JP4078057B2 - Natural circulation boiling water reactor - Google Patents

Natural circulation boiling water reactor Download PDF

Info

Publication number
JP4078057B2
JP4078057B2 JP2001330119A JP2001330119A JP4078057B2 JP 4078057 B2 JP4078057 B2 JP 4078057B2 JP 2001330119 A JP2001330119 A JP 2001330119A JP 2001330119 A JP2001330119 A JP 2001330119A JP 4078057 B2 JP4078057 B2 JP 4078057B2
Authority
JP
Japan
Prior art keywords
reactor
water
steam
cooling water
downcomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001330119A
Other languages
Japanese (ja)
Other versions
JP2003130982A (en
Inventor
貴夫 近藤
秀夫 曽根田
公三明 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2001330119A priority Critical patent/JP4078057B2/en
Publication of JP2003130982A publication Critical patent/JP2003130982A/en
Application granted granted Critical
Publication of JP4078057B2 publication Critical patent/JP4078057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却水の密度差により冷却水循環駆動力を得る自然循環型沸騰水型原子炉に関わり、特にセパレータ及びドライヤを設けずに冷却水から蒸気を分離することが出来る自然循環型沸騰水型原子炉に関するものである。
【0002】
【従来の技術】
自然循環型沸騰水型原子炉に関しては、これまで特開平6−265665号公報,特開平8−94793号公報等を始め、多くの例示が成されている。図6は、従来の自然循環型沸騰水型原子炉を示すもので、図6中、符号1は原子炉圧力容器であり、この原子炉圧力容器1内には、炉心2が格納されているとともに、炉心2を取囲むように円筒状のシュラウド5が設けられ、さらにシュラウド5の上部にはこれにつながるかたちで円筒状のチムニー3が設けられている。
【0003】
これらシュラウド5及びチムニー3の内側には冷却水の上昇流路が、外側には冷却水の下降流路としてダウンカマ4が形成されている。そして冷却水(以下、炉水6という。)は、ダウンカマ4,下部プレナム7,炉心2およびチムニー3を自然循環している。
【0004】
その循環途中で、炉水6が炉心2からの熱を受けて発生した蒸気は、主蒸気管8を介し、図示しないタービンに送られるとともに、そのタービンで仕事をした後の蒸気は、復水後、給水管9を介して原子炉圧力容器1内に戻されるようになっている。
【0005】
炉心2には制御棒10が挿脱して炉心2の出力が制御される。しかして、上記構成の従来の自然循環沸騰水型原子炉では原子炉圧力容器1内の炉心2を包囲した円筒状のシュラウド5及び円筒状のチムニー3と、シュラウド5及びチムニー3の外周部と原子炉圧力容器1に囲まれ冷却水の流路となるダウンカマ4をもち、シュラウド5及びチムニー3内の水と蒸気の浮力による上昇力およびダウンカマ4における水頭圧を駆動力として冷却材を循環させている。
【0006】
自然循環型沸騰水型原子炉は、現行の沸騰水型原子炉から設備を簡素化し建設費低減を計るものであり、上記従来例は現行の沸騰水型原子炉に備わっているセパレータ及びドライヤを取り除いている構成が採用される。
【0007】
【発明が解決しようとする課題】
しかし、上記従来例には次のような課題が存在する。まず比較のため現行の沸騰水型原子炉について説明する。現行の沸騰水型原子炉は一般に図7に示すように構成されている。すなわち図中、符号11で示す原子炉圧力容器内には中心部に炉心12が配置され、この炉心12を覆うように筒状のシュラウド13が配設されている。このシュラウド13と原子炉圧力容器11との間隙のダウンカマ19の下部には複数の再循環ポンプ14が配設されている。
【0008】
炉心12における核反応によって生成した熱エネルギーを得て、冷却水は高温高圧の蒸気となってシュラウド13内を上方向に流れる。水と蒸気との混合流は、セパレータ15によって水分が分離された後に、さらにドライヤ16に導入され、ここで湿分が除去された後に、主蒸気管17を通り、タービンに導かれる。タービンを駆動し仕事をしたのちの蒸気は復水となり、この復水は主給水管18を通り、再びシュラウド13の外側のダウンカマ19に流入する。
【0009】
上記のように現行の沸騰水型原子炉では、炉心12で加熱され気液2相となった冷却水をセパレータ15及びドライヤ16により気相,液相に分離するため、主蒸気管17を通りタービンに導かれる蒸気は充分に湿分が除去されており、一方ダウンカマを下降する冷却水への蒸気の巻き込みは充分小さく抑えられている。
【0010】
ところが従来の自然循環型沸騰水型原子炉においては、セパレータ及びドライヤが省略されており、加熱された冷却水の気液2相への分離についても充分考慮された従来例は無く、タービンに導かれる蒸気は充分に湿分が除去されず、またダウンカマを下降する冷却水への蒸気の巻き込みは充分小さく抑えられていない。
【0011】
タービンに導かれる蒸気が充分に湿分が除去されていないとエロージョン等によりタービンが劣化するという不具合が生じる。またダウンカマを下降する冷却水への蒸気の巻き込みが充分小さく抑えられていないと温度の高い冷却水が炉心に循環し炉心のヒートバランスに不具合が生じる。
【0012】
本発明の目的は、セパレータ及びドライヤを省略しても、炉心で加熱された冷却水の気液2相への分離を充分に行い、タービン側の劣化が起こらないようにタービンに導かれる蒸気の湿分を充分に除去し、炉心のヒートバランスを保つためダウンカマを下降する冷却水への蒸気の巻き込みを充分小さく抑えることのできる自然循環型沸騰水型原子炉を提供することである。
【0013】
【課題を解決するための手段】
本発明の原理は、原子炉圧力容器内の中央部に冷却水の上昇流路を、前記上昇流路の外周囲に前記冷却水の下降流路となるダウンカマを、原子炉運転時の前記冷却水水位より上方に前記原子炉圧力容器に接続された主蒸気管の入口を備えた自然循環型沸騰水型原子炉において、前記上昇流路として、気液2相の自由界面の安定性を維持できる許容蒸気流速の圧力に対する原子炉の運転圧力変化との関係から求められた前記自由界面が安定する前記許容蒸気流速を前記上昇流路内径に換算して得た値以上の上昇流路内径を有し、前記冷却水水位から主蒸気管の入口までの高さとして、前記主蒸気管の入口での所望する蒸気の湿分を得るに必要な前記運転圧力変化と前記冷却水位の主蒸気管の入口までの高さとの関係から求められた前記許容蒸気流速に対応する高さ以上の高さ有し、ダウンカマの幅として、ダウンカマへの蒸気の巻き込み許容上限値とダウンカマ冷却水流速との関係から求めたダウンカマ幅以上の幅を有するようにしたものである。
【0014】
このような原理は、発明の解決手段として具体的な実施例に展開して説明すると、上記目的を達成するために本発明の実施例では、圧力容器内にシュラウドを有し、このシュラウド内に配置された炉心により冷却材を加熱し、加熱された冷却材がシュラウド内及びシュラウドの上部に続くチムニーを上昇し、さらに蒸気を分離した冷却水がチムニー及びシュラウドと圧力容器の間に形成されるダウンカマ部を下降しさらに炉心下部より炉心内に上昇し循環し、シュラウド及びチムニー内外の冷却水密度差による差圧を冷却水循環の駆動力とする自然循環型沸騰水型原子炉であり、蒸気を水から分離するセパレータ及び蒸気を乾燥させるドライヤを配置しない自然循環型沸騰水型原子炉において、チムニーの内径を充分大きくする。具体的には5.4m 以上とする。かつ運転時の冷却水水位から主蒸気管までの高さを充分大きくする。具体的には2.5m 以上とする。かつダウンカマ部の幅を充分大きくする。具体的には0.37m 以上とする。
【0015】
セパレータ及びドライヤを省略した場合の気液分離は重力によるものである。従ってタービンに導かれる蒸気の湿分を充分に除去するためには、チムニーから水面を通して上昇していく蒸気の流速を抑え水面を安定させること、及び運転時の冷却水水位から主蒸気管までの高さを充分大きくすることが有効である。
【0016】
さらにチムニーから水面を通して上昇していく蒸気の流速は、簡単には(蒸気発生量÷チムニー断面積)で表されるため、チムニー内径を大きくすることが有効となる。またダウンカマを下降する冷却水への蒸気の巻き込みを充分小さく抑えるためには、ダウンカマ部を下降していく冷却水の流速を抑えることが有効である。この冷却水の流速は簡単には(総循環流量÷ダウンカマ部面積)で表されるため、ダウンカマ部の幅を充分大きくすることが有効である。
【0017】
以上により、現行の沸騰水型原子炉からセパレータ及びドライヤを省略することによる建設費低減を可能にし、かつ炉心で加熱された冷却水の気液2相への分離を充分に行い、タービン側の劣化が起こらないようにタービンに導かれる蒸気の湿分を充分に除去し、炉心のヒートバランスを保つためダウンカマを下降する冷却水への蒸気の巻き込みを充分小さく抑える自然循環型沸騰水型原子炉が得られる。
【0018】
【発明の実施の形態】
本発明の実施例を図面に基づいて以下詳細に説明する。図1において、自然循環型沸騰水型原子炉の原子炉圧力容器30の内側には、冷却水が炉水6として入れられている。その原子炉圧力容器30内には、炉水6の水面下において炉心26を囲む円筒状のシュラウド25とそのシュラウド25の上方に連続する円筒状のチムニー24とを内蔵する。
【0019】
そのシュラウド25とチムニー24の内側が炉水の上昇流路とされ、外側が原子炉圧力容器内壁面との間で炉水の下降流路としてのダウンカマ34とされる。ダウンカマ34の流路断面は水平断面形状が環状の形状を有する。
【0020】
その炉水6の原子炉運転時の水位(冷却水水位)から高さ21の位置には主蒸気管8の入口が接続されている。また、炉水6の水位以下の高さには、給水管9が接続されている。
【0021】
シュラウド25に囲まれた領域内には、炉心26が配備されている。その炉心26内に出入りできる制御棒27の上下動によって、その炉心26の出力が制御される。
【0022】
したがって、炉心26が制御棒27によって制御された熱出力に相当する発熱を生じると、炉水6は炉心26によって加熱されて気液2相流となってチムニー24内を上昇し、炉水6の水面から蒸気が上昇して主蒸気管8の入口内に入りタービンへ供給され、タービンで仕事をした蒸気は復水化されて給水管で再度原子炉圧力容器30内のダウンカマ34内にチムニー24内の炉水6より低い温度にて供給される。炉水6の水面から蒸気が上昇して、その蒸気が主蒸気管8の入口に到達するまでに重力によってその蒸気中の湿分が炉水6の水面に降下して主蒸気管8の入口内に流入する蒸気の湿分が低下する。
【0023】
このように、チムニー内の炉水とダウンカマ内の炉水とは温度差があるので、温度依存による密度差で炉水がチムニー内では上昇流となって、炉水水面で蒸気を上方に放出した後にダウンカマ内に入って下降流となって再度炉心に下方から上方へと流入する循環が生じ、その循環が継続される。
【0024】
図1に示す本発明の第1実施例と従来の自然循環型沸騰水型原子炉の図6との一見した違いは▲1▼チムニー24の内径20が大きく、▲2▼炉水6(冷却水)の水位から主蒸気管8までの高さ21が大きく、▲3▼ダウンカマ部の幅22が大きいことである。
【0025】
本実施例において熱出力を約900MWとした場合の、上記▲1▼▲2▼▲3▼3つの設計寸法についての評価結果を示す。図2は気液2相の自由界面の安定性を維持できる許容蒸気流速の圧力に対する変化を示している。図2のグラフ23より上の領域は気液2相の自由界面が不安定となり主蒸気管8を経由してタービンに導かれる蒸気の湿分が増加し、グラフ23より下の領域は気液2相の自由界面が安定して主蒸気管8を経由してタービンに導かれる蒸気の湿分が減少する。
【0026】
ここで図2に示す通り沸騰水型原子炉の運転圧力において許容蒸気流速は0.68m/sである。上記に説明したように蒸気流速は簡単には(蒸気発生量÷チムニー断面積)で表され、熱出力を約900MWとした第1の実施例の条件ではチムニー24の内径、チムニー内径20が5.4m に相当する。従って炉水6の上昇流路の内径であるチムニー内径20が5.4m 以上であれば安定した炉水6の水面が得られる。
【0027】
図3は主蒸気管8の入口における蒸気の湿分を0.1% とした時の、蒸気流速と炉水6の水位(冷却水水位)から主蒸気管8までの高さ21の関係を表すグラフである。ここでは現行と同じく蒸気の湿分0.1% を許容上限値と考えた。図3は蒸気流速が増加する程、蒸気の湿分を抑えるために必要な炉水6の水位(冷却水水位)から主蒸気管8までの高さ21が増加することを示している。
【0028】
ここで先に示した許容蒸気流速0.68m/s の時の必要な炉水6の水位(冷却水水位)から主蒸気管8までの高さ21は2.5m である。従って炉水6の水位(冷却水水位)から主蒸気管21までの高さが2.5m 以上であれば、上記の湿分を許容上限値以下に抑えることが出来る。
【0029】
図4はダウンカマ34部を下降する炉水6(冷却水)の流速とダウンカマ34への蒸気の巻き込みとの関係を示すグラフである。図4はダウンカマ冷却水流速が増加する程蒸気の巻き込みが増加することを示している。ここで蒸気の巻き込みの許容上限値を0.25%とすると対応するダウンカマ冷却水流速は0.24m/sである。これは第1の実施例の条件においてダウンカマ34の幅22が0.37mに相当する。従ってダウンカマ34の幅22が0.37m 以上であれば、蒸気の巻き込みを許容上限値以下に抑えることが出来る。
【0030】
以上に説明した3つの設計寸法について、現行の熱出力が約3900MWの沸騰水型原子炉,従来の自然循環型沸騰水型原子炉,本発明の自然循環型沸騰水型原子炉の第1の実施例の間で比較する。
【0031】
まずチムニー内径20に関しては、本発明の第1の実施例は現行の沸騰水型原子炉のシュラウド内径とおおよそ同等の大きさとなっている。これは熱出力が1/4以下であることを考慮すると、大きなサイズである。一方従来の自然循環型沸騰水型原子炉では、特に詳細な設計例は無いが、現行と同様に炉心をちょうど包むように炉心外径と同等のシュラウド内径を設定し、それと同じ内径のチムニーを配置するのみである。本発明の第1の実施例では大きなチムニー径20を確保するため、必ずしも炉心26の外径とシュラウド25及びチムニー24内径は一致させず、シュラウド25及びチムニー24と炉心26の間に比較的大きな間隔が存在してもよい。
【0032】
次に炉水6の水位(冷却水水位)から主蒸気管8までの高さ21に関しては、本発明の第1の実施例は現行の沸騰水型原子炉とおおよそ同等の高さとなっている。やはり熱出力を1/4以下としていることを考慮すると、大きなサイズである。一方従来の自然循環型沸騰水型原子炉では、特に詳細な設計例は無いが、現行から出力に比例させてサイズを変更するのみである。
【0033】
またダウンカマ34部の幅22に関しては、本発明の第1の実施例は現行の沸騰水型原子炉よりも小さいが、やはり熱出力を1/4以下としていることを考慮すると、大きなサイズと言える。従来の自然循環型沸騰水型原子炉では、特に詳細な設計例は無いが、現行から出力に比例させてサイズを変更するのみである。これら3つの設計寸法は当然設計条件により変化するが、簡単には原子炉の熱出力が増加すればこれらの設計寸法も増加し、熱出力が減少すればこれらの設計寸法も減少するという関係が主である。先に述べたように第1の実施例は現行の熱出力3900MWの1/4以下である900MWというかなり小さな熱出力を想定しているが、これ以上の場合、自然循環型沸騰水型原子炉の上記3つの設計寸法はそれぞれ先に示した値以上の大きさが必要であり、それによりタービンに導かれる蒸気の湿分を充分に除去し、ダウンカマ34を下降する冷却水への蒸気の巻き込みを充分小さく抑えることができる。
【0034】
次に本発明の第2の実施例を図5により説明する。図5は制御棒駆動機構等で制御棒28を炉心29の上方から挿入する実施例である。その他の構成は第1の実施例と同じである。これにより、第1の実施例の下から挿入する制御棒27に比べ、重力が挿入方向に働くため安全性が向上する。
【0035】
また緊急炉停止のため制御棒28を高速挿入するスクラムの動力源として重力を用いることが出来、さらに制御棒駆動機構等が炉心下部を貫通することによるシール構造も不要となることから設備の簡素化による建設費低減が可能になる。
【0036】
また同時に本実施例は現行の沸騰水型原子炉からセパレータおよびドライヤが省略されており、制御棒駆動機構等とこれらの取り合いの問題が無く、簡単なシステム構成が可能である。
【0037】
【発明の効果】
以上詳述したように、本発明によれば、現行の沸騰水型原子炉からセパレータ及びドライヤを省略することによる建設費低減を可能にし、かつセパレータ及びドライヤを省略したにもかかわらず、炉心で加熱された冷却水の気液2相への分離を充分に行い、タービン側の劣化が起こらないようにタービンに導かれる蒸気の湿分を充分に除去し、炉心のヒートバランスを保つためダウンカマを下降する冷却水への蒸気の巻き込みを充分小さく抑える自然循環型沸騰水型原子炉が提供できる。
【図面の簡単な説明】
【図1】本発明による第1の実施例の自然循環型沸騰水型原子炉の概略図である。
【図2】気液2相の自由界面の安定性を維持できる許容蒸気流速の圧力に対する変化を示すグラフ図である。
【図3】蒸気流速と冷却水水位から主蒸気管までの高さの関係を示すグラフ図である。
【図4】ダウンカマ部を下降する冷却水の流速とダウンカマへの蒸気の巻き込みとの関係を示すグラフ図である。
【図5】本発明による第2の実施例の自然循環型沸騰水型原子炉の概略図である。
【図6】従来の自然循環型沸騰水型原子炉の概略図である。
【図7】現行の沸騰水型原子炉の概略図である。
【符号の説明】
6…炉水、8…主蒸気管、9…給水管、20…チムニー内径、21…冷却水水位から主蒸気管までの高さ、22…ダウンカマ部の幅、24…チムニー、25…シュラウド、26,29…炉心、27,28…制御棒、30…原子炉圧力容器、34…ダウンカマ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a natural circulation boiling water nuclear reactor that obtains a cooling water circulation driving force by a difference in density of cooling water, and in particular, natural circulation boiling water that can separate steam from cooling water without providing a separator and a dryer. It relates to type reactors.
[0002]
[Prior art]
Regarding natural circulation boiling water reactors, many examples have been made so far, including JP-A-6-265665 and JP-A-8-94793. FIG. 6 shows a conventional natural circulation boiling water reactor. In FIG. 6, reference numeral 1 denotes a reactor pressure vessel, and a reactor core 2 is stored in the reactor pressure vessel 1. At the same time, a cylindrical shroud 5 is provided so as to surround the reactor core 2, and a cylindrical chimney 3 is provided on the upper portion of the shroud 5 in a manner connected to this.
[0003]
A downcomer 4 is formed inside the shroud 5 and chimney 3 as a cooling water ascending channel and outside as a cooling water descending channel. Cooling water (hereinafter referred to as reactor water 6) naturally circulates through the downcomer 4, the lower plenum 7, the core 2, and the chimney 3.
[0004]
During the circulation, steam generated when the reactor water 6 receives heat from the core 2 is sent to a turbine (not shown) via the main steam pipe 8, and steam after working in the turbine is condensed water. Then, it is returned to the reactor pressure vessel 1 through the water supply pipe 9.
[0005]
The control rod 10 is inserted into and removed from the core 2 and the output of the core 2 is controlled. Thus, in the conventional natural circulation boiling water reactor configured as described above, the cylindrical shroud 5 and the cylindrical chimney 3 surrounding the core 2 in the reactor pressure vessel 1, the outer periphery of the shroud 5 and the chimney 3, It has a downcomer 4 that is surrounded by the reactor pressure vessel 1 and serves as a cooling water flow path, and the coolant is circulated using the ascending force due to the buoyancy of water and steam in the shroud 5 and chimney 3 and the head pressure in the downcoma 4 as the driving force. ing.
[0006]
The natural circulation boiling water reactor is a facility that simplifies the equipment from the current boiling water reactor and reduces the construction cost. The above conventional example uses a separator and a dryer provided in the current boiling water reactor. The removed configuration is adopted.
[0007]
[Problems to be solved by the invention]
However, the above-described conventional example has the following problems. First, the current boiling water reactor will be explained for comparison. The current boiling water reactor is generally configured as shown in FIG. That is, in the figure, in the reactor pressure vessel denoted by reference numeral 11, a core 12 is disposed at the center, and a cylindrical shroud 13 is disposed so as to cover the core 12. A plurality of recirculation pumps 14 are disposed below the downcomer 19 in the gap between the shroud 13 and the reactor pressure vessel 11.
[0008]
The thermal energy generated by the nuclear reaction in the core 12 is obtained, and the cooling water becomes high-temperature and high-pressure steam and flows upward in the shroud 13. After the water is separated by the separator 15, the mixed flow of water and steam is further introduced into the dryer 16, where moisture is removed, and then the main stream passes through the main steam pipe 17 and is guided to the turbine. The steam after the turbine has been driven to work becomes condensate, and this condensate passes through the main water supply pipe 18 and again flows into the downcomer 19 outside the shroud 13.
[0009]
As described above, in the current boiling water reactor, the cooling water heated in the core 12 and having a gas-liquid two phase is separated into a gas phase and a liquid phase by the separator 15 and the dryer 16, and therefore passes through the main steam pipe 17. The steam guided to the turbine is sufficiently dehumidified, while the entrainment of the steam in the cooling water descending the downcomer is kept small enough.
[0010]
However, in the conventional natural circulation boiling water reactor, separators and dryers are omitted, and there is no conventional example that sufficiently considers separation of heated cooling water into gas-liquid two phases. Moisture is not sufficiently removed from the steam, and the entrainment of steam into the cooling water descending the downcomer is not sufficiently small.
[0011]
If the moisture introduced into the turbine is not sufficiently removed, there is a problem that the turbine deteriorates due to erosion or the like. Moreover, if the entrainment of steam into the cooling water descending the downcomer is not sufficiently reduced, the high-temperature cooling water circulates in the core, causing a problem in the heat balance of the core.
[0012]
The object of the present invention is to sufficiently separate the cooling water heated in the core into a gas-liquid two-phase, even if the separator and the dryer are omitted, so that the steam guided to the turbine does not deteriorate on the turbine side. It is an object to provide a natural circulation boiling water reactor capable of sufficiently removing moisture and suppressing the entrainment of steam into cooling water descending a downcomer in order to maintain the heat balance of the core.
[0013]
[Means for Solving the Problems]
The principle of the present invention is that the cooling water ascending flow path is provided at the center of the reactor pressure vessel, and the downcomer serving as the cooling water descending flow path is provided around the outside of the ascending flow path. In a natural circulation boiling water reactor equipped with a main steam pipe inlet connected to the reactor pressure vessel above the water level, the stability of the free interface of the gas-liquid two-phase is maintained as the rising channel Ascending flow path inner diameter equal to or greater than the value obtained by converting the allowable steam flow rate at which the free interface is stable, calculated from the relationship with the change in the operating pressure of the reactor with respect to the pressure of the allowable allowable steam flow rate, to the rising flow path inner diameter And having a height from the cooling water level to the inlet of the main steam pipe as the height of the operating steam required to obtain the desired steam moisture at the inlet of the main steam pipe and the main steam pipe at the cooling water level The allowable steam obtained from the relationship with the height to the entrance of the It has a height greater than the height corresponding to the speed, and the width of the downcomer is greater than the downcomer width obtained from the relationship between the upper limit of steam entrainment to the downcomer and the downcoma cooling water flow rate. is there.
[0014]
Such a principle is developed and explained in a specific embodiment as a solution of the invention. In order to achieve the above object, the embodiment of the present invention has a shroud in a pressure vessel. The coolant is heated by the arranged core, the heated coolant rises in the chimney that continues in the shroud and at the top of the shroud, and the cooling water that separates the steam is formed between the chimney and the shroud and the pressure vessel. It is a natural circulation boiling water nuclear reactor that descends the downcomer part and then rises and circulates in the core from the bottom of the core, and uses the differential pressure due to the cooling water density difference inside and outside the shroud and chimney as the driving force for cooling water circulation. In a natural circulation boiling water reactor that does not have a separator for separating water and a dryer for drying steam, the inside diameter of the chimney is sufficiently large. Specifically, it is 5.4 m or more. In addition, the height from the cooling water level during operation to the main steam pipe is made sufficiently large. Specifically, it should be 2.5m or more. And make the downcomer width wide enough. Specifically, it should be 0.37m or more.
[0015]
Gas-liquid separation when the separator and the dryer are omitted is due to gravity. Therefore, in order to sufficiently remove the moisture of the steam guided to the turbine, the flow rate of the steam rising from the chimney through the water surface is suppressed and the water surface is stabilized, and the cooling water level during operation to the main steam pipe is It is effective to make the height sufficiently large.
[0016]
Furthermore, since the flow velocity of the steam rising from the chimney through the water surface is simply expressed as (steam generation amount / chimney cross-sectional area), it is effective to increase the chimney inner diameter. Moreover, in order to suppress the entrainment of steam into the cooling water descending the downcomer sufficiently, it is effective to suppress the flow rate of the cooling water descending the downcomer portion. Since the flow rate of this cooling water is simply expressed by (total circulation flow rate / downcomer area), it is effective to sufficiently increase the width of the downcomer part.
[0017]
As described above, the construction cost can be reduced by omitting the separator and the dryer from the current boiling water reactor, and the cooling water heated in the core can be sufficiently separated into the gas-liquid two phases. A natural circulation boiling water reactor that sufficiently removes the moisture of the steam introduced to the turbine so as not to deteriorate and keeps the steam entrained in the cooling water descending the downcomer sufficiently to maintain the heat balance of the core. Is obtained.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. In FIG. 1, cooling water is placed as reactor water 6 inside a reactor pressure vessel 30 of a natural circulation boiling water reactor. The reactor pressure vessel 30 contains a cylindrical shroud 25 surrounding the core 26 below the surface of the reactor water 6 and a cylindrical chimney 24 continuous above the shroud 25.
[0019]
The inside of the shroud 25 and chimney 24 is a reactor water ascending channel, and the outside is a downcomer 34 as a reactor water descending channel between the reactor pressure vessel inner wall surface. The channel cross section of the downcomer 34 has an annular shape in horizontal cross section.
[0020]
The inlet of the main steam pipe 8 is connected to the position of the reactor water 6 at a height 21 from the water level (cooling water level) during the reactor operation. A water supply pipe 9 is connected to a height below the water level of the reactor water 6.
[0021]
A core 26 is provided in a region surrounded by the shroud 25. The output of the core 26 is controlled by the vertical movement of the control rod 27 that can enter and leave the core 26.
[0022]
Accordingly, when the core 26 generates heat corresponding to the heat output controlled by the control rod 27, the reactor water 6 is heated by the reactor core 26 to rise into a gas-liquid two-phase flow and rise in the chimney 24, and the reactor water 6 The steam rises from the surface of the water and enters the inlet of the main steam pipe 8 and is supplied to the turbine. The steam that has worked in the turbine is condensed, and is again fed into the downcomer 34 in the reactor pressure vessel 30 through the water supply pipe. It is supplied at a temperature lower than the reactor water 6 in 24. Steam rises from the surface of the reactor water 6, and moisture in the steam falls to the surface of the reactor water 6 by gravity until the steam reaches the inlet of the main steam pipe 8. The moisture content of the steam flowing into the inside decreases.
[0023]
In this way, there is a temperature difference between the reactor water in the chimney and the reactor water in the downcomer, so the reactor water becomes an upward flow in the chimney due to the temperature-dependent density difference, and steam is discharged upward on the reactor water surface. After that, a circulation that enters the downcomer and becomes a downward flow again flows into the core from the lower side to the upper side, and the circulation is continued.
[0024]
The first difference between the first embodiment of the present invention shown in FIG. 1 and the conventional natural circulation boiling water reactor shown in FIG. 6 is that (1) the inner diameter 20 of the chimney 24 is large and (2) the reactor water 6 (cooling) The height 21 from the water level to the main steam pipe 8 is large, and (3) the width 22 of the downcomer portion is large.
[0025]
The evaluation results for the above three design dimensions (1), (2), and (3) when the heat output is about 900 MW in this example are shown. FIG. 2 shows the change of the allowable vapor flow rate with respect to the pressure capable of maintaining the stability of the free interface of the gas-liquid two phases. In the region above the graph 23 in FIG. 2, the free interface of the gas-liquid two phases becomes unstable, and the moisture content of the steam guided to the turbine via the main steam pipe 8 increases, and the region below the graph 23 is in the gas-liquid region. The two-phase free interface is stabilized and the moisture content of the steam guided to the turbine via the main steam pipe 8 is reduced.
[0026]
Here, as shown in FIG. 2, the allowable steam flow rate at the operating pressure of the boiling water reactor is 0.68 m / s. As described above, the steam flow rate is simply expressed as (steam generation amount / chimney cross-sectional area), and the inner diameter of the chimney 24 and the chimney inner diameter 20 are 5 under the conditions of the first embodiment in which the heat output is about 900 MW. It is equivalent to .4m. Therefore, if the chimney inner diameter 20 which is the inner diameter of the ascending flow path of the reactor water 6 is 5.4 m or more, a stable water surface of the reactor water 6 can be obtained.
[0027]
FIG. 3 shows the relationship between the steam flow rate and the height 21 from the water level (cooling water level) of the reactor water 6 to the main steam pipe 8 when the moisture content of the steam at the inlet of the main steam pipe 8 is 0.1%. It is a graph to represent. Here, as with the current situation, the moisture content of steam was considered to be the allowable upper limit of 0.1%. FIG. 3 shows that the height 21 from the water level (cooling water level) of the reactor water 6 to the main steam pipe 8 required to suppress the moisture of the steam increases as the steam flow rate increases.
[0028]
Here, the required height 21 from the water level (cooling water level) of the reactor water 6 to the main steam pipe 8 at the allowable steam flow rate of 0.68 m / s is 2.5 m 2. Therefore, if the height from the water level (cooling water level) of the reactor water 6 to the main steam pipe 21 is 2.5 m or more, the moisture can be suppressed to the allowable upper limit value or less.
[0029]
FIG. 4 is a graph showing the relationship between the flow rate of the reactor water 6 (cooling water) descending the downcomer 34 and the entrainment of steam into the downcomer 34. FIG. 4 shows that steam entrainment increases as the downcomer cooling water flow rate increases. Here, if the allowable upper limit value of the entrainment of steam is 0.25%, the corresponding downcomer cooling water flow velocity is 0.24 m / s. This corresponds to the width 22 of the downcomer 34 being 0.37 m under the conditions of the first embodiment. Therefore, if the width 22 of the downcomer 34 is 0.37 m or more, the entrainment of steam can be suppressed to an allowable upper limit value or less.
[0030]
With respect to the three design dimensions described above, the boiling water reactor having a current heat output of about 3900 MW, the conventional natural circulation boiling water reactor, and the first of the natural circulation boiling water reactor of the present invention are the first. Comparison is made between examples.
[0031]
First, with respect to the chimney inner diameter 20, the first embodiment of the present invention is approximately the same size as the shroud inner diameter of the current boiling water reactor. This is a large size considering that the heat output is ¼ or less. On the other hand, in the conventional natural circulation boiling water nuclear reactor, there is no detailed design example, but the shroud inner diameter equivalent to the core outer diameter is set so as to wrap the core just like the present, and a chimney with the same inner diameter is arranged. Just do it. In the first embodiment of the present invention, in order to ensure a large chimney diameter 20, the outer diameter of the core 26 does not necessarily match the inner diameter of the shroud 25 and chimney 24, and the shroud 25, chimney 24, and the core 26 are relatively large. There may be an interval.
[0032]
Next, regarding the height 21 from the water level (cooling water level) of the reactor water 6 to the main steam pipe 8, the first embodiment of the present invention has a height approximately equal to that of the current boiling water reactor. . Considering that the heat output is 1/4 or less, it is a large size. On the other hand, in the conventional natural circulation boiling water reactor, there is no specific design example, but the size is changed in proportion to the output from the present.
[0033]
Regarding the width 22 of the downcomer 34 part, the first embodiment of the present invention is smaller than the current boiling water reactor, but considering that the heat output is 1/4 or less, it can be said that the size is large. . In the conventional natural circulation boiling water reactor, there is no specific design example, but the size is changed in proportion to the output from the present. These three design dimensions naturally change depending on the design conditions. However, there is a relationship that if the thermal power of the reactor increases, these design dimensions will increase, and if the thermal output decreases, these design dimensions will also decrease. The Lord. As described above, the first embodiment assumes a considerably small heat output of 900 MW, which is ¼ or less of the current heat output of 3900 MW, but in the case of more than this, the natural circulation boiling water reactor Each of the above three design dimensions needs to be larger than the value shown above, thereby sufficiently removing the moisture of the steam guided to the turbine and entraining the steam into the cooling water descending the downcomer 34. Can be kept sufficiently small.
[0034]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 shows an embodiment in which the control rod 28 is inserted from above the core 29 by a control rod drive mechanism or the like. Other configurations are the same as those of the first embodiment. Thereby, compared with the control rod 27 inserted from the bottom of the first embodiment, the gravity works in the insertion direction, so that safety is improved.
[0035]
In addition, gravity can be used as a power source for the scrum that inserts the control rod 28 at a high speed to stop the emergency reactor, and a seal structure is not required because the control rod drive mechanism penetrates the lower part of the core. The construction cost can be reduced by making it easier.
[0036]
At the same time, in this embodiment, the separator and dryer are omitted from the current boiling water reactor, and there is no problem with the control rod drive mechanism and the like, and a simple system configuration is possible.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to reduce the construction cost by omitting the separator and the dryer from the current boiling water reactor, and in spite of omitting the separator and the dryer, Fully separate the heated cooling water into gas-liquid two phases, remove the moisture of steam introduced to the turbine to prevent deterioration on the turbine side, and use a downcomer to maintain the heat balance of the core. It is possible to provide a natural circulation boiling water nuclear reactor in which the entrainment of steam into the descending cooling water is sufficiently reduced.
[Brief description of the drawings]
FIG. 1 is a schematic view of a natural circulation boiling water reactor according to a first embodiment of the present invention.
FIG. 2 is a graph showing changes in allowable steam flow rate with respect to pressure that can maintain the stability of the free interface of the gas-liquid two phases.
FIG. 3 is a graph showing the relationship between the steam flow rate and the height from the cooling water level to the main steam pipe.
FIG. 4 is a graph showing the relationship between the flow rate of cooling water descending the downcomer section and the entrainment of steam into the downcomer.
FIG. 5 is a schematic view of a natural circulation boiling water reactor according to a second embodiment of the present invention.
FIG. 6 is a schematic view of a conventional natural circulation boiling water reactor.
FIG. 7 is a schematic view of a current boiling water reactor.
[Explanation of symbols]
6 ... Reactor water, 8 ... Main steam pipe, 9 ... Feed water pipe, 20 ... Chimney inner diameter, 21 ... Height from cooling water level to main steam pipe, 22 ... Width of downcomer section, 24 ... Chimney, 25 ... Shroud, 26, 29 ... core, 27, 28 ... control rod, 30 ... reactor pressure vessel, 34 ... downcomer.

Claims (1)

セパレータとドライヤが非内蔵された原子炉圧力容器を有し、前記原子炉圧力容器に内蔵した円筒状のチムニーによって内側の冷却水上昇流路と外側の冷却水の下降流路とを有する循環流路を形成するとともに、主蒸気管の入口が前記原子炉圧力容器内の冷却水よりも上方の前記原子炉圧力容器部位に接続されている自然循環型沸騰水型原子炉において、
前記チムニーの内径が5.4m以上であり、前記冷却水の運転時の水位から主蒸気管の入口までの高さが2.5m以上であり、前記下降流路の幅が0.37m以上であり、熱出力が900MWであることを特徴とする自然循環型沸騰水型原子炉。
A circulating flow having a reactor pressure vessel in which a separator and a dryer are not built, and having an inner cooling water rising channel and an outer cooling water lowering channel by a cylindrical chimney built in the reactor pressure vessel In the natural circulation boiling water reactor in which a passage is formed and the inlet of the main steam pipe is connected to the reactor pressure vessel part above the cooling water in the reactor pressure vessel,
The inner diameter of the chimney is 5.4 m or more, the height from the water level during operation of the cooling water to the main steam pipe inlet is 2.5 m or more, and the width of the descending flow path is 0.37 m or more. There is a natural circulation boiling water reactor characterized by having a heat output of 900 MW .
JP2001330119A 2001-10-29 2001-10-29 Natural circulation boiling water reactor Expired - Fee Related JP4078057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330119A JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330119A JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Publications (2)

Publication Number Publication Date
JP2003130982A JP2003130982A (en) 2003-05-08
JP4078057B2 true JP4078057B2 (en) 2008-04-23

Family

ID=19145898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330119A Expired - Fee Related JP4078057B2 (en) 2001-10-29 2001-10-29 Natural circulation boiling water reactor

Country Status (1)

Country Link
JP (1) JP4078057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504343B2 (en) * 2006-11-09 2010-07-14 日立Geニュークリア・エナジー株式会社 Natural circulation boiling water reactor

Also Published As

Publication number Publication date
JP2003130982A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP5285212B2 (en) Steam separator
KR101437481B1 (en) Nuclear reactor and method of cooling nuclear reactor
JPH10221480A (en) Steam separator, atomic power plant and boiler device
JP2007232505A (en) Natural circulation type boiling water reactor
US4912733A (en) Steam-water separating system for boiling water nuclear reactors
JPH0727052B2 (en) A method for providing load following capability to a natural circulation boiling water reactor with free surface vapor separation.
JP4078057B2 (en) Natural circulation boiling water reactor
JP4568238B2 (en) Natural circulation boiling water reactor
JPH0618693A (en) Steam separator
JP2002523716A (en) Separator for steam-water separator
JP2012058113A (en) Steam separation facility for nuclear reactor
JPH02268294A (en) Boiling water reactor comprising offset chimney
WO1992015994A1 (en) Bwr natural steam separator
JP2007198997A (en) Super-critical pressure water cooled reactor and super-critical pressure water cooled fuel assembly
JPH04231897A (en) Boiling water reactor whose steam separating system is improved
JPH05188172A (en) Forced-circulation nuclear reactor wherein natural circulation is reinforced
JP2521256B2 (en) Natural circulation boiling water reactor control method
JP4504343B2 (en) Natural circulation boiling water reactor
JP2007232392A (en) Feed water control system of natural circulation type boiling water reactor, and nuclear power plant
JP2835120B2 (en) Natural circulation boiling water reactor
JPH04230896A (en) Output adjustable natural-circulation type boiling water reactor
JPH01227995A (en) Steam separating mechanism, nuclear reactor utilizing said mechanism and method of operating reactor
JPH02268293A (en) Natural circulation type boiling water nuclear reactor
JPH05209979A (en) Startup method for nuclear reactor
JPH01113696A (en) Boiling water nuclear reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080204

R150 Certificate of patent or registration of utility model

Ref document number: 4078057

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees