JP4079285B2 - Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method - Google Patents

Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method Download PDF

Info

Publication number
JP4079285B2
JP4079285B2 JP31281295A JP31281295A JP4079285B2 JP 4079285 B2 JP4079285 B2 JP 4079285B2 JP 31281295 A JP31281295 A JP 31281295A JP 31281295 A JP31281295 A JP 31281295A JP 4079285 B2 JP4079285 B2 JP 4079285B2
Authority
JP
Japan
Prior art keywords
kneading
fuel
kneader
coal
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31281295A
Other languages
Japanese (ja)
Other versions
JPH09151385A (en
Inventor
博 武▲崎▼
博司 湯浅
義則 大谷
康常 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Chugoku Electric Power Co Inc filed Critical Babcock Hitachi KK
Priority to JP31281295A priority Critical patent/JP4079285B2/en
Publication of JPH09151385A publication Critical patent/JPH09151385A/en
Application granted granted Critical
Publication of JP4079285B2 publication Critical patent/JP4079285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧流動層ボイラ複合発電プラントにおける石炭・水混合燃料の製造設備に係り、低水分の石炭・水混合燃料を製造する方法と、高いプラント効率を維持するのに好適な粉砕炭と水あるいは粉砕炭と水と脱硫剤の混練機とその運転方法、加圧流動層ボイラとその運転方法に関する。
【0002】
【従来の技術】
加圧流動層ボイラ複合発電プラントでは、火炉への石炭の供給方法として湿式供給方式が主に採用されている。例えば、特開昭62−155433号公報に示されているように、破砕された石炭に水と脱硫剤を加え、混練機により混合してぺースト状の流体(以下、Coal−Water Pastes;CWPと略す)とした後、ポンプを用いて加圧状態にある流動層ボイラに供給する方法である。したがって、CWPの性状に関しては、まず第一にポンプ輸送可能な程度に流動性を有すること、第二に、高いプラント効率を維持させるためにCWP中の水分量が少ないことが重要となる。
【0003】
上記CWPの性状に影響を与える主要な因子として、▲1▼添加水分量、▲2▼粒度分布、▲3▼混練度及び▲4▼石炭性状がある。特開昭62−155433号公報、特開平4−57890号公報には、添加水分量の調節機能を有したCWP製造法が開示されている。また、特開平6−108069号公報には、本発明者らが提案した粒度分布の調整によるCWP製造法が示されている。より少ない水分で流動化するCWPは構成粒子の重量平均径が1〜2mmである。公知の文献(S.J.Wrightet al.:Proceedings of 10th Internationl Conference on FBC,p381−388,San Francisco,1989)に記載されたCWPの重量平均径が0.1〜0.5mmであることと比較して、かなり粗めの粒度構成である。より低水分のCWPを製造するため、重量平均径が1〜2mmの範囲を満足するように粒度分布を調整する必要がある。
【0004】
さらには、特開平6−108070号公報には、石炭性状の違いに対応したCWP製造法が開示されている。
【0005】
【発明が解決しようとする課題】
上記従来技術は、より少ない水分量で流動性を有するCWPを得るために、CWP製造時の混練度を制御する点について配慮がなされていなかった。添加水分量や粒度分布の調整が目標通りになされていても、混練の度合いが適正でなければ、低水分で流動性のあるCWPは製造できない。すなわち、混練が不足した場合には、製造されるCWP中で石炭粒子と水が不均質な状態となり、著しく流動性に乏しい部分と、水分が多く分離しやすい部分ができる。また、必要以上に混練した場合には、比較的粗い粒子を含有することを特徴とするCWP中の粒子が粉砕され、構成粒子の重量平均径が細かくなって流動性がなくなる。その結果、ポンプで輸送できるようにするには、水分を多くする必要があった。
【0006】
また、ボイラの負荷変化運転では、各負荷での燃料消費量に応じたCWPが製造される。すなわち、混練機へ供給される粉砕炭、水等の原料の供給量が負荷に応じて変化することになる。この場合、原料の配合比率が設定通りであっても、混練機内での平均滞留時間が変化するため、前述の混練の度合いを一定に維持できなかった。例えば、負荷を下げた場合には、混練機内で必要以上に混練されて製造CWPの粘度が上昇するという問題があった。
【0007】
本発明の課題は、CWP製造時の粉砕炭と水あるいは粉砕炭と水と脱硫剤の混練度を制御して、より少ない水分量で流動性を有するようにCWPを製造し、高いプラント効率を維持することにある。
【0008】
【課題を解決するための手段】
本発明者らはCWP製造時の混練方法について鋭意研究を重ねた結果、上記本発明の課題が、粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練してCWPとする際に、CWPを構成する粒子のうち混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるように混練機を運転することによって達成されることを知見した。
【0009】
また、上記本発明の課題は、CWPを製造する装置において、混練機での消費動力を測定する手段と、その測定値とCWPの製造量から求まるCWP量当たりの混練エネルギー(kWh/トン−燃料)を演算し、この演算値に基づいて混練機の回転数、混練機出口ゲート弁の開度の少なくともいずれか一方を調節する制御手段を有する混練装置によって達成される。この場合、演算して得られる上記混練エネルギーが1〜5(kWh/トン−燃料)の範囲となるようにすることが望ましい。
【0010】
混練機での消費動力を測定して上記混練機の制御を行う手段の代わりに、製造するCWPの流動性を測定し、その測定値と設定値との偏差を演算して制御する手段、あるいは、ボイラ負荷変化指令を受信し、負荷変化信号に基づいて混練エネルギーを演算して上記混練機の制御を行う手段を備えた混練装置によっても、本発明の上記課題を達成することができる。
【0011】
また、ボイラ負荷変化指令に基づいて、混練して得られた石炭・水混合燃料を加圧流動層ボイラに供給する燃料供給量を制御し、該燃料供給量に基づき燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるように加圧流動層ボイラを運転することもできる。
【0012】
本発明には上記したような加圧流動層ボイラ用燃料製造方法と混練機とその運転方法および加圧流動層ボイラとその運転方法が含まれる。
【0013】
本発明は、CWPを製造するための粉砕炭と水あるいは粉砕炭と水と脱硫剤の混練時に、原料の大部分を占める石炭粒子を砕かないことに着目している。本発明者らは、製造されるCWP中で石炭粒子と水が均質な状態となり、なおかつ、製造されたCWPの粒度分布を著しく変化させない適正な混練条件を実験的に明らかにした。CWPの混練の度合いを、CWPの単位重量当たりに与える混練エネルギーE(kWh/トン−CWP)で定義すると、E=1〜5kWh/トン−CWPの範囲が上述の適正な混練条件である。
【0014】
上記の適正範囲でCWP原料を混練する場合、混練前後の0.02mm以下の粒径を有する粒子の累積重量割合の増加分は1〜5重量%の範囲である。
【0015】
一方、混練エネルギーEが1kWh/トン−CWP以下では、製造したCWPに流動性に乏しい部分と、水分が多く分離しやすい部分ができた。また、混練エネルギーEが5kWh/トン−CWP以上で混練した場合では、混練前後の0.02mm以下の粒径を有する粒子の累積重量割合の増加分は5重量%を超え、CWPを構成する粒子の重量平均径が細かくなって流動性がなくなった。
【0016】
上記したCWPの単位重量当たりに与える混練エネルギーEは、混練時の消費動力P(kW)をCWP製造量、すなわち混練機に供給される原料量の総和Q(トン/h)で除した値として、(1)式で表わせる。
E(kWh/トン−CWP)=P(kW)/Q(トン/h) (1)
つまり、混練エネルギーEが適正範囲を満足するように混練機を制御する具体的な方法として、プラントの運転条件として設定された原料量の総和Qに応じて混練エネルギーEが適正範囲を満足するように消費動力Pを操作すればよい。消費動力Pを変化させるには、混練機回転数もしくは混練機内に滞留するCWP量を調節すればよい。例えば、消費動力Pを増加させるには、混練機回転数を上昇させるか、または混練機内に滞留するCWP量を増加させることによって上記本発明の課題を達成できる。
【0017】
【発明の実施の形態】
次に本発明を実施の形態を詳細に説明する。
図1は本発明を実施するのに好適なCWP製造装置、供給装置及び燃焼装置の系統図である。原炭バンカ1内の原炭Aはフィーダ21より粗粉砕機2へ供給され、ここで粉砕された後、粉砕炭ホッパー3に送られる。この粉砕炭Bの一部は、フィーダ22により導管31を通って微粉砕機5に供給され、残りはモータ42で駆動するフィーダ23により導管34を通って混練機6に供給される。粉砕炭Bは、微粉砕機5で導管32より供給される所定量の水Dとともに湿式粉砕され微粉炭スラリとなる。
【0018】
この微粉炭スラリは、ポンプ9により導管33を通って混練機6へ供給される。石灰石バンカー4内の石灰石Cはモータ41で駆動するフィーダ24により導管35を通って、また、水Dはコントロ−ル弁10で注水量が調節された後、導管36を通って混練機6へ供給される。
【0019】
上記の粉砕炭B、微粉炭スラリ、石灰石C及び水Dの各原料は、混練機6において混練機モータ11で駆動する回転翼14によって撹拌、混合された後、所定の水分及び粒度分布を有するCWPが製造される。混練機6の出口部16には、ゲート弁開閉用モータ19で駆動する混練機出口ゲート弁15が設けられ、混練条件によってその開度が調節される。以上のようにして製造されたCWPは、CWPタンク7に投入される。
【0020】
一方、加圧流動層燃焼炉(以下、火炉と略す)101は圧力容器104内に収納されている。火炉101の底部に空気分散板105が設けられ、その上に流動媒体粒子102が充填されている。加圧空気106は圧力容器104内に供給された後、燃焼用空気107として空気分散板105を通って火炉101内に供給され、流動媒体粒子102を流動化して流動層109を形成する。
【0021】
火炉101にはCWPが供給導管37を通してCWPポンプ8によって圧送され、噴霧ノズル17から流動層109内に供給されて燃焼される。燃焼ガスは流動層109上部の空間部(フリーボード)110を経て排出され、サイクロン103でダストを除去後、導管108を通って図示されていないガスタービンに導入される。
【0022】
粗粉砕機2は最大径が約50mmの原炭を重量平均径約2mmの粒度まで粉砕できるように条件設定される。原炭Aの粉砕には、所定の粒度まで粉砕できる粉砕機であればどのような種類のものを用いても良い。粗粉砕機2の後流には分級機(図示せず)を設置して粉砕炭の最大粒子径を調節することもできる。
【0023】
粉砕炭ホッパー3内の粉砕炭Bはフィーダ22、23の回転数の調節によって、微粉砕機5と混練機6へ所定の割合で分配される。分配の比率は石炭性状に応じて設定される。通常、粉砕炭Bの内20〜30重量%程度が微粉砕機5へ供給、湿式粉砕され、微粉炭スラリとして混練機6内で粉砕炭Bと混合され、CWPとして最適な粒度分布に調整される。
【0024】
一方、CWP中の水分量は、微粉砕機5及び混練機6に供給される水Dの供給量で調整される。このように、炭種に応じて設定される各原料の配合割合を維持しながらCWPが製造される。
【0025】
ここで、CWPが製造される混練機6周辺の相互関係を詳細に説明する。
混練機6内の回転翼14を駆動する混練機モータ11に動力測定装置12が設けられる。動力測定装置12での動力測定は電力計を用いても、あるいは回転軸が受けるトルクと軸回転数から算出する方法でもよい。測定されたCWP混練時の消費動力は制御装置13に出力される。さらに、フィーダ23を駆動するモータ42、フィーダ24を駆動するモータ41、CWPポンプ9及び注水コントロール弁10より、各原料の供給量に相当する信号が原料総和演算器40に出力される。原料総和演算器40で演算された各原料の供給量の総和Q(CWP製造量と等量)は制御装置13に出力される。
【0026】
制御装置13では、(1)式で定義される単位CWP量当たりの混練エネルギーEが計算される。この計算値Eが適正範囲を満足するように、混練機モータ11へ制御信号が出力されて混練機6の回転数を変化させる。
【0027】
上記の装置において、脱硫剤としては最大径3mm程度のドロマイトあるいは石灰石Cの粒子が用いられる。図1の混練機6及び回転翼14は模式的に示したもので本発明は図示のものに限定されない。
【0028】
【実施例】
以下、実施例により本発明を詳細に説明する。
実施例1
図1に示した設備を用いて豪州炭(恒湿水分=3%、燃料比=1.5)のCWPを製造した。図2はこのときの混練機の運転トレンドチャートである。トレンドbに示すように、混練機6に供給する原料の総量Q(トン/時間)はー定で、ほぼ設定値通りに制御した。ところが、この場合はCWPの単位重量当たりの混練エネルギーE(kWh/トン−CWP)は、トレンドaに示すように目標値に対して高めに推移した。そこで、時刻tl、t2の時点で混練機6の回転数(rpm)を段階的に制御し(トレンドd)、それにともない混練動力(kW)を低下させた(トレンドc)。
【0029】
その結果、トレンドaで示す混練エネルギーEが目標値を満足した。本実施例での運転では、トレンドeに示すように混練機出口ゲート弁15の開度(%)を一定とした。
【0030】
ここで、目標値として設定した混練度の指標、CWPの単位重量当たりに与える混練エネルギーEは実験的に明らかにしたものである。実験データに基づいて混練エネルギーEの適正範囲を知見するに至った内容を説明する。
【0031】
図3に混練時の回転翼14の翼回転数を変化させて製造した各種CWPの粒度分布を示す。混練エネルギーEが大きくなるほど微粒子分が増加して累積重量割合が50重量%に相当する粒子径(重量平均径)が小さくなることが分かる。
【0032】
表1に、このときの混練エネルギーEの変化にともなうCWPの粒度分布の変化をまとめた。
【表1】

Figure 0004079285
【0033】
CWPの微粒子分を0.02mm以下の粒径を有する粒子の累積重量割合で表し、混練前後の0.02mm以下の粒径を有する粒子の累積重量割合の増加分(wt%)及び重量平均径(mm)を併記した。また、製造したCWPの粘度(Pa・s)も示した。
【0034】
混練前の初期状態(E=0)に対して、混練エネルギーE=0.5kWh/トンでは0.02mm以下の粒径を有する粒子の累積重量割合及び重量平均径はほとんど変化しないが、CWP粘度が異常に高い。これは、混練が不足しているためである。一方、混練エネルギーEを5kWh/トンを超えて10kWh/トンまで増大させると、0.02mm以下の粒径を有する粒子の累積重量割合の初期値に対する増加分は12重量%に達し、重量平均径は0.6mmまで小さくなる。その結果、CWP粘度は著しく増加する。
【0035】
図4は、CWP水分とCWP粘度の関係を示した説明図である。CWP水分が減少すれば、CWP粘度は増加する。ポンプ輸送ができない粘度領域(20Pa・s以上)に入らないように、通常の運転では7〜l0Pa・sの範囲を目標粘度に設定する。また、CWPを構成する粒子の重量平均径が小さくなると、CWP水分が一定の条件でCWP粘度が増加する。この場合、上述した目標粘度範囲を満足させるためには、CWP水分を増加させる必要が生じる。
【0036】
図5は、図4、表1で示した実験データを混練エネルギーE(kWh/トン−CWP)とCWP水分の関係として整理したものである。ここで、CWP粘度は一定の条件で比較した。CWP水分が増加しない混練エネルギーE=1〜5kWh/トン−CWPの範囲が、加圧流動層ボイラ用燃料を製造するのに適正な混練条件であることがわかる。表1から、この範囲では混練前後での0.02mm以下の粒径を有する粒子の累積重量割合の増加分が1〜5重量%の範囲にあることがわかる。
【0037】
以上の検討から、CWPを構成する粒子の0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるように混練機6を運転することによって、より少ない水分量で流動性を有するCWPを得ることが可能となる。
【0038】
実施例2
図6に本実施例の系統図を示す。なお、図6において図1と同一機能を奏する部材には同一番号を付して、その説明は省略する。
図6はCWP混練度の制御を混練機6の回転数でなく、混練機出口ゲート弁15の開度とした場合の構成である。また、本実施例ではボイラの負荷指令を直接制御装置13に出力してCWP製造量を演算し、測定している混練機6の動力値から混練エネルギーEを計算させた。
【0039】
制御装置13から混練機出口ゲート弁15を駆動するゲート弁開閉用モータ19へ制御信号が出力され、計算された混練エネルギーEが一定範囲となるように混練機出口ゲート弁15の開度を変化させる。その結果、より少ない水分量で流動性を確保する混練機6の運転が可能となる。
【0040】
実施例3
図7に本実施例の系統図を示す。なお、図7において図1と同一機能を奏する部材には同一番号を付して、その説明は省略する。
図7は混練機6で製造されるCWPの粘度を、混練機出口部16に設置した粘度計測装置18で測定し、その値に基づいて混練機モータ11の回転数、もしくは混練機出口ゲート弁15を操作する場合の構成である。図7に示した設備を用いて豪州炭(恒湿水分=3%、燃料比=1.5)のCWPを製造した。
【0041】
図8は、このときの混練機6の運転トレンドチャートである。ここでは示していないが、混練機6に供給する原料の総量Qはほぼ設定値通りに制御されている。ところが、トレンドfに示すように、製造CWPの粘度が目標値よりも高い値で推移した。そこで、時刻t3、t4及びt5の時点で混練機6の回転数を段階的に制御し(トレンドg)、それにともない混練動力を低下させた。その結果、トレンドfで示すCWP粘度の計測値が目標値を満足した。
【0042】
実施例4
図7に示した設備を用いて豪州炭(恒湿水分=3%、燃料比=1.5)のCWPを製造した。図9は、このときの混練機6の運転トレンドチャートであり、混練機出口ゲート弁15の開度を調節してCWP粘度を制御する場合である。混練機6に供給する原料の総量Qは一定で、ほぼ設定値通りに制御されている。ところが、トレンドhに示すように、製造CWPの粘度が目標値よりも高い値で推移した。そこで,時刻t6及びt7の時点で混練機出口ゲート弁15の開度を段階的に調節し(トレンドj)、それにともない混練機6内でのCWP滞留時間を低下させた(トレンドi)。その結果、トレンドhで示すように時刻t7以降ではCWP粘度の計測値が目標値を満足した。
【0043】
実施例5
図10は、ボイラ負荷の変化に対応して混練機6の運転条件を変化させた場合の運転トレンドチャートである。時刻t8でボイラ負荷100%から70%に、時刻t9に70%から50%に負荷低下指令が出力される(卜レンドk)。これに対応して、CWP製造設備では火炉101ヘのCWP供給量(トレンドl)、CWP製造量(トレンドm)、混練機6へ供給する原料の総量(トレンドo)を順次低下させる。
【0044】
混練機6の回転数を低下させずに混練機6の運転を継続していた(トレンド)従来の方法に対して、本発明法ではトレンドに示されるようにボイラ負荷に応じて混練機6の回転数を変化させたので、必要かつ十分な混練がおこなわれた。
【0045】
実施例6
図11に本実施例の系統図を示す。なお、図11において図1と同一機能を奏する部材には同一番号を付して、その説明は省略する。
図11は、ボイラの負荷指令に対応して、制御装置13に直接負荷指令を出力するか、あるいはCWPポンプ制御器20に一旦負荷指令を出力し、CWPポンプ8から導管37を通して輸送されるCWPの供給量を制御した後に、CWPポンプ8の制御値をCWPポンプ制御器20から制御装置13へ出力するか少なくともいずれか一方の方法で混練機6を運転した例である。
混練装置13では、混練エネルギーEが演算され、その値が1〜5kWh/トンーCWPに入るように混練機6の回転数を制御する。
【0046】
以上説明したごとく本発明によればCWPをより少ない水分量で安定して供給でき、高いプラント効率を維持できる。特に、プラントの負荷変化時において極めて性状の安定したCWPを製造できる。
【図面の簡単な説明】
【図1】 本発明の一実施例の系統図である。
【図2】 本発明の一実施例における混練機運転のトレンドチャートである。
【図3】 本発明の各種混練機の回転数(混練エネルギー)におけるCWPの粒径と累積重量割合の関係を示すグラフである。
【図4】 本発明のCWP水分とCWP粘度の関係を示す図である。
【図5】 本発明の混練エネルギーとCWP水分の関係を示す図である。
【図6】 本発明の一実施例の系統図である。
【図7】 本発明の一実施例の系統図である。
【図8】 本発明の一実施例における混練機運転のトレンドチャートである。
【図9】 本発明の一実施例における混練機運転のトレンドチャートである。
【図10】 本発明の一実施例における混練機運転のトレンドチャートである。
【図11】 本発明の一実施例の系統図である。
【符号の説明】
1 原炭バンカ 2 粗粉砕機
3 粉砕炭ホッパー 4 石灰石バンカ
5 微粉砕機 6 混練機
7 CWPタンク 8 CWPポンプ
9 微粉炭スラリポンプ 10 コントロール弁
12 動力測定装置 13 制御装置
14 回転翼 15 混練機出口ゲート弁
17 噴霧ノズル 18 粘度計測装置
19 ゲート弁開閉用モータ 40 原料総和演算器
101 加圧流動層燃焼炉 102 流動媒体粒子
104 圧力容器 105 空気分散板
A 原炭 B 粉砕炭
C 石灰石 D 水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coal / water mixed fuel production facility in a pressurized fluidized bed boiler combined power plant, a method for producing a low moisture coal / water mixed fuel, and a pulverized coal suitable for maintaining high plant efficiency. The present invention relates to a kneading machine and its operating method, and a pressurized fluidized bed boiler and its operating method.
[0002]
[Prior art]
In a pressurized fluidized bed boiler combined power plant, a wet supply system is mainly adopted as a method for supplying coal to a furnace. For example, as disclosed in Japanese Patent Application Laid-Open No. 62-155433, water and a desulfurizing agent are added to crushed coal and mixed with a kneader to produce a paste-like fluid (hereinafter referred to as Coal-Water Pastes; CWP). After that, it is supplied to a fluidized bed boiler in a pressurized state using a pump. Therefore, regarding the properties of CWP, first of all, it is important to have fluidity to the extent that pumping is possible, and secondly, in order to maintain high plant efficiency, it is important that the amount of water in CWP is small.
[0003]
The main factors affecting the properties of CWP include (1) added water content, (2) particle size distribution, (3) degree of kneading, and (4) coal properties. Japanese Patent Application Laid-Open No. Sho 62-155433 and Japanese Patent Application Laid-Open No. Hei 4-57890 disclose a CWP manufacturing method having a function of adjusting the amount of added water. Japanese Patent Application Laid-Open No. 6-108069 discloses a CWP production method by adjusting the particle size distribution proposed by the present inventors. CWP fluidized with less water has a weight average particle diameter of 1 to 2 mm. The weight average diameter of CWP described in a known document (S. J. Wrightt al .: Proceedings of 10th International Conference on FBC, p381-388, San Francisco, 1989) is 0.1 to 0.5 mm. In comparison, the grain size is considerably coarser. In order to produce a CWP having a lower moisture content, it is necessary to adjust the particle size distribution so that the weight average diameter satisfies the range of 1 to 2 mm.
[0004]
Furthermore, Japanese Patent Application Laid-Open No. 6-108070 discloses a CWP manufacturing method corresponding to the difference in coal properties.
[0005]
[Problems to be solved by the invention]
In the above prior art, in order to obtain CWP having fluidity with a smaller amount of water, no consideration has been given to controlling the degree of kneading during CWP production. Even if the amount of added water and the particle size distribution are adjusted as intended, CWP having low moisture and fluidity cannot be produced unless the degree of kneading is appropriate. That is, when kneading is insufficient, coal particles and water are in a non-homogeneous state in the produced CWP, and there are portions that are extremely poor in fluidity and portions that are easily separated due to much water. Further, when kneaded more than necessary, the particles in CWP characterized by containing relatively coarse particles are pulverized, and the weight average diameter of the constituent particles becomes fine and the fluidity is lost. As a result, it was necessary to increase the amount of water before the pump could be transported.
[0006]
Further, in the load change operation of the boiler, CWP corresponding to the fuel consumption amount at each load is manufactured. That is, the supply amount of raw materials such as pulverized charcoal and water supplied to the kneader changes according to the load. In this case, even if the blending ratio of the raw materials is as set, the average residence time in the kneader changes, so the degree of kneading described above cannot be maintained constant. For example, when the load is lowered, there is a problem that the viscosity of the manufactured CWP increases due to kneading more than necessary in the kneader.
[0007]
The object of the present invention is to control the degree of kneading of pulverized coal and water or pulverized coal and water and desulfurizing agent at the time of CWP production, to produce CWP so that it has fluidity with a smaller amount of water, and to achieve high plant efficiency It is to maintain.
[0008]
[Means for Solving the Problems]
As a result of intensive research on the kneading method at the time of CWP production, the inventors of the present invention have found that when the pulverized coal and water or the pulverized coal, water and a desulfurizing agent are kneaded to obtain CWP, Among the constituting particles, the weight ratio of particles having a particle size of 0.02 mm or less after kneading is in the range of 10 to 14 % by weight of the total coal weight, and the kneading energy per unit coal / water mixed fuel amount is 1 The kneader is operated so that the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading under the kneading conditions of ˜5 kWh / ton-fuel. It has been found that this can be achieved.
[0009]
In addition, the above-mentioned problem of the present invention is that, in an apparatus for producing CWP, means for measuring power consumed in a kneader, kneading energy per CWP amount (kWh / ton-fuel) determined from the measured value and the production amount of CWP. ) And a kneading apparatus having a control means for adjusting at least one of the rotation speed of the kneader and the opening degree of the kneader outlet gate valve based on the calculated value. In this case, it is desirable that the kneading energy obtained by calculation be in the range of 1 to 5 (kWh / ton-fuel).
[0010]
Instead of means for measuring the power consumption in the kneader and controlling the kneader, means for measuring the fluidity of the CWP to be produced and calculating and controlling the deviation between the measured value and the set value, or The above-described problem of the present invention can also be achieved by a kneading apparatus including means for receiving a boiler load change command, calculating kneading energy based on the load change signal, and controlling the kneader.
[0011]
Further, based on the boiler load change command, the fuel supply amount for supplying the coal / water mixed fuel obtained by kneading to the pressurized fluidized bed boiler is controlled, and the fuel in the particles constituting the fuel is controlled based on the fuel supply amount. The weight ratio of particles having a particle size of 0.02 mm or less after kneading is in the range of 10 to 14 % by weight of the total coal weight, and the kneading energy per unit coal / water mixed fuel amount is 1 to 5 kWh / ton- The pressurized fluidized bed boiler is operated so that the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading under the kneading conditions as fuel. You can also.
[0012]
The present invention includes a fuel production method for a pressurized fluidized bed boiler, a kneader, and an operating method thereof, and a pressurized fluidized bed boiler and an operating method thereof.
[0013]
The present invention pays attention to the fact that coal particles occupying most of the raw materials are not crushed when pulverized coal and water or pulverized coal, water and desulfurizing agent for producing CWP are kneaded. The present inventors experimentally clarified appropriate kneading conditions in which the coal particles and water are in a homogeneous state in the produced CWP, and do not significantly change the particle size distribution of the produced CWP. When the degree of kneading of CWP is defined by kneading energy E (kWh / ton-CWP) given per unit weight of CWP, the range of E = 1 to 5 kWh / ton-CWP is the above-mentioned appropriate kneading conditions.
[0014]
When the CWP raw material is kneaded in the proper range, the increment of the cumulative weight ratio of the particles having a particle size of 0.02 mm or less before and after the kneading is in the range of 1 to 5% by weight.
[0015]
On the other hand, when the kneading energy E was 1 kWh / ton-CWP or less, the produced CWP had a portion with poor fluidity and a portion with a lot of moisture that was easily separated. When the kneading energy E is kneaded at 5 kWh / ton-CWP or more, the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less before and after kneading exceeds 5 wt%, and the particles constituting CWP The weight average diameter of the resin became fine and the fluidity was lost.
[0016]
The kneading energy E given per unit weight of CWP is a value obtained by dividing the power consumption P (kW) during kneading by the CWP production amount, that is, the total amount Q (tons / h) of the amount of raw materials supplied to the kneader. , (1).
E (kWh / ton-CWP) = P (kW) / Q (ton / h) (1)
That is, as a specific method for controlling the kneader so that the kneading energy E satisfies the proper range, the kneading energy E satisfies the proper range according to the total amount Q of the raw material amounts set as the plant operating conditions. The power consumption P may be operated. In order to change the power consumption P, the kneader rotation speed or the amount of CWP staying in the kneader may be adjusted. For example, in order to increase the power consumption P, the above-mentioned problem of the present invention can be achieved by increasing the rotational speed of the kneader or increasing the amount of CWP staying in the kneader.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail.
FIG. 1 is a system diagram of a CWP manufacturing apparatus, a supply apparatus, and a combustion apparatus suitable for carrying out the present invention. The raw coal A in the raw coal bunker 1 is supplied from the feeder 21 to the coarse pulverizer 2, pulverized here, and then sent to the pulverized coal hopper 3. A part of the pulverized coal B is supplied to the fine pulverizer 5 through the conduit 31 by the feeder 22, and the rest is supplied to the kneader 6 through the conduit 34 by the feeder 23 driven by the motor 42. The pulverized coal B is wet-pulverized together with a predetermined amount of water D supplied from the conduit 32 by the pulverizer 5 to become a pulverized coal slurry.
[0018]
This pulverized coal slurry is supplied to the kneader 6 through the conduit 33 by the pump 9. Limestone C in the limestone bunker 4 passes through the conduit 35 by the feeder 24 driven by the motor 41, and the water D is adjusted by the control valve 10 and then the water D is adjusted to the kneader 6 through the conduit 36. Supplied.
[0019]
Each raw material of the above-mentioned pulverized coal B, pulverized coal slurry, limestone C and water D is stirred and mixed by the rotary blade 14 driven by the kneader motor 11 in the kneader 6 and then has a predetermined moisture and particle size distribution. CWP is manufactured. A kneader outlet gate valve 15 driven by a gate valve opening / closing motor 19 is provided at the outlet portion 16 of the kneader 6, and its opening degree is adjusted according to kneading conditions. The CWP manufactured as described above is put into the CWP tank 7.
[0020]
On the other hand, a pressurized fluidized bed combustion furnace (hereinafter referred to as a furnace) 101 is housed in a pressure vessel 104. An air dispersion plate 105 is provided at the bottom of the furnace 101, and fluidized medium particles 102 are filled thereon. The pressurized air 106 is supplied into the pressure vessel 104 and then supplied as combustion air 107 through the air dispersion plate 105 into the furnace 101 to fluidize the fluidized medium particles 102 to form a fluidized bed 109.
[0021]
CWP is pumped to the furnace 101 by the CWP pump 8 through the supply conduit 37 and supplied from the spray nozzle 17 into the fluidized bed 109 to be combusted. The combustion gas is discharged through a space (free board) 110 above the fluidized bed 109, and after dust is removed by the cyclone 103, it is introduced into a gas turbine (not shown) through a conduit 108.
[0022]
The condition of the coarse pulverizer 2 is set so that raw coal having a maximum diameter of about 50 mm can be pulverized to a particle size having a weight average diameter of about 2 mm. For the pulverization of the raw coal A, any type of pulverizer that can pulverize to a predetermined particle size may be used. A classifier (not shown) may be installed downstream of the coarse pulverizer 2 to adjust the maximum particle size of the pulverized coal.
[0023]
The pulverized coal B in the pulverized coal hopper 3 is distributed to the fine pulverizer 5 and the kneader 6 at a predetermined ratio by adjusting the rotation speed of the feeders 22 and 23. The distribution ratio is set according to the coal properties. Usually, about 20 to 30% by weight of the pulverized coal B is supplied to the pulverizer 5, wet pulverized, mixed with the pulverized coal B in the kneader 6 as a pulverized coal slurry, and adjusted to an optimum particle size distribution as CWP. The
[0024]
On the other hand, the amount of water in the CWP is adjusted by the amount of water D supplied to the pulverizer 5 and the kneader 6. Thus, CWP is manufactured, maintaining the blending ratio of each raw material set according to the coal type.
[0025]
Here, the interrelationship around the kneader 6 where the CWP is manufactured will be described in detail.
A power measuring device 12 is provided in a kneader motor 11 that drives a rotary blade 14 in the kneader 6. The power measurement by the power measuring device 12 may be performed using a power meter or a method of calculating from the torque received by the rotating shaft and the shaft rotational speed. The measured power consumption during CWP kneading is output to the control device 13. Further, a signal corresponding to the supply amount of each raw material is output from the motor 42 for driving the feeder 23, the motor 41 for driving the feeder 24, the CWP pump 9 and the water injection control valve 10 to the raw material total calculator 40. The total amount Q (the same amount as the CWP production amount) of the supply amount of each raw material calculated by the raw material total calculator 40 is output to the control device 13.
[0026]
The control device 13 calculates the kneading energy E per unit CWP amount defined by the equation (1). A control signal is output to the kneader motor 11 to change the rotation speed of the kneader 6 so that the calculated value E satisfies the appropriate range.
[0027]
In the above apparatus, dolomite or limestone C particles having a maximum diameter of about 3 mm are used as the desulfurizing agent. The kneader 6 and the rotary blade 14 in FIG. 1 are schematically shown, and the present invention is not limited to the illustrated one.
[0028]
【Example】
Hereinafter, the present invention will be described in detail by way of examples.
Example 1
CWP of Australian charcoal (constant humidity moisture = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG. FIG. 2 is an operation trend chart of the kneader at this time. As shown in the trend b, the total amount Q (tons / hour) of the raw materials supplied to the kneader 6 was constant and controlled almost as set values. However, in this case, the kneading energy E (kWh / ton-CWP) per unit weight of CWP was higher than the target value as shown in trend a. Therefore, the rotational speed (rpm) of the kneading machine 6 was controlled stepwise at the times t 1 and t 2 (trend d), and the kneading power (kW) was reduced accordingly (trend c).
[0029]
As a result, the kneading energy E indicated by trend a satisfied the target value. In the operation in this example, the opening degree (%) of the kneader outlet gate valve 15 was made constant as shown in the trend e.
[0030]
Here, the index of kneading degree set as the target value and the kneading energy E given per unit weight of CWP are experimentally clarified. The contents that led to finding out the appropriate range of the kneading energy E based on the experimental data will be described.
[0031]
FIG. 3 shows the particle size distribution of various CWPs manufactured by changing the blade rotation speed of the rotary blade 14 during kneading. It can be seen that as the kneading energy E increases, the fine particle content increases and the particle diameter (weight average diameter) corresponding to a cumulative weight ratio of 50% by weight decreases.
[0032]
Table 1 summarizes changes in the CWP particle size distribution accompanying changes in the kneading energy E at this time.
[Table 1]
Figure 0004079285
[0033]
The fine particle content of CWP is expressed as a cumulative weight ratio of particles having a particle size of 0.02 mm or less, and an increase (wt%) and a weight average diameter of the cumulative weight ratio of particles having a particle diameter of 0.02 mm or less before and after kneading. (Mm) is also written. Moreover, the viscosity (Pa * s) of manufactured CWP was also shown.
[0034]
With respect to the initial state before kneading (E = 0), when the kneading energy E = 0.5 kWh / ton, the cumulative weight ratio and weight average diameter of particles having a particle diameter of 0.02 mm or less are hardly changed, but the CWP viscosity is not changed. Is abnormally high. This is because kneading is insufficient. On the other hand, when the kneading energy E is increased from 5 kWh / ton to 10 kWh / ton, the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less reaches 12% by weight, and the weight average diameter Becomes as small as 0.6 mm. As a result, the CWP viscosity increases significantly.
[0035]
FIG. 4 is an explanatory diagram showing the relationship between CWP moisture and CWP viscosity. As CWP moisture decreases, the CWP viscosity increases. In a normal operation, a range of 7 to 10 Pa · s is set as the target viscosity so as not to enter a viscosity region (20 Pa · s or more) where pumping is not possible. Further, when the weight average diameter of the particles constituting the CWP becomes small, the CWP viscosity increases under the condition that the CWP moisture is constant. In this case, in order to satisfy the target viscosity range described above, it is necessary to increase the CWP moisture.
[0036]
FIG. 5 summarizes the experimental data shown in FIG. 4 and Table 1 as the relationship between the kneading energy E (kWh / ton-CWP) and the CWP moisture. Here, the CWP viscosity was compared under a certain condition. It can be seen that the range of kneading energy E = 1 to 5 kWh / ton-CWP at which CWP moisture does not increase is an appropriate kneading condition for producing a fuel for a pressurized fluidized bed boiler. From Table 1, it can be seen that in this range, the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less before and after kneading is in the range of 1 to 5% by weight.
[0037]
From the above examination, the kneader 6 is operated so that the increase in the cumulative weight ratio of the particles having a particle size of 0.02 mm or less of the particles constituting the CWP is in the range of 1 to 5% by weight before and after kneading. As a result, it is possible to obtain CWP having fluidity with a smaller amount of water.
[0038]
Example 2
FIG. 6 shows a system diagram of this embodiment. In FIG. 6, members having the same functions as those in FIG.
FIG. 6 shows a configuration in which the CWP kneading degree is controlled not by the rotation speed of the kneader 6 but by the opening degree of the kneader outlet gate valve 15. In this embodiment, the boiler load command is directly output to the control device 13 to calculate the CWP production amount, and the kneading energy E is calculated from the power value of the kneader 6 being measured.
[0039]
A control signal is output from the control device 13 to a gate valve opening / closing motor 19 that drives the kneader outlet gate valve 15, and the opening degree of the kneader outlet gate valve 15 is changed so that the calculated kneading energy E falls within a certain range. Let As a result, it is possible to operate the kneader 6 that ensures fluidity with a smaller amount of water.
[0040]
Example 3
FIG. 7 shows a system diagram of this embodiment. In FIG. 7, members having the same functions as those in FIG.
FIG. 7 shows the viscosity of CWP produced by the kneader 6 measured by a viscosity measuring device 18 installed at the kneader outlet 16, and the number of revolutions of the kneader motor 11 or the kneader outlet gate valve based on the measured value. This is a configuration when 15 is operated. CWP of Australian charcoal (constant humidity moisture = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG.
[0041]
FIG. 8 is an operation trend chart of the kneader 6 at this time. Although not shown here, the total amount Q of raw materials supplied to the kneader 6 is controlled almost according to the set value. However, as shown in the trend f, the viscosity of the manufactured CWP changed at a value higher than the target value. Therefore, the rotational speed of the kneader 6 was controlled in stages at the times t 3 , t 4 and t 5 (trend g), and the kneading power was reduced accordingly. As a result, the measured value of CWP viscosity indicated by trend f satisfied the target value.
[0042]
Example 4
CWP of Australian charcoal (constant humidity moisture = 3%, fuel ratio = 1.5) was manufactured using the equipment shown in FIG. FIG. 9 is an operation trend chart of the kneading machine 6 at this time, in which the CWP viscosity is controlled by adjusting the opening degree of the kneading machine outlet gate valve 15. The total amount Q of raw materials supplied to the kneader 6 is constant and is controlled almost according to the set value. However, as shown in the trend h, the viscosity of the manufactured CWP changed at a value higher than the target value. Therefore, the opening degree of the kneader outlet gate valve 15 is adjusted step by step at times t 6 and t 7 (trend j), and the CWP residence time in the kneader 6 is reduced accordingly (trend i). . As a result, the measurement value of the CWP viscosity at time t 7 after as shown by the trend h has satisfied the target value.
[0043]
Example 5
FIG. 10 is an operation trend chart in the case where the operation conditions of the kneader 6 are changed in response to changes in the boiler load. To 70% boiler load of 100% at time t 8, the load reduction instruction from 70% at time t 9 to 50% are output (Bok trend k). Correspondingly, in the CWP production facility, the CWP supply amount to the furnace 101 (trend 1), the CWP production amount (trend m), and the total amount of raw material (trend o) supplied to the kneader 6 are sequentially reduced.
[0044]
In contrast to the conventional method in which the operation of the kneading machine 6 was continued without reducing the rotational speed of the kneading machine 6 (trend g ), in the method of the present invention, the kneading machine according to the boiler load as shown by the trend q. Since the rotational speed of 6 was changed, necessary and sufficient kneading was performed.
[0045]
Example 6
FIG. 11 shows a system diagram of this embodiment. In FIG. 11, members having the same functions as those in FIG.
FIG. 11 shows a CWP that directly outputs a load command to the control device 13 or outputs a load command to the CWP pump controller 20 in response to the boiler load command, and is transported from the CWP pump 8 through the conduit 37. In this example, the control value of the CWP pump 8 is output from the CWP pump controller 20 to the controller 13 after controlling the supply amount of at least one of the methods.
In the kneading device 13, the kneading energy E is calculated, and the rotation speed of the kneading machine 6 is controlled so that the value thereof falls within the range of 1 to 5 kWh / ton-CWP.
[0046]
As described above, according to the present invention, CWP can be stably supplied with a smaller amount of water, and high plant efficiency can be maintained. In particular, CWP having extremely stable properties can be produced when the load of the plant changes.
[Brief description of the drawings]
FIG. 1 is a system diagram of an embodiment of the present invention.
FIG. 2 is a trend chart of kneader operation in an embodiment of the present invention.
FIG. 3 is a graph showing the relationship between the CWP particle size and the cumulative weight ratio at the rotation speed (kneading energy) of various kneaders of the present invention.
FIG. 4 is a graph showing the relationship between CWP moisture and CWP viscosity of the present invention.
FIG. 5 is a graph showing the relationship between kneading energy and CWP moisture according to the present invention.
FIG. 6 is a system diagram of an embodiment of the present invention.
FIG. 7 is a system diagram of an embodiment of the present invention.
FIG. 8 is a trend chart of kneader operation in an embodiment of the present invention.
FIG. 9 is a trend chart of kneader operation in one embodiment of the present invention.
FIG. 10 is a trend chart of kneader operation in one embodiment of the present invention.
FIG. 11 is a system diagram of an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coal bunker 2 Coarse crusher 3 Crushing coal hopper 4 Limestone bunker 5 Fine crusher 6 Kneading machine 7 CWP tank 8 CWP pump 9 Pulverized coal slurry pump 10 Control valve 12 Power measuring device 13 Control device 14 Rotor blade 15 Kneader exit Gate valve 17 Spray nozzle 18 Viscosity measuring device 19 Gate valve opening / closing motor 40 Raw material sum calculator 101 Pressurized fluidized bed combustion furnace 102 Fluidized medium particle 104 Pressure vessel 105 Air dispersion plate A Raw coal B Crushed coal C Limestone D Water

Claims (12)

粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練して石炭・水混合燃料とした後に、該燃料を加圧流動層ボイラに供給する加圧流動層ボイラ燃料製造時の混練機運転方法において、
該燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるように混練機を運転することを特徴とする混練機運転方法。
In a kneader operation method for producing a pressurized fluidized bed boiler fuel in which pulverized coal and water or pulverized coal, water and a desulfurizing agent are kneaded to obtain a coal / water mixed fuel and then the fuel is supplied to the pressurized fluidized bed boiler ,
The weight ratio of particles having a particle size of 0.02 mm or less after kneading in the particles constituting the fuel is in the range of 10 to 14 % by weight of the total coal weight, and kneading energy per unit coal / water mixed fuel amount However, under the kneading conditions of 1 to 5 kWh / ton-fuel, the increase in the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading. A kneader operating method characterized by operating a machine.
混練機において粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練機で混練して石炭・水混合燃料とした後、該燃料を加圧流動層ボイラに供給する際の混練機運転方法において、
該燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるように混練機を運転することを特徴とする混練機運転方法。
In the kneader operation method when supplying the fuel to the pressurized fluidized bed boiler after kneading the pulverized coal and water or the pulverized coal and water and the desulfurizing agent in the kneader to obtain a coal / water mixed fuel,
The weight ratio of particles having a particle size of 0.02 mm or less after kneading in the particles constituting the fuel is in the range of 10 to 14 % by weight of the total coal weight, and kneading energy per unit coal / water mixed fuel amount However, under the kneading conditions of 1 to 5 kWh / ton-fuel, the increase in the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading. A kneader operating method characterized by operating a machine.
混練機の撹拌翼の回転数、混練機出口に設けられたゲート弁の開度の少なくともいずれか一方を調節して、燃料を構成する粒子中の0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにすることを特徴とする請求項2記載の混練機運転方法。Accumulation of particles having a particle size of 0.02 mm or less in particles constituting fuel by adjusting at least one of the rotational speed of the stirring blade of the kneader and the opening of the gate valve provided at the kneader outlet 3. The kneader operating method according to claim 2, wherein an increase in the weight ratio is in the range of 1 to 5% by weight before and after kneading. 石炭・水混合燃料の流動性の測定値と設定値との偏差に基づいて、燃料を構成する粒子中の0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにすることを特徴とする請求項3記載の混練機運転方法。Based on the deviation between the measured value and the set value of the fluidity of the coal / water mixed fuel, the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less in the particles constituting the fuel is 4. A kneader operating method according to claim 3, wherein the kneading machine operates in a range of 1 to 5 wt%. ボイラ負荷変化指令に基づいて、燃料を構成する粒子中の0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにすることを特徴とする請求項3記載の混練機運転方法。Based on the boiler load change command, the increase in the cumulative weight ratio of particles having a particle size of 0.02 mm or less in the particles constituting the fuel is in the range of 1 to 5% by weight before and after kneading. The kneader operating method according to claim 3. 粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練して石炭・水混合燃料とした後に、該燃料を加圧流動層ボイラに供給する加圧流動層ボイラの運転方法において、
ボイラ負荷変化指令に基づいて、混練して得られた石炭・水混合燃料を加圧流動層ボイラに供給する燃料供給量を制御し、該燃料供給量に基づき燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにすることを特徴とする加圧流動層ボイラの運転方法。
In a method for operating a pressurized fluidized bed boiler that supplies pulverized coal and water or pulverized coal, water, and a desulfurizing agent to a coal / water mixed fuel, and then supplies the fuel to the pressurized fluidized bed boiler,
Based on the boiler load change command, the fuel supply amount supplied to the pressurized fluidized bed boiler with the coal / water mixed fuel obtained by kneading is controlled, and after kneading in the particles constituting the fuel based on the fuel supply amount The weight ratio of particles having a particle size of 0.02 mm or less in the range of 10 to 14 % by weight of the total coal weight, and the kneading energy per unit coal / water mixed fuel amount is 1 to 5 kWh / ton-fuel. Under such kneading conditions, the increase in the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading. Driving method.
粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練して石炭・水混合燃料とする際に用いる加圧流動層ボイラ用燃料製造用混練機において、混練機内部に設けられた前記粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練するための撹拌翼の回転数、混練機出口に設けられたゲート弁の開度の少なくともいずれか一方を調節して、燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにする混練機の混練度を制御する制御手段を有することを特徴とする加圧流動層ボイラ用燃料製造用混練機。In a kneading machine for producing fuel for a pressurized fluidized bed boiler used when kneaded coal and water or pulverized coal, water and a desulfurizing agent are kneaded to produce a coal / water mixed fuel, the pulverized coal provided inside the kneader Kneading in particles constituting fuel by adjusting at least one of the rotation speed of a stirring blade for kneading water or pulverized charcoal, water and desulfurization agent, and the opening of a gate valve provided at the kneader outlet The weight ratio of particles having a particle size of 0.02 mm or less is in the range of 10 to 14 % by weight of the total coal weight, and the kneading energy per unit coal / water mixed fuel amount is 1 to 5 kWh / ton-fuel. Control for controlling the degree of kneading of the kneader so that the increment of the cumulative weight ratio of particles having a particle size of 0.02 mm or less is in the range of 1 to 5% by weight before and after kneading Pressurization characterized by having means A kneader for fuel production for fluidized bed boilers. 混練機での消費動力を測定する手段と、該手段で測定される消費動力測定値を石炭・水混合燃料の製造量で除した値である該単位燃料量当たりの混練エネルギー(kWh/トン−燃料)を演算する手段を設け、該演算手段の演算値に基づいて混練機の混練度を制御する制御手段は混練機の運転を制御することを特徴とする請求項7記載の加圧流動層ボイラ用燃料製造用混練機。A means for measuring power consumption in a kneader, and a kneading energy per unit fuel amount (kWh / ton−), which is a value obtained by dividing the power consumption measurement value measured by the means by the production amount of coal / water mixed fuel. 8. A pressurized fluidized bed according to claim 7, further comprising means for calculating a fuel), and the control means for controlling the degree of kneading of the kneader based on the calculated value of the calculating means controls the operation of the kneader. A kneading machine for boiler fuel production. 混練機の混練度を制御する制御手段は前記演算手段で演算される単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となるように制御することを特徴とする請求項8記載の加圧流動層ボイラ用燃料製造用混練機。The control means for controlling the kneading degree of the kneading machine controls the kneading energy per unit coal / water mixed fuel calculated by the calculating means to be 1 to 5 kWh / ton-fuel. Item 9. A kneader for fuel production for a pressurized fluidized bed boiler according to Item 8. 石炭・水混合燃料の流動性を測定する手段と、該測定値と設定値との偏差を演算する演算手段を設け、該演算手段の演算値に基づいて混練機の混練度を制御する制御手段は混練機の運転を制御することを特徴とする請求項7記載の加圧流動層ボイラ用燃料製造用混練機。Control means for controlling the kneading degree of the kneader based on the calculated value of the calculating means provided with means for measuring the fluidity of the coal / water mixed fuel and calculating means for calculating the deviation between the measured value and the set value 8. The kneader for producing fuel for a pressurized fluidized bed boiler according to claim 7, wherein the operation of the kneader is controlled. 混練機の混練度を制御する制御手段はボイラ負荷変化指令を受信し、該負荷変化信号に基づいて混練機の運転を制御することを特徴とする請求項7記載の加圧流動層ボイラ用燃料製造用混練機。8. The fuel for a pressurized fluidized bed boiler according to claim 7, wherein the control means for controlling the kneading degree of the kneader receives a boiler load change command and controls the operation of the kneader based on the load change signal. Manufacturing kneader. 粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練して石炭・水混合燃料とする混練機と、該混練機で得られた石炭・水混合燃料を加圧流動層ボイラに供給する燃料ポンプなどからなる石炭・水混合燃料供給部を備えた加圧流動層ボイラにおいて、混練機内部に設けられた前記粉砕炭と水あるいは粉砕炭と水と脱硫剤を混練するための撹拌翼の回転数、混練機出口に設けられたゲート弁の開度の少なくともいずれか一方を調節して、燃料を構成する粒子中の混練後における粒径0.02mm以下の粒子の重量割合が全石炭重量の10〜14重量%の範囲にあり、かつ、単位石炭・水混合燃料量当たりの混練エネルギーが、1〜5kWh/トン−燃料となる混練条件下で、0.02mm以下の粒径を有する粒子の累積重量割合の増加分が、混練前後で1〜5重量%の範囲となるようにする混練機の混練度を制御する制御手段と混練機で得られた石炭・水混合燃料の加圧流動層ボイラへの燃料供給量を制御する燃料ポンプ制御手段を設け、該燃料ポンプ制御手段はボイラ負荷変化指令を受信し、燃料ポンプ制御量を演算して出力し、混練機の混練度を制御する制御手段は前記燃料ポンプ制御量に基づいて混練機の混練度を制御することを特徴とする加圧流動層ボイラ。A kneader that kneads pulverized coal and water or pulverized coal and water and a desulfurizing agent to form a coal / water mixed fuel, and a fuel pump that supplies the coal / water mixed fuel obtained by the kneader to a pressurized fluidized bed boiler In a pressurized fluidized bed boiler equipped with a coal / water mixed fuel supply unit composed of, etc., the rotational speed of a stirring blade for kneading the pulverized coal and water or the pulverized coal, water and desulfurizing agent provided inside the kneader Then, by adjusting at least one of the opening degree of the gate valve provided at the kneader outlet, the weight ratio of particles having a particle size of 0.02 mm or less after kneading in the particles constituting the fuel is 10% of the total coal weight. ~ in the range of 14 wt%, and kneaded energy per unit of coal-water mixture fuel amount, 1~5KWh / ton - a kneading conditions as a fuel, accumulation of particles having a particle size 0.02mm Increase in weight ratio is before and after kneading The control means for controlling the degree of kneading of the kneader and the fuel for controlling the amount of fuel supplied to the pressurized fluidized bed boiler of the coal / water mixed fuel obtained by the kneader A pump control means is provided, the fuel pump control means receives a boiler load change command, calculates and outputs a fuel pump control amount, and a control means for controlling the kneading degree of the kneader is based on the fuel pump control amount. A pressurized fluidized bed boiler characterized by controlling the degree of kneading of a kneader.
JP31281295A 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method Expired - Lifetime JP4079285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31281295A JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31281295A JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Publications (2)

Publication Number Publication Date
JPH09151385A JPH09151385A (en) 1997-06-10
JP4079285B2 true JP4079285B2 (en) 2008-04-23

Family

ID=18033712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31281295A Expired - Lifetime JP4079285B2 (en) 1995-11-30 1995-11-30 Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method

Country Status (1)

Country Link
JP (1) JP4079285B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107890B (en) * 2019-04-02 2020-06-26 淄博齐林贵和热电有限公司 Method for preventing circulating fluidized bed boiler from coking

Also Published As

Publication number Publication date
JPH09151385A (en) 1997-06-10

Similar Documents

Publication Publication Date Title
US6467707B1 (en) Control logic for use in controlling grinding mill systems
JP4079285B2 (en) Kneader for fuel production for pressurized fluidized bed boiler and its operating method, and pressurized fluidized bed boiler and its operating method
JPS5927789B2 (en) Coal/water suspension for coal gasification and its production method
JPH02157053A (en) Vertical mill control apparatus
JP2000265182A (en) Production of coal/water mixed fuel and its device
JPH11237032A (en) Manufacture of coal-water paste
CN107413188A (en) The slurries system and its pulping process of a kind of agstone slurrying
JPH10296117A (en) Sand making method and sand making device
US4850700A (en) Method and apparatus for producing a coal/water mixture for combustion in a fluidized bed unit
JPH06277477A (en) Device for producing high-concentration slurry and its production
JP2631623B2 (en) Apparatus and method for producing coal / water slurry
JP3616110B2 (en) Pasty fuel manufacturing method and apparatus
JP3588128B2 (en) Coal / water mixture and its production method
JP3807466B2 (en) Method for producing granulated material containing coal ash
JP3932373B2 (en) Viscosity measurement method and viscosity control method for mixed paste of coal and water
JPH09241665A (en) Apparatus for producing and supplying coal/water slurry
JP2511129B2 (en) Method for producing high concentration coal water slurry
JP2729775B2 (en) Stirring adjustment device for high concentration CWM and its operation method
JPH07228878A (en) Apparatus for controlling kneading of coal/water mixture
JP2006045725A (en) Apparatus for feeding paper stock to continuous type pulper
JP2729763B2 (en) Method and apparatus for manufacturing CWP
JPH09143519A (en) Method for operating blast furnace by blowing pulverized coal
JP2003049181A (en) Device for producing coal/water paste
JPH11237034A (en) Manufacturing device for coal-water paste
JPS61216748A (en) Method of controlling quantity of media crushed in agitatingball mill

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term