JP4079728B2 - Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe - Google Patents

Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe Download PDF

Info

Publication number
JP4079728B2
JP4079728B2 JP2002261700A JP2002261700A JP4079728B2 JP 4079728 B2 JP4079728 B2 JP 4079728B2 JP 2002261700 A JP2002261700 A JP 2002261700A JP 2002261700 A JP2002261700 A JP 2002261700A JP 4079728 B2 JP4079728 B2 JP 4079728B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
pipe
chlorinated vinyl
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002261700A
Other languages
Japanese (ja)
Other versions
JP2004099697A (en
Inventor
敏文 三二
芳明 奥迫
義伸 末永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2002261700A priority Critical patent/JP4079728B2/en
Publication of JP2004099697A publication Critical patent/JP2004099697A/en
Application granted granted Critical
Publication of JP4079728B2 publication Critical patent/JP4079728B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、更生管用の塩素化塩化ビニル系樹脂組成物及びその塩素化塩化ビニル系樹脂組成物からなる塩素化塩化ビニル系樹脂製更生管に関する。
【0002】
【従来の技術】
近年、老朽化した既設管(陶管、ヒューム管、鋼管等)が増加しているが、この様な既設管は、腐食や劣化により、亀裂や損傷を生じることがある。老朽化した既設管を更生、修復する方法の一つとして、機械的強度や耐薬品性等に優れた塩化ビニル系樹脂管が用いられている。
【0003】
このような塩化ビニル系樹脂からなる更正管として、塩化ビニル樹脂に混合しうる熱可塑性エラストマーを加えた塩化ビニル系樹脂管により修復する方法が開示されている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特許第3229319号公報(第1−3頁)
【0005】
しかし、この方法の場合、更生管の主成分が塩化ビニル樹脂であるため、電力ケーブル防護管の更生に用いる場合等、高温下で使用される用途では、耐熱性が不十分となり、更生管が熱変形してしまうという問題点があった。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記問題点に鑑み、優れた耐熱性を有し、施工性にも優れる更生管を得るために適した更生管用塩素化塩化ビニル系樹脂組成物及びその塩素化塩化ビニル系樹脂組成物を用いた更生管を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するためになされたものであり、請求項1記載の発明(以下、発明1という)は、塩素含有率が58〜71重量%である塩素化塩化ビニル系樹脂を主成分として含有してなり、成形体の曲げ弾性率が75℃において450MPa以上であり、20℃と75℃の曲げ弾性率の比(E,20℃)/(E,75℃)が1を越え20未満であり、75℃と105℃の曲げ弾性率の比(E,75℃)/(E,105℃)が2以上であり、かつ、JIS K 7026に準拠したビカット軟化温度(5Kg荷重)が80℃以上であることを特徴とする更生管用塩素化塩化ビニル系樹脂組成物を提供する。
尚、本明細書においては、成形体のT℃における曲げ弾性率を(E,T℃)の如く表現する。
【0008】
また、請求項2記載の発明(以下、発明2という)は、既設管中に挿入され、加熱されることにより、又は加熱されかつ内圧をかけられることにより上記既設管の内面に密着される、請求項1記載の塩素化塩化ビニル系樹脂組成物からなることを特徴とする更生管を提供する。
【0009】
以下、本発明を更に詳細に説明する。
本発明において使用される、塩素化塩化ビニル系樹脂は、塩素含有率が58〜71重量%に限定される。58%未満であると、得られる塩素化塩化ビニル系樹脂組成物や更生管の耐熱性が不十分であり、逆に塩素含有率が71%を超えると成形が困難になる。好ましくは59〜70重量%であり、さらに好ましくは60〜69重量%である。
尚、上記の塩素含有率はJIS K 7229に準拠して、酸素フラスコ燃焼法による中和滴定により決定される値である。
【0010】
上記の塩素化塩化ビニル系樹脂は塩化ビニル系樹脂を塩素化することにより得られる。塩素化方法としては、従来公知の懸濁法、溶液塩素化法等が用いられ、工業的には懸濁法が好ましい。塩素含有率を前記の範囲に調整する方法としては、塩素化反応段階で調整してもよいし、高塩素含有率の塩素化塩化ビニル系樹脂と低塩素含有率の塩素化塩化ビニル系樹脂や塩化ビニル系樹脂とをブレンドして調整してもよい。
【0011】
上記の塩素化塩化ビニル系樹脂の製造に用いられる塩化ビニル系樹脂としては、塩化ビニル系樹脂であれば特に限定されないが、成型性、耐熱性等から特開平8−120007号公報、特開平8−295701号公報、特開平9−132612号公報、又は特開平9−227607号公報等に記載されている製造方法により得られる塩化ビニル系樹脂が好ましい。又、重合度は800〜2000が好ましく、より好ましくは800〜1400である。
【0012】
上記の塩素化される前の塩化ビニル系樹脂としては、塩化ビニル単独重合体、塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーと塩化ビニルモノマーとの共重合体、重合体に塩化ビニルモノマーをグラフト共重合したグラフト共重合体等が使用される。本発明においては、これらの重合体が単独で用いられてもよいし、2種類以上が併用されても良い。
【0013】
上記の塩化ビニルモノマーと共重合可能な不飽和結合を有するモノマーとしては、例えば、エチレン、プロピレン、ブチレン等のα−オレフイン類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;ブチルビニルエ−テル、セチルビニルエーテル等のビニルエーテル類;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチルアクリレート、フェニルメタクリレート等の(メタ)アクリル酸エステル顆;スチレン、α−メチルスチレン等の芳香族ビニル類;塩化ビニリデン、フッ化ビニリデン等のハロゲン化ビニルビニル類;N−フェニルマレイミド、N−シクロヘキシルマレイミド等のN一置換マレイミド類等が挙げられ、これらが単独で用いられても良いし、2種類以上が併用されても良い。
【0014】
上記の塩化ビニルをグラフト共重合する重合体としては、塩化ビニルをグラフト重合させるものであれば特に限定されず、例えば、エチレン−酢酸ビニル共重合体;エチレン−酢酸ビニル−ー酸化炭素共重合体;エチレン−エチルアクリレート共重合体;エチレン−ブチルアクリレート−ー酸化炭素共重合体;エチレン−メチルメタクリレート共重合体;エチレン−プロピレン共重合体;アクリロニトリル−ブタジエン共重合体;ポリウレタン;塩素化ポリエチレン;塩素化ポリプロビレン等が挙げられ、これらは単独で用いられても、2種以上が併用されても良い。
【0015】
上記の塩化ビニルの重合法は特に限定されず、従来公知の懸濁重合法、塊状重合法、溶液重合法、乳化重合法などが用いられるが、生産性から懸濁重合法が好ましい。
【0016】
本発明の更生管用塩素化塩化ビニル系樹脂組成物は、成形体の曲げ弾性率が75℃において450MPa以上であり、20℃と75℃の曲げ弾性率の比(E,20℃)/(E,75℃)が1を越え20未満であり、75℃と105℃の曲げ弾性率の比(E,75℃)/(E,105℃)が2以上である。
75℃における曲げ弾性率が450MPaより小さくなると、耐熱性を必要とする用途においては使用温度領域での強度が不足してしまう。これを補うために更生管の肉厚を大きくすると成形性の低下やコスト高になり不適当である。
また、20℃と75℃の曲げ弾性率の比が20を超える場合は、20℃での曲げ弾性率が9000MPa以上と大きく、押出成形時の加工性が著しく悪くなってしまう。この範囲の弾性率の下限値は成形性の面からは特にないが、実際上、上記の比が1以下の場合は起こらないので1以上であれば良い。好ましくは1を超え15未満であり、さらに好ましくは1を越え10未満である。また、75℃と105℃の曲げ弾性率の比が上記の範囲をはずれると、施工前には既設管内へ挿入させ易い様に折り畳まれた(例えば、断面形状がΩ状)更生管内を加熱して施工する時に、復元し既設管内周面に密着する特性が悪くなり、施工温度を大幅に上げる必要が生じる等、施工性が著しく低下してしまう。好ましくは3以上である。上記の範囲を達成するためには塩素化塩化ビニル系樹脂の塩素含有率を58〜71重量%にし、耐熱性を著しく下げない範囲で必要に応じて押出成形性を向上させる配合剤を添加することが必要となる。
【0017】
また、上記の塩素化塩化ビニル系樹脂組成物は、JIS K 7026に準拠したビカット軟化温度(5Kg荷重)が80℃以上である。ビカット軟化温度が80℃を下回ると、更生管としたとき、耐熱性を必要とする用途、例えば、電力ケーブル防護管等に対しては不十分となる。
【0018】
本発明の更生管用塩素化塩化ビニル系樹脂組成物は、上記特定の塩素含有率の塩素化塩化ビニル系樹脂組成物を主成分とし、更に添加剤が含有されてなるものである。適宜選択され、含有される添加剤の例としては、衝撃改質剤、熱可塑性エラストマー、安定剤、滑剤、加工助剤、耐熱性向上剤、酸化防止剤、紫外線吸収剤、光安定剤、充填剤、顔料などが挙げられる。
【0019】
上記の衝撃改質剤は特に限定されず、例えばメタクリル酸メチル−ブタジエン−スチレン共重合体(MBS)、塩素化ポリエチレン、アクリルゴムなどが使用される。
【0020】
上記の塩素化塩化ビニル系樹脂組成物には施工性を向上させる目的で、熱可塑性エラストマーが添加されてもよい。熱可塑性エラストマーは特に限定されず、例えば、アクリルニトリル−ブタジエン共重合体(NBR)、エチレン−酢酸ビニル共重合体(EVA)、エチレン−酢酸ビニル−ー酸化炭素共重合体(EVACO)、塩化ビニル−酢酸ビニル共重合体や塩化ビニル−塩化ビニリデン共重合体等の塩化ビニル系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、オレフイン系熱可塑性エラストマー、ウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が使用される。これらの熱可塑性エラストマーは、単独で用いられても良いし、2種類以上が併用されても良い。
【0021】
上記の安定剤は特に限定されず、例えば、熱安定剤、熱安定化助剤などが使用される。熱安定剤としては特に限定されず、例えば、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジメチル錫メルカプト、ジブチル錫メルカプト、ジブチル錫マレート、ジブチル錫マレートポリマー、ジオクチル錫マレート、ジオクチル錫マレートポリマー、ジブチル錫ラウレート、ジブチル錫ラウレートポリマー等の有機錫系安定剤;ステアリン酸鉛、二塩基性亜りん酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム−亜鉛系安定剤;バリウム−亜鉛系安定剤;バリウム−カドミウム系安定剤などが使用される。これらは単独で使用してもよく、2種以上を併用してもよい。
【0022】
上記の安定化助剤は特に限定されず、例えば、エポキシ化大豆油、りん酸エステル、ポリオール、ハイドロタルサイト、ゼオライト等が使用される。これらは単独で使用してもよく、2種以上を併用してもよい。
【0023】
上記の滑剤としては、内部滑剤、および外部滑剤が使用される。
内部滑剤は、成形加工時の溶融樹脂の流動粘度を下げ、摩擦発熱を防止する目的で使用される。上記の内部滑剤としては特に限定されず、例えば、ブチルステアレート、ラウリルアルコール、ステアリルアルコール、エポキシ大豆油、グリセリンモノステアレート、ステアリン酸、ビスアミド等が使用される。これらは単独で使用してもよく、2種以上を併用してもよい。
上記の外部滑剤は、成形加工時の溶融樹脂と金属面との滑り効果を上げる目的で使用される。外部滑剤としては特に限定されず、例えば、パラフィンワックス、ポリオレフィンワックス、エステルワックス、モンタン酸ワックスなどが使用される。これらは単独で使用してもよく、2種以上を併用してもよい。
【0024】
上記の加工助剤は特に限定されず、例えば重量平均分子量10万〜200万のアルキルアクリレート−アルキルメタクリレート共重合体等のアクリル系加工助剤などが使用される。上記のアクリル系加工助剤は特に限定されず、例えば、n−ブチルアクリレート−メチルメタクリレート共重合体、2−エチルヘキシルアクリレート−メチルメタクリレート−ブチルメタクリレート共重合体等が使用される。これらは単独で使用してもよく、2種以上を併用してもよい。
【0025】
上記の耐熱向上剤は特に限定されず、例えばα−メチルスチレン系、N−フェニルマレイミド系樹脂等が使用される。
【0026】
上記の酸化防止剤は特に限定されず、例えば、フェノール系抗酸化剤などが使用される。
【0027】
上記の光安定剤は特に限定されず、例えば、ヒンダードアミン系等の光安定剤等が使用される。
【0028】
上記の紫外線吸収剤は特に限定されず、例えば、サリチル酸エステル系、べンゾフェノン系、べンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤などが使用される。
【0029】
上記の充填剤は特に限定されず、例えば、炭酸カルシウム、タルクなどが使用される。
【0030】
上記の顔料は特に限定されず、例えば、アゾ系、フタロシアニン系、スレン系、染料レーキ系等の有機顔料;酸化物系、クロム酸モリブデン系、硫化物・セレン化物系、フェロシアニン化物系などの無機顔料などが使用される。
【0031】
上記の塩素化塩化ビニル系樹脂組成物には、成形時の加工性を向上させる目的で、可塑剤が添加されていてもよいが、成形品の耐熱性を低下させることがあるため、多量に使用することは好ましくない。上記の可塑剤は特に限定されず、例えば、ジブチルフタレート、ジ−2−エチルヘキシルフタレート、ジ−2−エチルヘキシルアジぺート等が使用される。
【0032】
上記の添加剤を上記の塩素化塩化ビニル系樹脂に混合する方法は特に限定されず、例えば、ホットブレンドによる方法、コールドブレンドによる方法等が使用される。
【0033】
発明2の更生管は、通常、発明1の塩素化塩化ビニル系樹脂組成物を用いて、押出機により押出成形を行うことにより作製され、既設管中に挿入され、加熱されることにより、又は加熱されかつ内圧をかけられることにより、上記の既設管の内面に密着されることを特徴とする。
【0034】
上記の更生管の断面形状は、更生、修復しようとする既設管中に挿入可能であり、かつ、加熱されることにより、又は加熱されかつ内圧をかけられることにより、上記の既設管の内面に密着し得る形状であれば良く、特に限定されるものではないが、Ω状が好ましい。
【0035】
【実施例】
本発明をさらに詳しく説明するため以下に実施例を挙げるが、本発明はこれら実施例のみに限定されるものではない。尚、実施例中の「部」は「重量部」を意味し、「%」は「重量%」を意味する。
【0036】
(実施例1、2及び比較例4〜6)
(1)塩素化塩化ビニル系樹脂組成物の作製
表1の配合組成に従って各原材料を200L「スーパーミキサー」(カワタ社製)にて撹絆混合し、塩素化塩化ビニル系樹脂組成物を得た。
なお、各材料のグレードとメーカー名は次のとおりである。
塩素化塩化ビニル系樹脂A;「HA−54K」徳山積水工業(株)製、重合度1000
塩素化塩化ビニル系樹脂B;「HA−54H」徳山積水工業(株)製、重合度1000
塩素化塩化ビニル系樹脂C;「HA−54F」徳山積水工業(株)製、重合度1000
塩素化塩化ビニル系樹脂D;塩素化度73%、「TS−1000R」(重合度1050)徳山積水工業(株)製の塩素化品
塩化ビニル系樹脂A;「TS−1000R」(重合度1050)徳山積水工業(株)
製熱可塑性エラストマーA(EVACO);「エルバロイ742」三井・デュポンポリケミカル(株)製
熱安定剤A;「ONZ−100F」三井有機合成(株)製、有機系錫安定剤
熱安定剤B;「ONZ−6F」三井有機合成(株)製、有機系錫安定剤
滑剤A;「Hiwax2203A」三井化学(株)製、ポリエチレンワックス
滑剤B;「SL800」理研ビタミン(株)製、ステアリルステアレート
滑剤C;「Loxiol G21」コグニスジャパン(株)製、12−ヒドロキシステアリン酸
衝撃改質剤A;「M511」鐘淵化学(株)製、MBS樹脂
【0037】
(2)更生管の成形
上記の方法で得られた塩素化塩化ビニル系樹脂組成物を直径50mmの2軸異方向回転押出機「SLM−50」(長田製作所社製)に供し、溶融体を得た。得られた溶融体を20℃の水で冷却し、外径50mm、肉厚4.5mmの管状体を得た。この管状体を110℃に加熱されたギアオープン内に20分間静置した後、管状体断面が4つ折りの形状になるようにし、この形状を維持したまま成形体の温度が20℃になるまで冷却して、更生管を得た。
【0038】
(3)評価
樹脂の塩素含有率、および更生管のビカット軟化温度、曲げ弾性率、挿入性および復元性の評価を行った。評価方法は次のとおりである。その結果を表2にまとめて示した。
▲1▼塩素含有率の測定
CPVCの塩素重量含有率(Cl%)はJIS K 7229に準拠し測定した。
▲2▼ビカット軟化温度
熱可塑性プラスチックのビカット軟化温度試験方法(JIS K 7206)に準拠してビカット軟化温度を測定した。測定には5kg錘を使用した。
▲3▼曲げ弾性率
硬質プラスチックの曲げ試験方法(JIS K 7171)に準拠して、20℃、75℃、105℃における曲げ弾性率を測定した。
【0039】
▲4▼挿入性評価
更生管の一方の端部から更生管の内部に80℃の熱風を10分間送風した後、更生管を内径50mmの45°L字型鋼管内に挿入し、下記の判定基準により、挿入性を評価した。
○‥‥挿入可能であり、割れ、白化等の損傷がなかった。
×‥‥挿入不可または、割れ、白化等の損傷があった。
▲5▼復元性評価
更生管を内径50mmの鋼管内に挿入し、更生管の一方の端部から更生管の内部に110℃の蒸気を10分間送風して、鋼管の内面に更生管を密着させた。ついで、20℃の空気を30分間送風して冷却した後、鋼管と更生管との密着状態を目視で観察し、下記の判定基準により、復元性を評価した。
○‥‥鋼管に対し更生管が全面的に密着していた。
×…・鋼管に対し更生管が全面的には密着していなかった。
【0040】
(比較例1〜比較例3)
(1)塩化ビニル系樹脂組成物の作製
実施例1、2及び比較例4〜6と同様に表1の配合組成に従って各原材料を200L「スーパーミキサー」(カワタ社製)にて撹絆混合し、塩化ビニル系樹脂組成物を得た。
【0041】
(2)比較例3の塩素化塩化ビニル樹脂Dの作製
内容積300リットルのグラスライニング製耐圧反応槽に脱イオン水180KgとPVC(商品名「TS−1000R」徳山積水工業(株))20Kgを入れ、攪拌してPVCを水中に分散させ、真空ポンプにて内部空気を吸引し、ゲージ圧が−78.4KPaになるまで減圧した。窒素ガスで圧戻し(ゲージ圧が0になるまで戻すこと)を行い、再び真空ポンプで吸引して反応槽内の酸素を除去した。この間、加熱したオイルをジャケットに通して反応器内を加温した。
