneous addition of ozone for the treatment of real industrial wastewaters
JP4417587B2 (en) Accelerated oxidation treatment equipment
CN114229990A (en) Ozone adding control system and method for ozone catalytic oxidation process
JP2008272761A (en) Accelerated oxidation treatment apparatus
Njoyim et al. Plasma-chemical treatment of industrial wastewaters from brewery “Brasseries du Cameroun”, Bafoussam factory
JP2008194558A (en) Water treatment system and method
JP4331048B2 (en) Ozone water treatment control system
JP2004148145A (en) Wastewater treatment method
CN104364634B (en) For determining the method and apparatus that free radical consumes potential energy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4079795

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees