JP4078516B2 - Collision energy absorbing member and automobile side member using the same - Google Patents

Collision energy absorbing member and automobile side member using the same Download PDF

Info

Publication number
JP4078516B2
JP4078516B2 JP2001334024A JP2001334024A JP4078516B2 JP 4078516 B2 JP4078516 B2 JP 4078516B2 JP 2001334024 A JP2001334024 A JP 2001334024A JP 2001334024 A JP2001334024 A JP 2001334024A JP 4078516 B2 JP4078516 B2 JP 4078516B2
Authority
JP
Japan
Prior art keywords
tube
cross
collision
energy absorbing
side member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001334024A
Other languages
Japanese (ja)
Other versions
JP2003139179A5 (en
JP2003139179A (en
Inventor
貴朗 井口
裕二 橋本
治 園部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001334024A priority Critical patent/JP4078516B2/en
Publication of JP2003139179A publication Critical patent/JP2003139179A/en
Publication of JP2003139179A5 publication Critical patent/JP2003139179A5/ja
Application granted granted Critical
Publication of JP4078516B2 publication Critical patent/JP4078516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車車両の衝突エネルギー吸収部材に関し、特に衝突時のエネルギー吸収量の大きな衝突エネルギー吸収部材およびそれを用いた自動車のサイドメンバー(すなわちフロントサイドメンバー,リアサイドメンバー)に関する。
【0002】
【従来の技術】
車両を構成するフロントサイドメンバーやリヤサイドメンバーなどは、車両衝突時に適度に潰れて衝突時のエネルギーを吸収し、キャビンの変形を抑制する衝突エネルギー吸収部材として重要な役割を有している。
図2に自動車のバンパー21に直結されたフロントサイドメンバー20の一例を示す。例えば、前面からの衝突で、衝突荷重22がバンパー21からフロントサイドメンバー20の軸方向に伝達される。この荷重負荷により、フロントサイドメンバー20は蛇腹状に潰れ、潰れる際に衝突エネルギーを吸収する。
【0003】
車両衝突時の乗員の安全性向上のため、フロントサイドメンバー等の衝突エネルギー吸収部材には、エネルギー吸収能が高い部材が求められている。
このような要望に対し、 例えば、特開平4−310477号公報には、軽金属により閉断面構造に押し出し成形された基本メンバーとこの基本メンバー内に嵌合し略同じ長さの、 少なくとも先端に圧縮変形促進部、 好ましくは切欠き、を設けた補強メンバーとで二重構造を形成した車両のサイドメンバーが提案されている。特開平4−310477号公報に記載されたサイドメンバーによれば、 曲げ剛性、捩り剛性、潰れ変形がスチール製のサイドメンバーと同等もしくはそれ以上の特性を満足させることができるとしている。しかし、特開平4−310477号公報に記載されたサイドメンバーは、基本メンバーが軽金属製の押し出し成形材で高価なうえ、 補強メンバーの構造が複雑なため、製造コストが高価となるという問題があった。
【0004】
また、特開平11−208519号公報には、軸方向の塑性変形で衝突時の衝撃吸収を行う部材を中空材で形成し、 該中空材の中心軸を通る面上に該中空材の内面に接するリブを設けたことを特徴とする軽金属材料で形成した自動車の車体フレーム構造が提案されている。特開平11−208519号公報に記載された車体フレーム構造は、軽金属材料を使用し、好ましくは押し出し成形で製造され、 衝突時の衝撃エネルギー吸収特性が優れているとされる。しかし、アルミニウム等の軽金属材料の押し出し成形材は高価であるという問題があった。なお、衝突エネルギー吸収部材に軽金属材料を用いると、 隣接する鋼板でできた部材との接合に制約をうけるという問題もあった。
【0005】
また、特開2000−254997号公報には、エポキシアクリレート樹脂とポリイソシアネート化合物とを適正量配合してなるシートモールディングコンパウンド成形品と、鋼材とを組合わせて、好ましくはハット状断面とした衝撃エネルギー吸収部材が提案されている。特開2000−254997号公報に記載された衝撃エネルギー吸収部材は、軽量であり、かつ圧縮変形する際の最大荷重、 平均荷重を鋼材、シートモールディングコンパウンド成形品の組み合わせにより容易に調整可能とされる。しかし、この部材は、シートモールディングコンパウンド成形品の成形や、鋼材とシートモールディングコンパウンド成形品との接合といった工程を要し、製造コストが高いという問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題を解決し、 軽量で生産性に優れ、 圧縮変形する際の変形エネルギーが高く、しかも安価な、自動車用衝突エネルギー吸収部材およびそれを用いた自動車のサイドメンバー(すなわちフロントサイドメンバー,リアサイドメンバー)を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記した課題を解決するため、 鋭意研究した。
部材の衝突時のエネルギー吸収能を高めるためには、板厚を厚くする、あるいは部材断面形状の最適化を図る、等の対策が考えられる。
板厚を厚くすることは、比較的容易に実現可能である。しかし、最近、地球環境保全の観点から、 自動車からの排出CO2 を削減することが求められ、そのため車体の軽量化が指向されている。したがって、車体の重量増につながる板厚の増加は好ましくない。
【0008】
一方、部材断面形状の最適化を図ることは、 部材単位重量当りの吸収エネルギー量を高くできる点で有利である。そこで、本発明者らは、 部材断面形状の最適化を図る対策について、さらに研究を進めた。
まず、断面形状の最適化のために、 種々の形状の閉断面構造を有する部材を作製した。これら部材について、 軸方向に一定長さの試験材を採取し、 高速で圧潰変形させた。圧潰変形時に得られた荷重と変位の関係から、その部材が圧潰変形時に吸収した吸収エネルギーを算出した.その結果、閉断面構造の場合、中に隔壁がある断面形状の部材が、中に隔壁がない場合に比べ、高速圧潰変形時の吸収エネルギーが非常に大きいことがわかった。
【0009】
上記知見を得るに至った実験結果について説明する。
フロントサイドメンバーによく用いられている厚さの、板厚:1.2 〜1.6mm の薄鋼板を用い、 曲げ加工と接合により、 基本的な断面形状を四角、 六角の閉断面形状とする衝突エネルギー吸収部材(長さ:300mm )を作製した。なお、一部は、閉断面形状の内部に隔壁を有する部材(Aタイプ、Cタイプ、Eタイプ)とした。また、使用した薄鋼板は、 TS(引張り強さ):440MPaの高強度鋼板である。
【0010】
これら部材に、 時速50kmで錘を衝突させ、この衝突変形の際に得られた変位−荷重曲線を積分することにより、150mm 変形した時の吸収エネルギーを求め、図3に示す。
図3から、隔壁がある断面形状(Aタイプ、Cタイプ、Eタイプ)を有する部材は、 隔壁のない断面形状(Bタイプ、 Dタイプ)を有する部材に比べ、衝突変形時の吸収エネルギーが大きいことがわかる。
【0011】
このような隔壁を有する閉断面構造の部材を製造する方法としては、従来から多用されているアルミニウム等の軽金属材料では押し出し成形によるのが一般的である。しかし、アルミニウム合金より安価な、鋼材にこの押し出し成形法を適用することは、極めて困難であり、また製造コスト面でも不利である。また、鋼板を板金加工する製造法も考えられるが、形状が複雑な場合は工数がかかって、軽金属材料を用いた押し出し成形法よりもコストが高くなる憂いがある。
【0012】
そこで、本発明者らは、鋼管を用い異形加工により、この隔壁を有する閉断面構造の部材を製造する方法について検討した。その結果、鋼管の周方向部分を凹加工して断面形状を凹凸にした異形管を、もう1つの鋼管に挿入して二重管とし、両鋼管の接触部分をスポット溶接、 アーク溶接等により接合することにより、隔壁を有する閉断面構造の部材が容易に製造可能であることを突き止めた。
【0013】
また、さらに上記二重管に、プレス、 曲げ、 液圧加工、補助部品の接合などを施すことによって、自動車のフロントサイドメンバーのような衝撃吸収部品を、最適な構造で、かつ安価、 容易に製造できることを見出した。
本発明は、上記した知見に基づいて、完成されたものであり、その要旨は以下のとおりである。
【0014】
(1)断面形状を管全長にわたって一様に凹凸にした異形形状を有する金属管からなる内管が、円形または多角形の断面形状を有する金属管からなる外管に、該外管の内面と前記内管の最外周部とが接触するように、挿入されてなる二重管構造を有することを特徴とする衝突エネルギー吸収部材。
(2)(1)に記載された衝突エネルギー吸収部材を変形加工してなることを特徴とする自動車のフロントサイドメンバーまたはリアサイドメンバー
【0015】
【発明の実施の形態】
図1は、本発明に係る衝突エネルギー吸収部材の一例を示す構成図である。図1において、1は断面形状を管全長にわたって一様に凹凸にした異形形状を有する金属管(異形管)からなる内管であり、2は基本的に円形(または多角形でもよい)の断面形状を有する金属管からなる外管である。図示のように、本発明に係る衝突エネルギー吸収部材は、内管1が外管2内に挿入されてなる二重管構造を有する。内管1と外管2のサイズは、内管を外管に挿入したとき、内管1の最外周部11と外管2の内面とが接触するように設定されている。
【0016】
内管1と外管2とは、挿入後の相互の相対位置関係を固定するために、前記接触した部分を例えばスポット溶接等で溶接することにより、接合されていることが望ましい。
また、内管の複数の凹部は、例えば図1に示すように、隣り合うもの同士が内管中心付近で接触して形成された凹部相互接触部12を有することが望ましい。このような凹部相互接触部12を形成することにより、図4(a)に示すような、概略六角形の略対角線上に隔壁を有する断面構造になり、図3のAタイプの構造を近似的に実現することができる。