反応槽内の温度が80℃に達したとき、塩素ガスを供給し始め、110℃定温で反応を進行させた.反応槽内の発生塩化水素濃度から反応機内のPVCの塩素含有率を計算し、塩素含有率が63重量%に達した時点で、反応温度を120℃にあげ、濃度500ppmの過酸化水素水を0.5Kg/h rで連続添加しながら反応を継続した。さらに、塩素含有率が68重量%に達した時点で過酸化水素水の濃度を1000ppmに変更して反応を継続した。塩素化含有率が72重量%に達した時点で塩素ガスの供給を停止し、塩素化反応を終了した。反応中添加した過酸化水素の量は、仕込み樹脂に対し2500ppmであった。さらに、反応槽内に窒素ガスを吹き込んで未反応塩素を除去し、得られた樹脂を水で洗浄し、脱水・乾燥して粉末状の塩素化塩化ビニル樹脂を得た。得られた塩素化塩化ビニル樹脂の塩素含有率は73重量%であった.
【0042】
(3)更生管の作製
表1の配合組成に従って上記の塩化ビニル系樹脂を200Lスーパーミキサー(カワタ社製)にて攪拌混合し、塩化ビニル系樹脂組成物を得た。これを実施例1、2及び比較例4〜6と同様の方法で更生管を作製した。
【0043】
(4)評価
実施例1、2及び比較例4〜6と同様に樹脂の塩素含有率、および更生管のビカット軟化温度、曲げ弾性率、挿入性および復元性の評価を行った。その結果を表にまとめて示した。
【0044】
【表1】
【0045】
表1中、( )は測定限界を超えるため、推定値とした。
【0046】
【発明の効果】
本発明の更生管用塩素化塩化ビニル系樹脂組成物は、優れた耐熱性を有し、施工性にも優れる更生管を得るために適した更生管用塩素化塩化ビニル系樹脂組成物として好適に用いられる。また、本発明の更生管は、上記の本発明の塩素化塩化ビニル系樹脂組成物からなるので、優れた耐熱性を有し、既設管の更生(修復)用として好適に用いられる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chlorinated vinyl chloride resin composition for rehabilitation pipes and a chlorinated vinyl chloride resin rehabilitation pipe comprising the chlorinated vinyl chloride resin composition.
[0002]
[Prior art]
In recent years, aging existing pipes (ceramic pipes, fume pipes, steel pipes, etc.) are increasing, but such existing pipes may be cracked or damaged due to corrosion or deterioration. As one of the methods for rehabilitating and restoring old pipes, vinyl chloride resin pipes having excellent mechanical strength and chemical resistance are used.
[0003]
As a straight pipe made of such a vinyl chloride resin, a method of repairing with a vinyl chloride resin pipe added with a thermoplastic elastomer that can be mixed with the vinyl chloride resin is disclosed (for example, see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 3229319 (page 1-3)
[0005]
However, in this method, since the main component of the rehabilitation pipe is vinyl chloride resin, heat resistance becomes insufficient in applications that are used at high temperatures, such as when rehabilitating power cable protection pipes. There was a problem of thermal deformation.
[0006]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide a chlorinated vinyl chloride resin composition for a rehabilitated pipe suitable for obtaining a rehabilitated pipe having excellent heat resistance and excellent workability, and its chlorinated vinyl chloride type. It is providing the rehabilitation pipe | tube using a resin composition.
[0007]
[Means for Solving the Problems]
The present invention has been made to achieve the above object, and the invention according to claim 1 (hereinafter referred to as invention 1) is a chlorinated vinyl chloride resin having a chlorine content of 58 to 71% by weight. The molded body has a flexural modulus of not less than 450 MPa at 75 ° C., and the ratio (E, 20 ° C.) / (E, 75 ° C.) of the flexural modulus of 20 ° C. and 75 ° C. is 1. Vicat softening temperature (5 kg load) according to JIS K 7026, which is over 20 and the ratio of flexural modulus between 75 ° C. and 105 ° C. (E, 75 ° C.) / (E, 105 ° C.) is 2 or more. ) Is 80 ° C. or higher, and a chlorinated vinyl chloride resin composition for rehabilitation pipes is provided.
In this specification, the flexural modulus at T ° C. of the molded body is expressed as (E, T ° C.).
[0008]
The invention according to claim 2 (hereinafter referred to as invention 2) is inserted into an existing pipe and heated, or is brought into close contact with the inner surface of the existing pipe by being heated and subjected to internal pressure. A rehabilitation pipe comprising the chlorinated vinyl chloride resin composition according to claim 1 is provided.
[0009]
Hereinafter, the present invention will be described in more detail.
The chlorine content of the chlorinated vinyl chloride resin used in the present invention is limited to 58 to 71% by weight. If it is less than 58%, the heat resistance of the resulting chlorinated vinyl chloride resin composition and rehabilitation pipe is insufficient, and conversely, if the chlorine content exceeds 71%, molding becomes difficult. Preferably it is 59-70 weight%, More preferably, it is 60-69 weight%.
In addition, said chlorine content rate is a value determined by the neutralization titration by an oxygen flask combustion method based on JISK7229.
[0010]
The above chlorinated vinyl chloride resin can be obtained by chlorinating a vinyl chloride resin. As the chlorination method, a conventionally known suspension method, solution chlorination method or the like is used, and the suspension method is preferred industrially. As a method of adjusting the chlorine content to the above range, it may be adjusted in the chlorination reaction stage, or a high chlorine content chlorinated vinyl chloride resin and a low chlorine content chlorinated vinyl chloride resin, It may be adjusted by blending with a vinyl chloride resin.
[0011]
The vinyl chloride resin used for the production of the chlorinated vinyl chloride resin is not particularly limited as long as it is a vinyl chloride resin. However, from the viewpoint of moldability, heat resistance, and the like, JP-A-8-120007 and JP-A-8. A vinyl chloride resin obtained by a production method described in JP-A-295701, JP-A-9-132612, or JP-A-9-227607 is preferred. The degree of polymerization is preferably 800 to 2000, more preferably 800 to 1400.
[0012]
Examples of the vinyl chloride resin before chlorination include a vinyl chloride homopolymer, a copolymer of a monomer having an unsaturated bond copolymerizable with a vinyl chloride monomer and a vinyl chloride monomer, and a vinyl chloride as a polymer. A graft copolymer obtained by graft copolymerization of a monomer is used. In the present invention, these polymers may be used alone or in combination of two or more.
[0013]
Examples of the monomer having an unsaturated bond copolymerizable with the vinyl chloride monomer include α-olefins such as ethylene, propylene and butylene; vinyl esters such as vinyl acetate and vinyl propionate; butyl vinyl ether and cetyl. Vinyl ethers such as vinyl ether; (meth) acrylic ester condyles such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl acrylate, and phenyl methacrylate; aromatic vinyls such as styrene and α-methylstyrene; vinylidene chloride, fluorine Halogenated vinyl vinyls such as vinylidene fluoride; N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide, and the like. These may be used alone or in combination of two or more. .
[0014]
The above-mentioned polymer for graft copolymerization with vinyl chloride is not particularly limited as long as vinyl chloride is graft-polymerized. For example, ethylene-vinyl acetate copolymer; ethylene-vinyl acetate-carbon oxide copolymer Ethylene-ethyl acrylate copolymer; ethylene-butyl acrylate-carbon oxide copolymer; ethylene-methyl methacrylate copolymer; ethylene-propylene copolymer; acrylonitrile-butadiene copolymer; polyurethane; chlorinated polyethylene; Modified polypropylene or the like, and these may be used alone or in combination of two or more.
[0015]
The vinyl chloride polymerization method is not particularly limited, and conventionally known suspension polymerization method, bulk polymerization method, solution polymerization method, emulsion polymerization method and the like are used, and the suspension polymerization method is preferable from the viewpoint of productivity.
[0016]
The chlorinated vinyl chloride resin composition for rehabilitation pipe of the present invention has a flexural modulus of the molded body of 450 MPa or more at 75 ° C., and the ratio of the flexural modulus at 20 ° C. to 75 ° C. (E, 20 ° C.) / (E , 75 ° C.) is more than 1 and less than 20, and the ratio (E, 75 ° C.) / (E, 105 ° C.) of the flexural modulus between 75 ° C. and 105 ° C. is 2 or more.
If the flexural modulus at 75 ° C. is less than 450 MPa, the strength in the operating temperature range is insufficient in applications that require heat resistance. Increasing the thickness of the rehabilitation pipe to compensate for this is not suitable because it reduces the formability and increases the cost.
When the ratio of the flexural modulus at 20 ° C. to 75 ° C. exceeds 20, the flexural modulus at 20 ° C. is as large as 9000 MPa, and the workability at the time of extrusion molding is significantly deteriorated. The lower limit of the elastic modulus in this range is not particularly limited from the viewpoint of moldability, but in practice it does not occur when the above ratio is 1 or less, so it may be 1 or more. Preferably it is more than 1 and less than 15, more preferably more than 1 and less than 10. Also, if the ratio of the flexural modulus of 75 ° C to 105 ° C is out of the above range, the renovated pipe is heated so that it can be easily inserted into the existing pipe before construction (for example, the cross-sectional shape is Ω). When it is constructed, the properties of being restored and closely attached to the inner peripheral surface of the existing pipe are deteriorated, and it is necessary to significantly increase the construction temperature. Preferably it is 3 or more. In order to achieve the above range, the chlorine content of the chlorinated vinyl chloride resin is set to 58 to 71% by weight, and a compounding agent that improves the extrudability is added as necessary without significantly reducing the heat resistance. It will be necessary.
[0017]
The chlorinated vinyl chloride resin composition has a Vicat softening temperature (5 kg load) in accordance with JIS K 7026 of 80 ° C. or higher. When the Vicat softening temperature is lower than 80 ° C., when it is used as a rehabilitation pipe, it is insufficient for an application requiring heat resistance, for example, a power cable protection pipe.
[0018]
The chlorinated vinyl chloride resin composition for rehabilitation pipes of the present invention comprises the chlorinated vinyl chloride resin composition having the above-mentioned specific chlorine content as a main component and further contains an additive. Examples of additives appropriately selected and contained include impact modifiers, thermoplastic elastomers, stabilizers, lubricants, processing aids, heat resistance improvers, antioxidants, ultraviolet absorbers, light stabilizers, filling Agents, pigments and the like.
[0019]
The impact modifier is not particularly limited, and for example, methyl methacrylate-butadiene-styrene copolymer (MBS), chlorinated polyethylene, acrylic rubber and the like are used.
[0020]
A thermoplastic elastomer may be added to the chlorinated vinyl chloride resin composition for the purpose of improving workability. The thermoplastic elastomer is not particularly limited. For example, acrylonitrile-butadiene copolymer (NBR), ethylene-vinyl acetate copolymer (EVA), ethylene-vinyl acetate-carbon oxide copolymer (EVACO), vinyl chloride. -Vinyl chloride thermoplastic elastomers such as vinyl acetate copolymers and vinyl chloride-vinylidene chloride copolymers, styrene thermoplastic elastomers, olefin thermoplastic elastomers, urethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamides A thermoplastic elastomer or the like is used. These thermoplastic elastomers may be used alone or in combination of two or more.
[0021]
The stabilizer is not particularly limited, and for example, a heat stabilizer, a heat stabilization aid and the like are used. The heat stabilizer is not particularly limited. Organotin stabilizers such as laurate and dibutyltin laurate polymer; Lead stabilizers such as lead stearate, dibasic lead phosphite, and tribasic lead sulfate; calcium-zinc stabilizer; barium-zinc Stabilizer; Barium-cadmium stabilizer and the like are used. These may be used alone or in combination of two or more.
[0022]
The stabilization aid is not particularly limited, and for example, epoxidized soybean oil, phosphate ester, polyol, hydrotalcite, zeolite, and the like are used. These may be used alone or in combination of two or more.
[0023]
As the lubricant, an internal lubricant and an external lubricant are used.
The internal lubricant is used for the purpose of lowering the flow viscosity of the molten resin during molding and preventing frictional heat generation. The internal lubricant is not particularly limited, and for example, butyl stearate, lauryl alcohol, stearyl alcohol, epoxy soybean oil, glycerin monostearate, stearic acid, bisamide and the like are used. These may be used alone or in combination of two or more.
The above external lubricant is used for the purpose of increasing the sliding effect between the molten resin and the metal surface during the molding process. The external lubricant is not particularly limited, and for example, paraffin wax, polyolefin wax, ester wax, montanic acid wax and the like are used. These may be used alone or in combination of two or more.
[0024]
The processing aid is not particularly limited, and for example, an acrylic processing aid such as an alkyl acrylate-alkyl methacrylate copolymer having a weight average molecular weight of 100,000 to 2,000,000 is used. The acrylic processing aid is not particularly limited, and for example, n-butyl acrylate-methyl methacrylate copolymer, 2-ethylhexyl acrylate-methyl methacrylate-butyl methacrylate copolymer and the like are used. These may be used alone or in combination of two or more.
[0025]
The heat resistance improver is not particularly limited, and for example, α-methylstyrene-based, N-phenylmaleimide-based resins and the like are used.
[0026]
Said antioxidant is not specifically limited, For example, a phenolic antioxidant etc. are used.
[0027]
The light stabilizer is not particularly limited, and for example, a light stabilizer such as a hindered amine is used.
[0028]
The ultraviolet absorber is not particularly limited, and for example, salicylic acid ester-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, and the like are used.
[0029]
Said filler is not specifically limited, For example, calcium carbonate, a talc, etc. are used.
[0030]
The above-mentioned pigment is not particularly limited, and examples thereof include organic pigments such as azo-based, phthalocyanine-based, selenium-based, dye lake-based; oxide-based, molybdenum chromate-based, sulfide / selenide-based, ferrocyanide-based, etc. Inorganic pigments are used.
[0031]
In the above chlorinated vinyl chloride resin composition, a plasticizer may be added for the purpose of improving the workability at the time of molding, but it may reduce the heat resistance of the molded product. It is not preferable to use it. The plasticizer is not particularly limited, and for example, dibutyl phthalate, di-2-ethylhexyl phthalate, di-2-ethylhexyl adipate and the like are used.
[0032]
The method for mixing the above additives with the above chlorinated vinyl chloride resin is not particularly limited. For example, a method using hot blending, a method using cold blending, or the like is used.
[0033]
The rehabilitation pipe of the invention 2 is usually prepared by performing extrusion molding with an extruder using the chlorinated vinyl chloride resin composition of the invention 1, and is inserted into an existing pipe and heated, or It is characterized by being in close contact with the inner surface of the existing pipe by being heated and subjected to internal pressure.
[0034]
The cross-sectional shape of the rehabilitation pipe can be inserted into the existing pipe to be rehabilitated and repaired, and is heated or heated and subjected to internal pressure so that the inner surface of the existing pipe is The shape is not particularly limited as long as the shape can be closely adhered, but an Ω shape is preferable.
[0035]
【Example】
In order to describe the present invention in more detail, examples are given below, but the present invention is not limited to these examples. In the examples, “part” means “part by weight” and “%” means “% by weight”.
[0036]
(Examples 1 and 2 and Comparative Examples 4 to 6)
(1) Production of Chlorinated Vinyl Chloride Resin Composition According to the composition shown in Table 1, the raw materials were stirred and mixed with 200L “Supermixer” (manufactured by Kawata) to obtain a chlorinated vinyl chloride resin composition. .
The grades and manufacturer names of each material are as follows.
Chlorinated vinyl chloride resin A; “HA-54K” manufactured by Tokuyama Sekisui Industry Co., Ltd., polymerization degree 1000
Chlorinated vinyl chloride resin B; “HA-54H” manufactured by Tokuyama Sekisui Industry Co., Ltd., polymerization degree 1000
Chlorinated vinyl chloride resin C; “HA-54F” manufactured by Tokuyama Sekisui Industry Co., Ltd., polymerization degree 1000
Chlorinated vinyl chloride resin D: Chlorination degree 73%, “TS-1000R” (polymerization degree 1050) Chlorinated product manufactured by Tokuyama Sekisui Industry Co., Ltd. Vinyl chloride resin A; “TS-1000R” (polymerization degree 1050) ) Tokuyama Sekisui Industry Co., Ltd.
Thermoplastic Elastomer A (EVACO); “Elvalloy 742” Mitsui DuPont Polychemical Co., Ltd. Thermal Stabilizer A; “ONZ-100F”, Mitsui Organic Synthesis Co., Ltd., Organic Tin Stabilizer Thermal Stabilizer B; “ONZ-6F” manufactured by Mitsui Organic Synthesis Co., Ltd., organic tin stabilizer lubricant A; “Hiwax 2203A” manufactured by Mitsui Chemicals, Inc., polyethylene wax lubricant B; “SL800” manufactured by Riken Vitamin Co., Ltd., stearyl stearate lubricant C: “Loxiol G21” manufactured by Cognis Japan, 12-hydroxystearic acid impact modifier A; “M511” manufactured by Kaneka Chemical Co., Ltd., MBS resin
(2) Molding of rehabilitated pipe The chlorinated vinyl chloride resin composition obtained by the above method was subjected to a biaxial counter-rotating extruder “SLM-50” (manufactured by Nagata Manufacturing Co., Ltd.) having a diameter of 50 mm, Obtained. The obtained melt was cooled with water at 20 ° C. to obtain a tubular body having an outer diameter of 50 mm and a wall thickness of 4.5 mm. The tubular body is allowed to stand in a gear opening heated to 110 ° C. for 20 minutes, and then the tubular body cross-section is made into a four-fold shape until the temperature of the molded body reaches 20 ° C. while maintaining this shape. A rehabilitation tube was obtained after cooling.
[0038]
(3) Evaluation was made on the chlorine content of the resin, and the Vicat softening temperature, flexural modulus, insertability and restorability of the rehabilitated pipe. The evaluation method is as follows. The results are summarized in Table 2.
(1) Measurement of chlorine content
CPVC chlorine content (Cl%) was measured according to JIS K 7229.
(2) Vicat softening temperature The Vicat softening temperature was measured in accordance with the Vicat softening temperature test method for thermoplastics (JIS K 7206). A 5 kg weight was used for the measurement.
(3) Flexural modulus Flexural modulus at 20 ° C., 75 ° C., and 105 ° C. was measured according to a bending test method (JIS K 7171) for hard plastics.
[0039]
(4) Evaluation of insertability After 80 ° C hot air was blown into the rehabilitation pipe from one end of the rehabilitation pipe for 10 minutes, the rehabilitation pipe was inserted into a 45 ° L-shaped steel pipe with an inner diameter of 50 mm. Thus, insertability was evaluated.
○ ...... It can be inserted and there was no damage such as cracking or whitening.
× ······ Insertion was impossible, or there was damage such as cracking or whitening.
(5) Restoration evaluation Insert a rehabilitation pipe into a steel pipe with an inner diameter of 50 mm and blow 110 ° C steam from one end of the rehabilitation pipe into the rehabilitation pipe for 10 minutes, and attach the rehabilitation pipe to the inner surface of the steel pipe. I let you. Next, after cooling by blowing air at 20 ° C. for 30 minutes, the close contact state between the steel pipe and the rehabilitated pipe was visually observed, and restorability was evaluated according to the following criteria.
○ The rehabilitation pipe was in full contact with the steel pipe.
X ... ・ The rehabilitation pipe was not in close contact with the steel pipe.
[0040]
(Comparative Examples 1 to 3)
(1) Preparation of vinyl chloride resin composition
In the same manner as in Examples 1 and 2 and Comparative Examples 4 to 6 , each raw material was agitated and mixed with a 200 L “Supermixer” (manufactured by Kawata Corporation) according to the composition shown in Table 1 to obtain a vinyl chloride resin composition.
[0041]
(2) Production of Chlorinated Vinyl Chloride Resin D of Comparative Example 3 180 kg of deionized water and 20 kg of PVC (trade name “TS-1000R” Tokuyama Sekisui Industry Co., Ltd.) in a glass-lined pressure-resistant reaction tank having an internal volume of 300 liters. The mixture was stirred and dispersed to disperse PVC in water, and the internal air was sucked with a vacuum pump, and the pressure was reduced until the gauge pressure was -78.4 KPa. The pressure was returned with nitrogen gas (returned until the gauge pressure reached 0), and the oxygen in the reaction vessel was removed by suction again with a vacuum pump. During this time, the heated oil was passed through the jacket to warm the inside of the reactor.
When the temperature in the reaction tank reached 80 ° C., chlorine gas began to be supplied and the reaction was allowed to proceed at a constant temperature of 110 ° C. The chlorine content of PVC in the reactor is calculated from the hydrogen chloride concentration generated in the reaction tank. When the chlorine content reaches 63% by weight, the reaction temperature is increased to 120 ° C, and hydrogen peroxide water with a concentration of 500 ppm is added. The reaction was continued with continuous addition at 0.5 Kg / hr. Further, when the chlorine content reached 68% by weight, the concentration of the hydrogen peroxide solution was changed to 1000 ppm and the reaction was continued. When the chlorination content reached 72% by weight, the supply of chlorine gas was stopped and the chlorination reaction was terminated. The amount of hydrogen peroxide added during the reaction was 2500 ppm relative to the charged resin. Further, nitrogen gas was blown into the reaction tank to remove unreacted chlorine, and the resulting resin was washed with water, dehydrated and dried to obtain a powdery chlorinated vinyl chloride resin. The obtained chlorinated vinyl chloride resin had a chlorine content of 73% by weight.
[0042]
(3) Preparation of rehabilitation pipe According to the composition shown in Table 1, the above vinyl chloride resin was stirred and mixed with a 200 L super mixer (manufactured by Kawata) to obtain a vinyl chloride resin composition. A rehabilitated tube was produced by the same method as in Examples 1 and 2 and Comparative Examples 4 to 6 .
[0043]
(4) Evaluation
In the same manner as in Examples 1 and 2 and Comparative Examples 4 to 6 , the chlorine content of the resin, the Vicat softening temperature of the rehabilitated pipe, the flexural modulus, the insertability and the restorability were evaluated. The results are summarized in Table 1 .
[0044]
[Table 1]
[0045]
In Table 1, ( ) Exceeded the measurement limit, so it was estimated.
[0046]
【The invention's effect】
The chlorinated vinyl chloride resin composition for rehabilitation pipes of the present invention is suitably used as a chlorinated vinyl chloride resin composition for rehabilitation pipes suitable for obtaining rehabilitation pipes having excellent heat resistance and excellent workability. It is done. Moreover, since the rehabilitation pipe | tube of this invention consists of said chlorinated vinyl chloride type-resin composition of this invention, it has the outstanding heat resistance, and is used suitably for the rehabilitation (restoration) of an existing pipe | tube.

Claims (1)

既設管中に挿入され、加熱されることにより、又は加熱されかつ内圧をかけられることにより上記既設管の内面に密着される更生管であって、
塩素含有率が60〜64重量%である塩素化塩化ビニル系樹脂100重量部に対して熱可塑性エラストマー1.5〜5重量部を含有してなり、成形体の曲げ弾性率が75℃において450MPa以上であり、20℃と75℃の曲げ弾性率の比(E,20℃)/(E,75℃)が1を越え20未満であり、75℃と105℃の曲げ弾性率の比(E,75℃)/(E,105℃)が2以上であり、かつ、JIS K 7026に準拠したビカット軟化温度(5Kg荷重)が80℃以上である塩素化塩化ビニル系樹脂組成物からなる更生管
A rehabilitation pipe that is inserted into an existing pipe and heated, or is heated and subjected to internal pressure to be in close contact with the inner surface of the existing pipe,
It contains 1.5 to 5 parts by weight of thermoplastic elastomer with respect to 100 parts by weight of chlorinated vinyl chloride resin having a chlorine content of 60 to 64% by weight , and the flexural modulus of the molded body is 450 MPa at 75 ° C. The ratio (E, 20 ° C.) / (E, 75 ° C.) of the flexural modulus at 20 ° C. and 75 ° C. is greater than 1 and less than 20, and the ratio of the flexural modulus at 75 ° C. and 105 ° C. (E , 75 ° C.) / (E, 105 ° C.) is 2 or more, and a rehabilitated pipe comprising a chlorinated vinyl chloride resin composition having a Vicat softening temperature (5 kg load) in accordance with JIS K 7026 of 80 ° C. or more. .
JP2002261700A 2002-09-06 2002-09-06 Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe Expired - Lifetime JP4079728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261700A JP4079728B2 (en) 2002-09-06 2002-09-06 Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261700A JP4079728B2 (en) 2002-09-06 2002-09-06 Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe

Publications (2)

Publication Number Publication Date
JP2004099697A JP2004099697A (en) 2004-04-02
JP4079728B2 true JP4079728B2 (en) 2008-04-23

Family

ID=32262000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261700A Expired - Lifetime JP4079728B2 (en) 2002-09-06 2002-09-06 Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe

Country Status (1)

Country Link
JP (1) JP4079728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012171124A (en) * 2011-02-18 2012-09-10 Sekisui Chem Co Ltd Pipe making member and method of regenerating existing pipe
WO2019065748A1 (en) * 2017-09-27 2019-04-04 積水化学工業株式会社 Resin composition for injection molding

Also Published As

Publication number Publication date
JP2004099697A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
JP5547909B2 (en) Vinyl chloride resin three-layer tube
US5962589A (en) Rubber compositions of low compression set
EP0808851B1 (en) Chlorinated polyvinyl chloride compound having excellent physical, chemical resistance and processing properties
JP4079728B2 (en) Chlorinated vinyl chloride resin composition for rehabilitation pipe and rehabilitation pipe
US6187868B1 (en) Chlorinated polyvinyl chloride compound having excellent physical, chemical resistance and processing properties
JP5271797B2 (en) Vinyl chloride resin molding
EP0983318B1 (en) Chlorinated polyvinyl chloride compound having excellent physical, chemical resistance and processing properties
JP2006199801A (en) Chlorinated vinyl chloride-based resin composition and its molded article
JP2003073518A (en) Vinyl chloride based resin composition for regenerated pipe and regenerated pipe
JPH09292063A (en) Pipe and joint excellent in flexibility and shock resistance
JP2002283454A (en) Rehabilitation-repairing tube
JP2002273790A (en) Method for producing heat resistant vinyl chloride resin pipe and heat resistant vinyl chloride resin molding
JP3220509B2 (en) Crosslinking composition
JP2003097768A (en) Polyvinyl chloride base resin composition for reclamation pipe and reclamation pipe
JP4171280B2 (en) Rigid vinyl chloride resin tube
JP2634007B2 (en) Heat shrinkable fluoro rubber composition
JP2003286380A (en) Chlorinated vinyl chloride resin composition and regenerated pipe
JPH06157845A (en) Thermoplastic elastomer composition
JP2952719B2 (en) Thermoplastic elastomer composition
JP2005036110A (en) Vinyl chloride resin plate for vacuum forming
JP2003089737A (en) Vinyl chloride resin composition and reclaimed vinyl chloride resin pipe
JP3302222B2 (en) Impact-resistant rigid PVC pipe
JP2000028044A (en) Corrugated pipe
JP2017165841A (en) Member for medical instrument and method for producing member for medical instrument
JPH10251338A (en) Corrugated pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4079728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

EXPY Cancellation because of completion of term