【0017】
この凹部相互接触部12は、接合されているいないにかかわらず、衝突時には互いに押し合うように変形して吸収エネルギーを大きくするので、衝突吸収エネルギーを増大させる効果を得る観点からは、接合されていてもいなくてもよい。ただし、部材をさらに加工して自動車の部品とする際に、その加工変形による凹部同士の離間を避けたい等の場合は、凹部相互接触部12を溶接により接合しておくことが望ましい。
【0018】
図4(a)〜()は、本発明の種々の実施形態を示すものである。
図4(a)の断面形状は、上記したように、図3のAタイプ(六角隔壁型)を近似した近似六角隔壁型である。この近似六角隔壁型は、例えば図4(b)に示すような、内管の凹部同士が離間した、凹部相互接触部のない形態であってもよい。この形態では図4(a)のものに比べて衝突吸収エネルギーは若干小さくなるが、断面2次モーメントが大きくなり、曲げ剛性が高くなるという別の利点がある。
【0019】
図4(c)、(d)の断面形状は、図3のCタイプ(四角隔壁型)を近似した近似四角隔壁型であり、(c)は凹部相互接触部をもつ形態、(d)は凹部相互接触部をもたない形態である。凹部相互接触部の有無による特性の違いは近似六角型の場合と同様である。
図4(e)、(f)の断面形状は、八角形の対角線上に隔壁を有する八角隔壁型を近似した近似八角隔壁型であり、(e)は凹部相互接触部をもつ形態、(f)は凹部相互接触部をもたない形態である。凹部相互接触部の有無による特性の違いは近似六角隔壁型の場合と同様である。近似八角隔壁型では、近似六角隔壁型や近似四角隔壁型に比べ耐衝撃性に優れる。
【0020】
図4(g)、(h)(なお、この(h)は参考例である)の断面形状は、図3のEタイプ(三角隔壁型)を近似した近似三角隔壁型であり、双方とも凹部相互接触部をもたないが、(g)は凹部の凹み(内管の最大半径と最小半径の差)が比較的大きい形態、(h)はそれが比較的小さい形態である。(g)と(h)とを比べると、衝突エネルギー吸収能の面では前者が若干優勢、曲げ剛性の面では後者が若干優勢である。
【0021】
このように、本発明では、その要旨を逸脱しない範囲で多種多様な実施形態をとることができるから、それらのうちから必要強度、 コストなどを勘案して最適なものを選択すればよい。
次に、本発明に係る衝突エネルギー吸収部材の製造方法について、図4(a)の近似六角隔壁型(凹部相互接触部有り)の部材を製造する場合を例にとって述べる。素材としては普通に市販されている円管を用いる。まず、1次加工として、図5(a)に示すように、素材の周方向3箇所を3本のローラ3、3a、3bで圧下・縮径して当該3箇所に凹部を形成する。これにより、図4(b)の形態の、断面形状が凹凸状で凹部相互接触部無しの異形管1が得られる。さらに、2次加工として、図5(b)に示すように、1次加工後の異形管1の凸部を別の3本のローラ4、4a、4bで圧下・縮径する。縮径量は、2次加工後の異形管の凸部外径が外管の内径に等しくなるように設定する。これにより、図4(a)の形態の、断面形状が凹凸状で凹部相互接触部有りの異形管1が得られる。望ましくは、次に、図5(c)に示すように、2次加工後の異形管を内管1として円管からなる外管2内に挿入し、二重管構造を形成する。望ましくは、さらに、図5(d)に示すように、例えば片面スポット溶接機5を用いて内外管の相互接触部をスポット溶接することにより、内管1と外管2を接合する。
【0022】
このように、本発明の衝突エネルギー吸収部材は、内管にする円管(多角管でもよい)をロール加工(1次あるいはさらに2次)→内管を外管へ挿入→必要に応じて内外管を接合、という簡単な工程により、容易に製造することができる。
なお、図4(b)〜()の形態およびその他の本発明要旨を満たす形態の衝突エネルギー吸収部材を製造するにあたっては、図5に示したローラの本数や形状を適宜変更すれば、同様の方法で容易に製造することができる。
【0023】
また、上記のようにして製造した二重管構造の衝突エネルギー吸収部材は、これをさらにプレス、 曲げ、液圧加工、および補助部品の接合等といった従来法により加工することで、フロントサイドメンバーのような、自動車の衝撃吸収部品とすることができる。当該部品は、衝撃吸収部品としての特性が良好で、しかも安価かつ容易に製造できる。
【0024】
【実施例】
断面形状、素材、製造方法を表1に示すように種々変えて、長さ300mm の衝突エネルギー吸収部材を作製した。素材は鋼板およびアルミニウム合金とした。
鋼板製部材は、TS:780MPa級の高強度鋼板(板厚:1.2mm )を通常の電縫造管法により造管加工して得られた電縫管を、上述のロール加工等(ロール加工→挿入→スポット溶接)により二重管構造の部材にした本発明例(1〜と参考例(8)、および、前記電縫管を単に切断して無隔壁単管構造の部材にした比較例(9、10)、および、前記高強度鋼板を板金加工により断面形状が四角形(図3のDタイプ)の部材にした比較例(11)である。これらは、重量が何れも同じになるように、断面線長の総和を同じにした。なお、電縫管を用いた製造方法を表1では鋼管加工と記した。
【0025】
また、アルミニウム合金製部材は、TS:280MPaのアルミニウム合金素材を六角隔壁型(図3のAタイプ)に押し出し成形し、その際成形後の部材の外周および隔壁の厚さが2.0mm となるようにして重量を鋼板製部材に合わせた比較例(12)である。
これら部材について、 時速50kmで錘を衝突させ、150mm 変形したときの吸収エネルギーを、衝突変形の際に得られた変位−荷重曲線を積分することにより求めた。その結果を表1に示す。
【0026】
【表1】

Figure 0004078516
【0027】
比較例(9,10,11)は構造が単純で製造コストが安価であるが、重量あたりの吸収エネルギーが低い。一方、 比較例(12)は重量あたりの吸収エネルギーは高いが、素材がアルミニウム合金であるため非常に高価である。
これに対し、本発明例(1〜)では、近似三角隔壁型(7)、近似四角隔壁型(3,4)、近似六角隔壁型(1,2)、近似八角隔壁型(5,6)の順に重量あたりの吸収エネルギーが高くなる。同じタイプの中では凹部相互接触部有りのもの(1,3,5)が無しのもの(2,4,6)よりも吸収エネルギーが高いが大差ない。アルミニウム合金製六角隔壁型(12)と比べると、近似六角隔壁型(1)および近似八角隔壁型(5,6)では比較例(12)を超える吸収エネルギーが得られる。ただし、三角から八角へと角数が増えるにつれ若干コスト増があるので、設計の条件に応じて最適なものを選べばよい。しかし何れを選んだにせよ、アルミニウム合金製六角隔壁型(12)よりは格段に安いコストで製造することができる。
【0028】
次に、本発明に係る自動車の衝撃吸収部品の一例を図6に示す。この部品は、図1に示した部材を、プレス加工後、ハイドロフォーミング加工(軸押し付き液圧成形加工)することにより製造したものである。この部品は、図2に示したフロントサイドメンバーとして用いられ、軽量でかつ高い衝突エネルギー吸収能を有する優れた部品である。
【0029】
【発明の効果】
本発明によれば、衝突エネルギー吸収能に優れた衝突エネルギー吸収部材およびそれを用いた自動車のサイドメンバーを容易にしかも安価に提供でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る衝突吸収エネルギー部材の一例を示す立体図である。
【図2】フロントサイドメンバーへの衝突荷重のかかり方を示す説明図である。
【図3】断面形状と衝突時の吸収エネルギーの関係を示すグラフである。
【図4】 本発明に係る衝突吸収エネルギー部材の種々の構造例を示す断面図(ただし(h)は参考例)である。
【図5】本発明に係る衝突吸収エネルギー部材の製造工程の一例を示す説明図である。
【図6】本発明に係る自動車の衝撃吸収部品の一例を示す立体図である。
【符号の説明】
1 内管(異形管)
2 外管
3、3a、3b ローラ(1次加工用)
4、4a、4b ローラ(2次加工用)
5 片面スポット溶接機
11 内管の最外周
12 凹部相互接触部
20 フロントサイドメンバー
21 バンパー
22 衝突荷重[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a collision energy absorbing member of an automobile vehicle, and more particularly to a collision energy absorbing member having a large energy absorption amount at the time of a collision and a side member (that is, a front side member and a rear side member) of an automobile using the same .
[0002]
[Prior art]
A front side member, a rear side member, and the like that constitute a vehicle have an important role as a collision energy absorbing member that is appropriately crushed at the time of a vehicle collision and absorbs energy at the time of collision to suppress deformation of the cabin.
FIG. 2 shows an example of the front side member 20 directly connected to the bumper 21 of the automobile. For example, the collision load 22 is transmitted from the bumper 21 in the axial direction of the front side member 20 by a collision from the front surface. Due to this load load, the front side member 20 is crushed in a bellows shape and absorbs collision energy when crushed.
[0003]
In order to improve the safety of passengers in the event of a vehicle collision, a collision energy absorbing member such as a front side member is required to have a high energy absorbing ability.
In response to such a request, for example, in Japanese Patent Laid-Open No. 4-310477, a basic member extruded into a closed cross-sectional structure with a light metal and fitted into this basic member are compressed at least at the tip. There has been proposed a side member of a vehicle in which a double structure is formed with a reinforcement member provided with a deformation promoting portion, preferably a notch. According to the side member described in JP-A-4-310477, the bending rigidity, torsional rigidity, and crushing deformation can satisfy the same or higher characteristics as those of the steel side member. However, the side member described in Japanese Patent Laid-Open No. 4-310477 has a problem that the basic member is an extruded material made of light metal and is expensive, and the structure of the reinforcing member is complicated, so that the manufacturing cost is high. It was.
[0004]
Japanese Patent Laid-Open No. 11-208519 discloses that a member that absorbs shock at the time of collision by plastic deformation in the axial direction is formed of a hollow material, and the inner surface of the hollow material is formed on a surface that passes through the central axis of the hollow material. An automobile body frame structure made of a light metal material, characterized in that it is provided with a contacting rib, has been proposed. The vehicle body frame structure described in Japanese Patent Application Laid-Open No. 11-208519 uses a light metal material, and is preferably manufactured by extrusion molding, and has excellent impact energy absorption characteristics at the time of collision. However, the extrusion molding material of light metal materials, such as aluminum, had the problem that it was expensive. In addition, when a light metal material is used for the collision energy absorbing member, there is a problem that the joining with a member made of an adjacent steel plate is restricted.
[0005]
JP-A-2000-254997 discloses an impact energy in which a sheet molding compound molded product obtained by blending an appropriate amount of an epoxy acrylate resin and a polyisocyanate compound and a steel material, preferably in a hat-shaped cross section. Absorbing members have been proposed. The impact energy absorbing member described in Japanese Patent Application Laid-Open No. 2000-254997 is lightweight and can easily adjust the maximum load and average load when compressively deformed by a combination of steel and sheet molding compound molded product. . However, this member requires a process such as molding of a sheet molding compound molded product and joining of a steel material and a sheet molding compound molded product, and there is a problem that the manufacturing cost is high.
[0006]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, is lightweight, excellent in productivity, has high deformation energy during compression deformation, and is inexpensive, and an automobile collision energy absorbing member and an automobile side member using the same (Ie front side member, rear side member) .
[0007]
[Means for Solving the Problems]
The present inventors have intensively studied to solve the above-described problems.
In order to increase the energy absorption capability at the time of the collision of the members, measures such as increasing the plate thickness or optimizing the member cross-sectional shape can be considered.
Increasing the plate thickness can be realized relatively easily. However, recently, from the viewpoint of protecting the global environment, it has been required to reduce the CO 2 emissions from automobiles, and for that reason, weight reduction of vehicle bodies has been directed. Therefore, an increase in the plate thickness that leads to an increase in the weight of the vehicle body is not preferable.
[0008]
On the other hand, optimizing the member cross-sectional shape is advantageous in that the amount of absorbed energy per unit unit weight can be increased. Therefore, the present inventors have further studied on measures for optimizing the cross-sectional shape of the member.
First, in order to optimize the cross-sectional shape, members having various cross-sectional structures were prepared. For these members, test materials having a certain length in the axial direction were collected and subjected to crushing deformation at high speed. From the relationship between the load and displacement obtained during crushing deformation, the absorbed energy absorbed by the member during crushing deformation was calculated. As a result, in the case of the closed cross-sectional structure, it was found that the member having a cross-sectional shape with a partition wall in the cross-sectional shape has much higher absorbed energy at the time of high-speed crushing deformation than in the case without a partition wall in the interior.
[0009]
The experimental results that led to the above findings will be described.
Collision energy absorption that uses a thin steel plate with a thickness of 1.2 to 1.6mm, which is often used for front side members, and has a basic cross-sectional shape of square and hexagonal closed cross-section by bending and joining. A member (length: 300 mm) was prepared. A part of the members was a member (A type, C type, E type) having a partition wall inside the closed cross-sectional shape. The thin steel plate used is a high strength steel plate having a TS (tensile strength) of 440 MPa.
[0010]
Fig. 3 shows the absorbed energy when the member is deformed by 150 mm by colliding a weight with these members at a speed of 50 km / h and integrating the displacement-load curve obtained during the deformation.
From FIG. 3, the member having a cross-sectional shape with a partition wall (A type, C type, E type) has a larger absorbed energy at the time of collision deformation than a member having a cross-sectional shape without a partition wall (B type, D type). I understand that.
[0011]
As a method of manufacturing a member having a closed cross-sectional structure having such a partition wall, a light metal material such as aluminum that has been widely used conventionally is generally formed by extrusion. However, it is extremely difficult to apply this extrusion method to a steel material, which is cheaper than an aluminum alloy, and is disadvantageous in terms of manufacturing cost. In addition, a manufacturing method in which a steel plate is processed into a sheet metal is conceivable. However, if the shape is complicated, it takes time and there is a concern that the cost is higher than the extrusion method using a light metal material.
[0012]
Therefore, the present inventors examined a method for manufacturing a member having a closed cross-sectional structure having this partition wall by deforming a steel pipe. As a result, a deformed pipe with a concave and convex cross-sectional shape is inserted into another steel pipe to form a double pipe, and the contact parts of both steel pipes are joined by spot welding, arc welding, etc. As a result, it was found that a member having a closed cross-sectional structure having a partition wall can be easily manufactured.
[0013]
In addition, by applying pressing, bending, hydraulic processing, joining of auxiliary parts, etc. to the above double pipe, shock absorbing parts such as automobile front side members can be easily constructed with an optimal structure at low cost. We found that it can be manufactured.
The present invention has been completed based on the above-described findings, and the gist thereof is as follows.
[0014]
(1) An inner tube made of a metal tube having an irregular shape whose cross-sectional shape is uniformly uneven over the entire length of the tube is changed to an outer tube made of a metal tube having a circular or polygonal cross-sectional shape, and an inner surface of the outer tube A collision energy absorbing member having a double tube structure inserted so that the outermost peripheral portion of the inner tube is in contact with the inner tube.
(2) A front side member or a rear side member of an automobile obtained by deforming the collision energy absorbing member described in (1).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a configuration diagram showing an example of a collision energy absorbing member according to the present invention. In FIG. 1, reference numeral 1 denotes an inner tube made of a metal tube (a deformed tube) having a deformed shape having a cross-sectional shape that is uniformly uneven over the entire length of the tube, and 2 is a circular (or may be a polygonal) cross section. It is an outer tube made of a metal tube having a shape. As shown in the drawing, the collision energy absorbing member according to the present invention has a double tube structure in which an inner tube 1 is inserted into an outer tube 2. The sizes of the inner tube 1 and the outer tube 2 are set so that the outermost peripheral portion 11 of the inner tube 1 and the inner surface of the outer tube 2 come into contact with each other when the inner tube is inserted into the outer tube.
[0016]
It is desirable that the inner tube 1 and the outer tube 2 are joined by welding the contacted part by, for example, spot welding in order to fix the relative positional relationship after insertion.
Further, as shown in FIG. 1, for example, the plurality of recesses of the inner tube preferably have recess mutual contact portions 12 formed by contacting adjacent ones in the vicinity of the center of the inner tube. By forming such a recess mutual contact portion 12, a cross-sectional structure having a partition on a substantially diagonal line of a substantially hexagonal shape as shown in FIG. 4A is obtained, and the A type structure of FIG. 3 is approximated. Can be realized.
[0017]
Regardless of whether or not the concave mutual contact portion 12 is joined, the concave mutual contact portion 12 is deformed so as to be pressed against each other at the time of collision, so that the absorbed energy is increased. It does not have to be. However, when the member is further processed into an automobile part, when it is desired to avoid the separation of the recesses due to the processing deformation, it is desirable to join the recess mutual contact portion 12 by welding.
[0018]
4 (a) to 4 ( g ) show various embodiments of the present invention.
The cross-sectional shape of FIG. 4A is an approximate hexagonal partition type that approximates the A type (hexagonal partition type) of FIG. 3 as described above. For example, as shown in FIG. 4B, the approximate hexagonal partition wall type may have a configuration in which the concave portions of the inner tube are separated from each other and there is no concave mutual contact portion. In this embodiment, the impact absorption energy is slightly smaller than that in FIG. 4A, but there is another advantage that the moment of inertia of the cross section is increased and the bending rigidity is increased.
[0019]
4 (c) and 4 (d) is an approximate square partition wall type approximating the C type (square partition wall type) in FIG. 3, FIG. 4 (c) is a form having a concave mutual contact portion, and FIG. It is a form which does not have a recess mutual contact part. The difference in characteristics depending on the presence / absence of the concave mutual contact portion is the same as in the case of the approximate hexagonal shape.
4 (e) and 4 (f) are approximate octagonal bulkhead types approximating an octagonal bulkhead type having a bulkhead on an octagonal diagonal line, and (e) is a form having a concave mutual contact portion. ) Is a form having no recess mutual contact portion. The difference in characteristics depending on the presence / absence of the concave mutual contact portion is the same as in the case of the approximate hexagonal bulkhead type. The approximate octagonal partition wall type is superior in impact resistance compared to the approximate hexagonal partition wall type and approximate square partition wall type.
[0020]
4 (g) and (h) (Note that (h) is a reference example) , the cross-sectional shape is an approximate triangular partition type that approximates the E type (triangular partition type) in FIG. Although there is no mutual contact part, (g) is a form with a relatively large recess (difference between the maximum radius and the minimum radius of the inner tube), and (h) is a form with a relatively small size. Comparing (g) and (h), the former is slightly superior in terms of collision energy absorption capability, and the latter is slightly superior in terms of bending rigidity.
[0021]
As described above, in the present invention, a wide variety of embodiments can be taken without departing from the scope of the invention. Therefore, an optimum one may be selected in consideration of necessary strength, cost, and the like.
Next, the manufacturing method of the collision energy absorbing member according to the present invention will be described by taking as an example the case of manufacturing the member of the approximate hexagonal partition wall type (with the concave mutual contact portion) shown in FIG. As a material, a commercially available circular tube is used. First, as primary processing, as shown in FIG. 5 (a), three locations in the circumferential direction of the material are reduced and reduced in diameter by three rollers 3, 3a, 3b to form recesses at the three locations. As a result, the deformed tube 1 having a concavo-convex cross-sectional shape and no concave mutual contact portion in the form of FIG. 4B is obtained. Further, as the secondary processing, as shown in FIG. 5B, the convex portion of the deformed pipe 1 after the primary processing is reduced and reduced in diameter by another three rollers 4, 4a, 4b. The amount of diameter reduction is set so that the outer diameter of the convex portion of the deformed pipe after the secondary processing becomes equal to the inner diameter of the outer pipe. As a result, the deformed tube 1 having a concavo-convex cross-sectional shape and a concave mutual contact portion in the form of FIG. 4A is obtained. Preferably, next, as shown in FIG. 5C, the deformed pipe after the secondary processing is inserted into the outer pipe 2 formed of a circular pipe as the inner pipe 1 to form a double pipe structure. Desirably, as shown in Drawing 5 (d), inner pipe 1 and outer pipe 2 are joined by carrying out spot welding of the mutual contact part of an inner and outer pipe, for example using single side spot welder 5.
[0022]
As described above, the collision energy absorbing member of the present invention is a roll processing (primary or further secondary) of a circular tube (which may be a polygonal tube) to be an inner tube → insert the inner tube into the outer tube → internal and external as necessary. It can be easily manufactured by a simple process of joining the tubes.
4 (b) to ( g ) and other collision energy absorbing members that satisfy the gist of the present invention are manufactured by appropriately changing the number and shape of the rollers shown in FIG. It can be easily manufactured by this method.
[0023]
Moreover, the impact energy absorbing member having a double-pipe structure manufactured as described above is further processed by conventional methods such as pressing, bending, hydraulic processing, and joining of auxiliary parts, etc. Such a shock-absorbing part of an automobile can be obtained. The component has good characteristics as an impact absorbing component, and can be easily manufactured at low cost.
[0024]
【Example】
The cross-sectional shape, material, and manufacturing method were variously changed as shown in Table 1 to produce a collision energy absorbing member having a length of 300 mm. The material was steel plate and aluminum alloy.
The steel plate member is the above-described roll processing (roll processing) of the electric resistance tube obtained by pipe-forming high strength steel plate of TS: 780MPa class (thickness: 1.2mm) by the usual electric resistance sewing pipe method. → insert → spot welding) by reference and the present invention example of the member of the double pipe structure (1-7) example (8), and were members of simply cutting to noncompartmental monotube structure the electric sewing pipe It is a comparative example (9, 10) and a comparative example (11) in which the high-strength steel sheet is formed into a member having a square cross section (D type in FIG. 3) by sheet metal working. These were made to have the same total cross-sectional line length so that the weights would be the same. In addition, the manufacturing method using an electric resistance welded tube was described as steel pipe processing in Table 1.
[0025]
The aluminum alloy member is formed by extruding a TS: 280 MPa aluminum alloy material into a hexagonal partition wall mold (A type in FIG. 3), and the outer periphery of the molded member and the partition wall thickness are 2.0 mm. This is a comparative example (12) in which the weight is matched to the steel plate member.
With respect to these members, the absorbed energy when the weight was collided at 50 km / h and deformed by 150 mm was obtained by integrating the displacement-load curve obtained at the time of collision deformation. The results are shown in Table 1.
[0026]
[Table 1]
Figure 0004078516
[0027]
The comparative examples (9, 10, and 11) have a simple structure and a low manufacturing cost, but have a low absorbed energy per weight. On the other hand, Comparative Example (12) has a high absorbed energy per weight, but is very expensive because the material is an aluminum alloy.
In contrast, in the present invention embodiment (1- 7), the approximate triangular bulkhead type (7), the approximate rectangular barrier rib type (3,4), the approximate hexagonal septum type (1,2), the approximate octagonal septum type (5,6 ), The absorbed energy per weight increases. Among the same types, the absorbed energy is higher than that without (1, 3, 5) with the recess mutual contact portion (1, 4, 5), but not much different. Compared with the hexagonal partition wall type (12) made of aluminum alloy, the approximate hexagonal partition wall type (1) and the approximate octagonal partition wall wall type (5, 6) provide an absorption energy exceeding that of the comparative example (12). However, since the cost increases slightly as the number of corners increases from triangle to octagon, the optimum one may be selected according to the design conditions. However, whichever is selected, it can be manufactured at a much lower cost than the hexagonal partition wall made of aluminum alloy (12).
[0028]
Next, FIG. 6 shows an example of an automobile impact absorbing component according to the present invention. This component is manufactured by subjecting the member shown in FIG. 1 to hydroforming processing (hydraulic molding processing with a shaft pressing) after pressing. This component is used as the front side member shown in FIG. 2 and is an excellent component that is lightweight and has high impact energy absorption capability.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the collision energy absorption member excellent in collision energy absorption capability and the side member of the motor vehicle using the same can be provided easily and cheaply, and there exists a remarkable effect on industry.
[Brief description of the drawings]
FIG. 1 is a three-dimensional view showing an example of a collision-absorbing energy member according to the present invention.
FIG. 2 is an explanatory diagram showing how a collision load is applied to a front side member.
FIG. 3 is a graph showing a relationship between a cross-sectional shape and absorbed energy at the time of collision.
FIG. 4 is a cross-sectional view (however, (h) is a reference example) showing various structural examples of a collision-absorbing energy member according to the present invention.
FIG. 5 is an explanatory view showing an example of a manufacturing process of a collision-absorbing energy member according to the present invention.
FIG. 6 is a three-dimensional view showing an example of an automobile impact absorbing component according to the present invention.
[Explanation of symbols]
1 Inner pipe (deformed pipe)
2 Outer tube 3, 3a, 3b Roller (for primary processing)
4, 4a, 4b Roller (for secondary processing)
5 Single-side spot welder
11 Outermost part of inner pipe
12 Recessed mutual contact part
20 Front side member
21 Bumper
22 Impact load

Claims (2)

断面形状を管全長にわたって一様に凹凸にした異形形状を有する金属管からなる内管が、円形または多角形の断面形状を有する金属管からなる外管に、該外管の内面と前記内管の最外周部とが接触するように、挿入されてなる二重管構造を有することを特徴とする衝突エネルギー吸収部材。  An inner tube made of a metal tube having a deformed shape with a cross-sectional shape that is uniformly concave and convex over the entire length of the tube is replaced with an outer tube made of a metal tube having a circular or polygonal cross-sectional shape, and the inner surface of the outer tube and the inner tube A collision energy absorbing member characterized by having a double-pipe structure inserted so that the outermost peripheral part of the member comes into contact with each other. 請求項1に記載された衝突エネルギー吸収部材を変形加工してなることを特徴とする自動車のフロントサイドメンバーまたはリアサイドメンバーA front side member or a rear side member for an automobile, wherein the collision energy absorbing member according to claim 1 is deformed.
JP2001334024A 2001-10-31 2001-10-31 Collision energy absorbing member and automobile side member using the same Expired - Fee Related JP4078516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001334024A JP4078516B2 (en) 2001-10-31 2001-10-31 Collision energy absorbing member and automobile side member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001334024A JP4078516B2 (en) 2001-10-31 2001-10-31 Collision energy absorbing member and automobile side member using the same

Publications (3)

Publication Number Publication Date
JP2003139179A JP2003139179A (en) 2003-05-14
JP2003139179A5 JP2003139179A5 (en) 2005-05-19
JP4078516B2 true JP4078516B2 (en) 2008-04-23

Family

ID=19149216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001334024A Expired - Fee Related JP4078516B2 (en) 2001-10-31 2001-10-31 Collision energy absorbing member and automobile side member using the same

Country Status (1)

Country Link
JP (1) JP4078516B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241114B (en) * 2011-03-29 2013-08-28 李季峯 Exhaust method of silica gel shower head mold

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4543778B2 (en) * 2004-06-24 2010-09-15 住友金属工業株式会社 Shock absorbing member
JP5298910B2 (en) 2009-02-10 2013-09-25 トヨタ自動車株式会社 Shock absorption structure
JP5439957B2 (en) * 2009-06-05 2014-03-12 マツダ株式会社 Shock absorbing structure for vehicle
JP5674137B2 (en) * 2011-01-28 2015-02-25 いすゞ自動車株式会社 Impact energy absorber
CN105257756B (en) * 2015-10-15 2017-10-10 西华大学 The energy-absorbing component of straight plug thin-wall pipe
CN114110068B (en) * 2021-11-12 2023-06-27 吉林大学 Bionic energy-absorbing tube based on bamboo changing characteristics
CN116792008B (en) * 2023-08-02 2024-05-14 常州华东人防设备有限公司 Protective door and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241114B (en) * 2011-03-29 2013-08-28 李季峯 Exhaust method of silica gel shower head mold

Also Published As

Publication number Publication date
JP2003139179A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4792036B2 (en) Shock absorbing member for vehicle
EP1293415B1 (en) Automobile frame member
US7617916B2 (en) Tapered crushable polygonal structure
WO2005010398A1 (en) Impact-absorbing member
CN102343880A (en) Bumper device for vehicle
JP4983373B2 (en) Shock absorbing member and manufacturing method thereof
JP4078516B2 (en) Collision energy absorbing member and automobile side member using the same
JP4045846B2 (en) Impact energy absorbing member
JP6052890B2 (en) Aluminum alloy extruded tube for structural member and vehicle body structural member
US20070039282A1 (en) Gooseneck beam
JPH09254808A (en) Aluminum alloy extruded square pipe for front side member excellent in axial compression characteristics
JP5235007B2 (en) Crash box
JP2000335333A (en) Bumper reinforcement with each end gradually changed in sectional width
JPH06227333A (en) Bumper unit
JPH09277953A (en) Shock absorbing member
JP2004042883A (en) Bumper device
JP4759871B2 (en) Impact energy absorbing member
JP2003225714A (en) Method for forming metallic tube and member for absorbing collision energy
JP4039032B2 (en) Impact energy absorbing member
JP2012166645A (en) Die-cast aluminum alloy crash can
JP2005104235A (en) Bumper device for automobile
JPH11255048A (en) Structural member having reinforcing structure
JP2001219226A (en) High-strength steel tube for hydroforming
JPH08128487A (en) Energy absorbing member and manufacture thereof
JP2009154563A (en) Vehicle body frame member and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees