JP4077523B2 - 電子装置用温度制御システム - Google Patents

電子装置用温度制御システム Download PDF

Info

Publication number
JP4077523B2
JP4077523B2 JP54295898A JP54295898A JP4077523B2 JP 4077523 B2 JP4077523 B2 JP 4077523B2 JP 54295898 A JP54295898 A JP 54295898A JP 54295898 A JP54295898 A JP 54295898A JP 4077523 B2 JP4077523 B2 JP 4077523B2
Authority
JP
Japan
Prior art keywords
heater
temperature
electronic device
control system
heat sink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54295898A
Other languages
English (en)
Other versions
JP2001526837A5 (ja
JP2001526837A (ja
Inventor
バブコック,ジェイムズ・ウィトマン
タスタニウスキ,ジェリー・イホー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisys Corp
Original Assignee
Unisys Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/833,368 external-priority patent/US5844208A/en
Priority claimed from US08/833,369 external-priority patent/US5821505A/en
Priority claimed from US08/833,273 external-priority patent/US5864176A/en
Application filed by Unisys Corp filed Critical Unisys Corp
Publication of JP2001526837A publication Critical patent/JP2001526837A/ja
Publication of JP2001526837A5 publication Critical patent/JP2001526837A5/ja
Application granted granted Critical
Publication of JP4077523B2 publication Critical patent/JP4077523B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/192Control of temperature characterised by the use of electric means characterised by the type of controller using a modification of the thermal impedance between a source and the load
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/345Arrangements for heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01065Terbium [Tb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01076Osmium [Os]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10156Shape being other than a cuboid at the periphery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10157Shape being other than a cuboid at the active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Temperature (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

発明の背景
この発明は、電子装置がテストされている最中にその装置の温度を一定の設定された点の温度近くに維持する温度制御システムに関し、そのような温度制御システムの鍵となる部分を含むサブアセンブリに関するものである。
一定温度付近でテストされるべき必要がある電子装置の2つの具体例として、パッケージングされた集積チップ、またはパッケージングされていない露出したチップが挙げられる。それらのチップには、デジタル論理回路系またはメモリ回路系またはアナログ回路系といった任意のタイプの回路系が集積され得る。さらに、それらチップ内の回路系には、電界効果トランジスタまたはバイポーラトランジスタといった任意のタイプのトランジスタが含まれ得る。
チップがテストされる間にそのチップの温度を一定に保とうとする1つの理由は、そのチップが動作する速度が温度依存性であるかもしれない、というものである。たとえば、相補電界効果トランジスタ(CMOSトランジスタ)からなるチップは、典型的には、チップの温度が1℃下がるごとに約0.3%その動作速度を増大させる。
特定のタイプのチップを大量生産し、次いでそれらを高速で仕分けして、より高速に動作するチップをより高価格で販売することは、チップ産業界における1つの慣習となっている。CMOSメモリチップおよびCMOSマイクロプロセッサチップはこのような態様で処理される。しかしながら、このようなチップの速度を適切に決定するためには、速度テストが行なわれている間に各チップの温度を一定近くに保たなければならない。
チップ温度を一定の設定された点付近に保つことは、速度テストが行なわれている最中にそのチップの瞬間的パワー散逸が一定であるかまたは狭い範囲内で変動する場合には、極めて容易である。その場合には、そのチップを、固定された温度にある熱マスに、固定された熱抵抗を介して結合することが必要であるにすぎない。たとえば、最大チップパワー変動が10ワットであり、チップと熱マスとの間が結合が0.2℃/ワットである場合、そのチップの温度は最大2℃変動する。
しかしながら、速度テストを行なっている最中にそのチップの瞬間パワー散逸が幅広い範囲で上下変動する場合には、チップの温度を一定の設定された点付近に維持することは非常に困難である。装置パワー散逸が大きく変化するたびに、その温度およびその速度も大きく変化する。
上記の問題はCMOSチップにおいて特に深刻であり、なぜならば、それらの瞬間パワー散逸は、ONまたはOFFに切換わるCMOSトランジスタの数が増大するにつれて、増大するからである。あるCMOSチップの速度テスト中では、切換わるトランジスタの数は常に変動し、したがって、そのチップのパワー散逸および温度および速度は常に変化している。さらに、これら変化の大きさはより多くのトランジスタが1つのチップに集積されるに従って増大し、なぜならば、任意の特定の瞬間に切換わるトランジスタの数はそのチップ上の0個からすべてのトランジスタの範囲まで変動するからである。
先行技術において、集積回路チップ用のいくつかの温度制御システムが以下の米国特許に開示されている:
5,420,521 5,297,621 5,104,661
5,315,240 5,205,132 5,125,656
5,309,090 5,172,049 4,734,872
しかしながら、上記の特許に開示されるいずれの温度制御システムにも、テスト中にパワー散逸を大きく変動させるチップにおいて速度テストを実行し得る能力はない。これは、上記の温度制御システムは、上述したような瞬間パワー変動を補償するほど十分高速には反応し得ないからである。
上記の特許′656および′661および′090および′240では、チップから熱を除去するための手段は全く与えられておらず、それらはチップに熱を加えるためのさまざまなヒータを含むにすぎない。これらの制御システムは、「バーンイン」テストが行なわれる200℃を越えるような上昇されたレベルにまでチップの温度を上昇させる場合に対してのみ好適である。任意の上昇された温度で、チップ内の弱いまたは欠陥のある構成要素の障害が促進され、その「バーンイン」テストによってそのような構成要素は数時間の後動作しなくなる。
上記の特許′872および′132および′621では、温度制御されるガス噴射をチップに向けるか、または、温度制御された液体にチップを浸漬することによって、そのチップの温度を上昇または低下させる。しかしながら、これらの制御システムは、ガス噴射または液体の温度を上昇または低下させ得る速度により制限される。
特許′521では、チップを加熱するためのヒータと、チップを冷却するための、液体により冷却されるアルミニウムブロックとの両方を含む制御システムが図7に開示されている。しかしながら、この図7の制御システムも、テスト中にパワー散逸を大きく変動させるチップにおいて速度テストを行なうことを可能にする能力はなく、なぜならば、このシステムもそのようなパワー変動を補償するど十分に素早くには反応し得ないからである。このような欠点が生ずる理由については、図8、図9および図10に関連して詳細に述べる。
したがって、ここに開示されるこれら発明の主な目的は、電子装置がテストされている最中にその装置内におけるパワー散逸の大きな変動に迅速に反応ししたがってその装置の温度を一定の設定された点の温度に維持する新規な温度制御システムおよびそのようなシステムのための新規なサブアセンブリを提供することである。
発明の概要
ドケット番号550,577の発明に従うと、電子装置の温度をある設定された点付近に維持する温度制御システムは:電子装置と接触する第1の面と、その第1の面に対向する第2の面とを有する電気ヒータと;ヒータの第2の面に結合され、電子装置からの熱をヒータの第2の面を介して吸収するヒートシンクと;電子装置に結合され、装置温度Tdを感知する温度センサと;温度センサおよびヒータに結合され、感知された電子装置の温度が設定された点を超えるとヒーターへのパワーを減少させ、逆の場合にはその逆を行なう制御回路とを含む。ヒータ温度ThがTdよりも低い場合、熱は電子装置からヒータを介してヒートシンクに流れ、熱の流れの割合はTd−Thが増大するにつれ増大する。ThがTdよりも高い場合には、熱は電子装置からヒータに流れ、熱の流れの割合はTh−Tdが増大するにつれて増大する。ヒータのパワーのみを電気的に制御することによって、電子装置への/からの熱の流れは迅速に調整され、次いでそれによって装置温度が迅速に調節される。
【図面の簡単な説明】
図1は、ドケット番号550,577を有する発明の好ましい実施例を構成する温度制御システムを示す。
図2は、図1の温度制御システムの動作を説明する一助となる概略図である。
図3は、図2の概略図を模したものであり、電子装置におけるパワー散逸が段階的に増大した場合の図1の制御システムの動作を示す。
図4は、図2の概略図を模したものであり、電子装置におけるパワー散逸が段階的に減少した場合の図1の制御システムの動作を示す。
図5は、図1の制御システムの動作を正確に定義する微分方程式の組である。
図6は、図1の制御装置が図5の方程式を介してシミュレーションされた場合にいくつかのパラメータがそのシステムにおいてどのように変動するかを示す。
図7は、図1の制御装置が図5の方程式を介してシミュレーションされた場合にいくつかのさらなるパラメータがそのシステムにおいてどのように変動するかを示す。
図8は、米国特許第5,420,521号に記載される先行技術の温度制御システムの動作を説明する一助となる、図2の概略図と同様の概略図である。
図9は、図8の温度制御システムの動作を正確に定義し、図1の制御システムの動作と図8の制御システムの動作とを区別する特徴を説明する一助となる、微分方程式の組である。
図10は、図1の制御システムの動作と図8の制御システムの動作とを区別する別の特徴を説明する一助となる微分方程式の組である。
図11は、ドケット番号550,578を有する温度制御システムの基礎をなす微分方程式の組である。
図12は、図11の方定式に基づく温度制御システムの好ましい実施例を示す。
図13は、図12の温度制御システムのシミュレーションにより得られる曲線の組である。
図14は、特定のパラメータが誤差を伴って注入される図12の温度制御システムの第2のシミュレーションにより得られる別の曲線の組である。
図15は、図14のパラメータにおける誤差を検出および訂正し得るプロセスのステップをリスト化する。
図16は、図15のプロセスがどのように実行されるかを示す。
図17は、ドケット番号550,579を有する発明を構成するサブアセンブリの製造の最初の段階を示す。
図18は、どのようにして図17のアセンブリが完成され図1および図12の温度制御システムに組入れられるかを示す。
図19は、図18のサブアセンブリ内の電子装置上の膜がどのように除去されるかを示す。
図20は、図1および図12の温度制御システム内におけるヒータ構成要素に対する変形例を示す。
図21は、図18のサブアセンブリに対する変形例を示す。
詳細な説明
図1において、参照番号11は、一定の設定された点付近にその温度が維持される間にテストを受ける電子装置を示す。この電子装置11の2つの具体例としては、セラミックまたはプラスチックでパッケージングされた集積チップ、または、パッケージングされていない露出したチップが挙げられる。この電子装置11には、デジタル論理回路系またはメモリ回路系またはアナログ回路系といった、テストされる必要がある任意のタイプの回路系を集積し得、その回路系は、任意のタイプのトランジスタ、たとえば、Nチャネル電界効果トランジスタまたはPチャネル電界効果トランジスタまたは相補電界効果トランジスタまたはバイポーラトランジスタを含み得る。
電子装置11上に含まれるのは何十もの入力/出力端子11aであるが、図1においては、単純化のため、それら端子のうちいくつかのみを示す。これらの端子11aは信号線12a、12bおよび12cからなる3つの組に結合される。信号線12a上では、電子装置11をテストする入力信号「TEST−IN」が受取られ、信号線12b上では、出力信号「TEST−OUT」が電子装置11からそのテストへの応答として送られる。従来のテスト設備(図示せず)を信号線12aおよび12bに結合することにより、それらの信号をそれらの線上でそれぞれ授受する。信号線12c上では、電子装置11の温度を示す出力信号「TEMP」が電子装置11から送られる。これらTEMP信号は、その電子装置に組込まれる、たとえば温度に対し感度を有する抵抗器またはダイオードのような、温度センサから発生する。
図1の他の構成要素12〜17は、すべて、電子装置11がテストされている間その装置の温度を設定された点付近に保つ温度制御システムを構成する。その制御システムにおける各構成要素を以下に表1において説明する。
Figure 0004077523
動作において、電子装置11は、信号線12a上にて受取られるTEST−IN信号によってテストされている最中、そのパワー散逸が変動する。このパワー変動が生ずるのは、TEST−IN信号に応答して電子装置11内のトランジスタがオンおよびオフになり、したがってそれらのパワー散逸において変動するからである。その結果、電子装置11の温度はそのパワー散逸が増大するにつれて増大する傾向となり、逆の場合にはその逆が生ずる。
電子装置11内では、温度センサによって、その装置の現在の温度を示すTEMP信号が、信号線12c上にて発生される。それらTEMP信号はパワー調節器16に送られ、そこでそれらは信号線12d上のSET−POINT信号と比較される。装置11の温度が設定された点温度よりも低い場合、調節器16は、ヒータ13への可変パワーPhを増大するように制御信号CTLを発生する。逆に、装置11の温度が設定された点温度よりも高い場合には、調節器16は、ヒータ13への可変パワーPWRを減少させるように制御信号CTLを発生する。
ここで、図2、図3および図4を参照して、図1の制御装置の動作をさらに詳細に説明する。これらの図は図1の制御装置の概略図であり、そこでは、電子装置11は熱抵抗θd-hを介して電気ヒータ13に結合され、ヒータ13は熱抵抗θh-Sを介してヒートシンクの基部14aに結合され、ヒートシンクの基部は熱抵抗θS-Lを介して冷媒に結合される。さらに、図2〜図4においては、電子装置11は可変量のパワーPdを受取って散逸し、電気ヒータは可変量のパワーPhを受取り散逸する。さらに
図2〜図4では、電子装置11は温度Tdおよび熱マスMDを有し、ヒータ13は温度Thおよび熱マスMhを有し、ヒートシンク基部14aは温度TSおよび熱マスMSを有する。
好ましくは、ヒータの熱マスMhは実用的である程度に小さくされる。この制約は、以下に示されるように、ヒータ13がその温度を上げ下げし得る速度を改善し、したがって、電子装置の温度Tdを設定された点付近に維持する一助となる。熱マスMhに対する1つの好適な上限は、それが電子装置の熱マスMdのせいぜい3倍であることであり、好ましくはMhはMdよりも小さい。
さらに好ましくは、ヒータの熱抵抗θd-hも実用的である程度に小さくされる。この制約は、下に示されるように、ヒータ13から電子装置11へ伝達される熱の量を、ヒータ13からヒートシンク14に伝達される熱の量に比して増大させる一助となる。熱抵抗θd-hに対す好適な上限は、それがヒータとヒートシンク基部との間の熱抵抗θh-Sのせいぜい3倍であることであり、好ましくはθd-hはθh-Sよりも小さい。
安定した状態条件下では、図2に示されるように、熱は装置11から熱経路21に沿って液体冷媒に流れ、図2に示されるように、熱は熱経路22に沿ってヒータ13から液体冷媒に流れる。さらに、安定した状態条件下では、装置温度は設定された点温度に等しく、ヒータ温度は装置温度からPdθd-hを引いたものに等しい。装置パワー散逸が0である場合には、経路21上の熱の流れは0であり、TdはThに等しい。
ここで、電子装置11がそのパワー散逸Pdを増大させ、それによってその温度Tdを設定された点を超えて上昇させると考える。これは、図3において、時点t1およびt2にて生ずるとして示される。設定された点を超える装置温度Tdにおける上昇に応答して、ヒータ13へのパワーPhは調節器16によって低減され、これは図3においては時間t3で生ずるとして示される。ヒータ13は低い熱マスMhを有し、したがって、時間t4にて示されるように、ヒータのパワーが低減されるとヒータの温度Thは急激に降下する。
ヒータ温度が低減されるにつれ、装置11から熱経路21に沿って冷媒へ伝達される熱の量が増大する。したがって、装置温度Tdは時間t5にて示されるように冷却され始める。装置温度Tdが設定された点に近づくにつれ、ヒータのパワーPhは時間t6にて示されるように勾配をなして上昇する。したがって、ヒータ温度Thは上昇し、それによって、装置11から熱経路21に沿った熱の流れを低減する。ヒータのパワーPhを適切なレベルにまで上昇させることによって、安定した状態が戻り、熱の流れは図2に示されるようになり、装置温度Tdは設定された点になる。
逆に、電子装置11がそのパワー散逸Pdを減少させ、それによってその温度Tdを設定された点より下に降下させる場合を考える。これは、図4において、時点t1およびt2で生ずるとして示される。設定された点を下回る装置温度Tdの降下に応答して、ヒータ13へのパワーPhが調節器16によって増大され、これは図4においては時間t3にて生ずるように示される。ヒータ13は低い熱マスMhを有し、したがって、ヒータの温度Thは、時間t4にて示されるように、ヒータのパワーが増大すると急激に上昇する。
ヒータ温度Thが上昇して装置温度Tdを超えると、ヒータからの熱の一部が図4の熱経路22aに沿って電子装置11に伝わり、ヒータからの熱の別の一部が熱経路22bに沿って液体冷媒に伝わる。さらに、経路22a上において電子装置11に伝わる熱の量は、θd-hがθh-Sに相対して減少するにつれ増大する。
上昇間t4におけるヒータ温度の上昇に応答して、装置温度Tdは時間t5にて示されるように上昇し始める。装置温度Tdが設定された点に近づくにつれ、ヒータのパワーPhは時間t6にて示されるように勾配をなして下降する。したがって、ヒータ温度Thは勾配をなして下降し、したがって、熱経路22aに沿ったヒータから装置11への熱の流れを低減する。ヒータのパワーPhを適切なレベルに降下させることによって、安定した状態が戻り、熱の流れは図2に示されるようになり、装置温度Tdは設定された点温度になる。
図2〜図4の上記の説明から、ヒータ13は経路21および22a上を流れる熱の量を制御することがわかる。ThがTdに等しい場合、経路21および22a上には熱は全く流れない。ThがTdよりも小さい場合には、熱は経路21上を電子装置からヒータ13を介してヒートシンクに流れ、熱の流れの割合はTd−Thが増大するにつれ増大する。ThがTdよりも大きい場合には、熱は経路22a上をヒータ13から電子装置へ流れ、熱の流れの割合はTh−Tdが増大するにつれ増大する。ヒータのパワーPhを制御することによって、電子装置への/からの熱の流れが調節され、次いでそれによって装置温度が調節される。
図1の制御システムが動作する速度をさらに説明するために、ここで図5、図6および図7を参照する。図5においては、等式1、等式2および等式3と符号付される3つの微分方程式が与えられる。これらの方程式は、ある物体によって受取られる熱パワーの和はその物体の熱マスにその物体の温度の変動割合を掛けたものに等しいという原理に基づいている。
等式1は、参照番号31a、31bおよび31cで識別される3つの項を含む。項31aはTEST−IN信号に応答して電子装置11が受取り散逸するパワーであり、項31bは電子装置11に熱抵抗θd-hを介して伝達されるパワーであり、項31cは電子装置11の熱マスにその温度の変化割合を掛けたものである。
同様に、等式2は参照番号32a、32b、32cおよび32dで示される4つの項を含む。項32aは可変電源17から電気ヒータ13に供給されるパワーであり、項32bは電気ヒータ13に熱抵抗θh-sを介して伝達されるパワーであり、項32cはヒータ13に熱抵抗θd-hを介して伝達されるパワーであり、項32dはヒータの熱マスにヒータの温度の変化割合を掛けたものである。
同様に、等式3は参照番号33a、33bおよび33cで示される3つの項を含む。項33aはヒートシンク基部14aに熱抵抗θs-Lを介して伝達されるパワーであり、項33bはヒートシンク基部に熱抵抗θh-sを介して伝達されるパワーであり、項33cはヒートシンク基部のマスにその温度の変化割合を掛けたものである。
図5のこれら3つの等式を用いることにより、デジタルコンピュータ上でのシミュレーションを実行し、そのシミュレーションの結果を図6および図7に示す。このシミュレーションを実行するにあたり、図5の等式のさまざまなパラメータは下の表2に示される値を有した。
Figure 0004077523
さらに、このシミュレーションでは、電子装置11はまず設定された点温度にされ、パワーを全く散逸していないものと仮定された。その後、2秒に等しい時間で、電子装置11のパワー散逸がTEST_IN信号に応答して100ワットのパワーにまで上昇された。このパワー散逸は電子装置11において3秒間一定のままにされ、その時間で装置11におけるパワー散逸は0に戻った。
上述した100ワットステップの対で電子装置11のパワー散逸を変化させることによって、設定された点付近に装置温度を維持する図1の制御システムの能力を最悪の場合の条件下でテストする。さらに、表2の熱マスMdは露出した集積回路チップの熱マスであり、したがって、それはもう1つの最悪の場合のテスト条件を構成するものであり、なぜならば、その温度は(より大きな熱マスを本質的に有する)パッケージングされたチップの温度よりも速く変化するからである。
図6の曲線41は、上述したように、電子装置11におけるパワー散逸が時間とともにどのように変化するかを示す。さらに、図6および図7において、曲線42は電子装置11の温度が時間とともにどのように変化するかを示し、曲線43はヒータのパワーが時間とともにどのように変化するかを示し、曲線44はヒータの温度が時間とともにどのように変化するかを示し、曲線45はヒートシンク基部の温度が時間とともにどのように変化するかを示す。
曲線42を調べると、2秒に等しい時間で、電子装置11の温度における最大偏差がその装置内のパワー散逸におけるステップ状の増大により約4℃であることがわかる。最大温度偏差に到達した後、電子装置11の温度は次いで勾配をなして下降し、設定された点に約0.4秒以内に戻る。
同様に、曲線42を調べると、5秒に等しい時間で、電子装置11の温度における最大偏差がその装置内のパワー散逸における負のステップにより約3.6℃であることがわかる。この最大温度偏差に到達した後、電子装置11の温度は勾配をなして上昇し、設定された点に0.3秒以内に戻る。
上述の制御システムの1つの主な特徴は、その制御システムによって、装置温度の設定された点からの偏差が訂正される速度であり、それによって、最大偏差を相対的に小さく保つことである。この動作速度がどのように達成されるかは図5の等式から以下のように理解され得る。
装置温度における設定された点からの各偏差は、等式2の項32aで与えられるヒータのパワーPhにおける変更によって訂正される。項32aが変化すると、ヒータの温度は等式2の項32dで示されるように変化する。ヒータ温度の変化は次いで等式1において項31bを変化させる。次いで、項31bにおけるこの変更によって、装置温度が等式1の項31cによって示されるように変化する。図5においては、上記事象の連鎖は下線51で示される。
これに比して、先行技術特許第5,420,521号では、ヒータのパワーにおける変化と装置温度における結果的な変化との間に生ずる事象の連鎖ははるかにより長く、これを図8および図9に示す。図8は、先行技術特許′521の図7および図8の制御システムに対する概略図である。この概略図では、参照番号140、116、124、126および82は、特許′521の図7の同じ参照番号である。
構成要素140は冷却されることになる電子装置11に接するヒータブロックであり、構成要素116はヒータブロックに接するアルミニウムブロックであり、構成要素82は温度TLで液体冷媒を運ぶ冷媒チューブであり、構成要素124はアルミニウムブロック116に接するヒータアセンブリであり、構成要素126はヒータアセンブリ内にある加熱素子である。図8における各構成要素は図に示されるようにそれぞれの熱マスMおよびそれぞれの温度Tを有する。さらに、図8の構成要素はすべて図示されるようにそれぞれの熱抵抗θを介して相互結合される。
図8の概略図から、6つの微分方程式11〜15の組が図9に示されるように導き出され得る。これらの図9の等式は図5の等式と同様であり、なぜならば、それらは、ある物体によって受取られる熱パワーの和はその物体の熱マスにその物体の温度の変化割合を掛けたものに等しいという原理に基づいているからである。
等式15においてヒータのパワーPhが変化すると、それによって、温度T3が等式15の項61によって示されるように変化する。温度T3における変化は、次いで、項62を等式14にて変化させる。次いで、項62におけるこの変化によって、温度T2が等式14の項63によって示されるように変化する。温度T2における変化は、次いで、項64を等式13にて変化させる。次いで、項64におけるこの変化によって、温度T1が等式13の項65によって示されるように変化する。温度T1における変化によって、次いで、項66が等式12において変化する。次いで、この項66における変化によって、温度Thが等式12の項67によって示されるように変化する。温度Thにおける変化は、次いで、項68を等式11にて変化させる。次いで、項68におけるこの変化によって、装置温度Tdが等式11の項69によって示されるように変化する。
図9において、上記の事象の連鎖は参照番号51′で示される。この事象の連鎖51′では、ヒータのパワーPhを変動させることによって装置温度を調節するために温度T3、T2、T1、ThおよびTdの各々はシーケンスで変化しなければならない。その結果、ヒータのパワーを変動させることは装置温度を間接的に変化させるにすぎない。これに比して、図5の事象の連鎖51では、ヒータのパワーを変動させることによって装置温度を調節するために温度ThおよびTdのみをシーケンスで変化させればよい。したがって、図1の制御システムにおいてヒータのパワーを変動させることは、特許′521においてそうするよりも、はるかにより直接的に、およびしたがってより速やかに装置温度に影響する。
図1の制御システムにおいてヒータのパワーを変動させることが特許′521においてそうするよりもより速やかに装置温度に影響するもう1つの理由は、図10の等式20および21から理解され得る。等式20は、図5の等式2および3を加算し、その結果得られた項を、項32dのみが=記号の左側に来るように並べ替えることによって得られたものである。同様に、等式21は、図9の等式12〜16を加算し、その結果得られた項を、項67のみが=記号の左側に来るように並べ替えることによって得られたものである。
等式20の項32dにおいて、熱マスMhは、冷却されるべき電子装置11に直接接触している図1のヒータ13の熱マスである。同様に、等式21の項67では、熱マスMhは、冷却されるべき電子装置11に直接接触している図8のヒータブロック140の熱マスである。したがって、電子装置11の温度を速やかに調節するためには、ヒータのパワーPhを変動させることによってマスMhの温度Thを速やかに変化させ得ることが重要である。
ヒータのパワーPhが等式20にて増大すると、マスMhの温度Thに対するそのパワー増大の影響は、等式20の右手側に生ずる負の項33cによって減少される。これに比して、等式21においてヒータのパワーPhが増大されると、マスMhの温度Thに対するそのパワー増大の影響は、等式21の右手側にある負の項60、61、63および65によって減少される。
等式21の項60は等式20の項33cと同様であり、したがって、ヒータのパワーPhを変動させることによって温度Thを変化させることに対するそれらの負の影響は同様である。しかしながら、等式21における残りの負の項61、63および65は等式20においては完全に除去される。したがって、ヒータのパワーPhを変化させることは、特許′521においてそうするよりも、図1の制御システムにおける温度Thの変化割合に対してはるかにより大きな影響を有する。
ここで図11および図12を参照して、第2の温度制御システムについて説明する。図1のシステムに対するこの第2の温度制御システムにおける大きな相違点は、温度センサを含まない電子装置11′の温度をこのシステムによって調節するという点である。したがって、電子装置11′は、信号線12a上のTEST_IN信号に応答してその温度がどのように変動しているかを示す温度信号TEMPを発生させることはできない。この相違点は非常に重要であり、なぜならば先行技術におけるほとんどではないとしても多くの集積回路チップは温度センサを含まないからである。
等式2は、先に説明したように、この第2の温度制御システムが基づく原理を与えるものであり、便宜上、等式2は図11に再生される。等式2の項を代数学的に再配列することによって、=記号の右側にあるいくつかのパラメータの項で装置温度Tdが表現される別の等式31が得られる。
等式31では、各特定の装置11′がテストされている最中、パラメータ
Figure 0004077523
およびTSが時間とともに変動し、残りのパラメータθd-h、Mhおよびθh-sは本質的に一定である。したがって、装置11′をテストする前にそれら一定のパラメーθd-h、Mhおよびθh-sを測定し、装置11がテストされている間にパラメータ
Figure 0004077523
およびTSを感知することによって、等式31から装置温度Tdが評価され得る。次いで、その評価された装置温度が設定された点よりも上である場合にはヒータ温度を減少させ、逆の場合にはその逆を行なう。
図12は上記の原理で動作する温度制御システムのすべての構成要素を示す。図12において、ヒータ13′は、ヒータ温度Thを感知するセンサ13dを含む点を除き、図1のヒータ13と同じである。同様に、図12においては、ヒートシンク14′は、ヒートシンク温度TSを感知するセンサ14fを含む点を除き、図1のヒートシンク14と同じである。
図12の構成要素12′は、信号線12c′、12e′、12h、12iおよび12jからなる5つの異なる組に2つのコネクタ71および72を加えたものを含むことを除き、図1のプリント基板12と同じである。信号線12hは感知されたヒータ温度Thを搬送し、信号線12iは感知されたヒートシンク温度TSを搬送し、信号線12jは測定されたパラメータθd-h、Mh、θh-sを搬送し、信号性12e′はヒータのパワーPhを示す制御信号CTLを搬送し、信号線12c′は評価された装置温度Tdを搬送する。
図12の構成要素73は、等式31および信号線12e′、12i、12jおよび12h上にて受取られるパラメータのすべてに基づいて装置温度を評価する。構成要素73は等式31から装置温度をデジタルで計算するデジタルマイクロプロセッサチップであってもよく、または代替的に、構成要素71はアナログ態様で等式31から装置温度を計算するアナログ回路であってもよい。
構成要素16、17および18は同じ参照番号を有する図1の構成要素と同一である。構成要素16、17および18は、ともに、信号線12c′上の評価された装置温度を受取りかつ信号線12d上の設定された点温度を受取る制御回路15′を構成する。評価された装置温度が設定された点温度を超える場合には、制御回路15′はヒータ13′へのパワーPhを低減し、逆の場合にはその逆を行なう。
図2の温度制御システムのデジタルシミュレーションを図13に示す。このシミュレーションでは、シミュレーション時間が3秒に等しかったときに、電子装置11′はパワーにおいてステップ状の増大を有し、シミュレーション時間が6秒に等しかったとき、パワーにおいてステップ状の減少を有した。図13の曲線91(一連の小さな円からなる)は、そのシミュレーションの間にその評価された装置温度が時間とともにどのように変動したかを示し、図13の曲線92(実線である)は、装置が温度センサを有する場合に実際の装置温度がどのように感知されるであろうかを示す。
図13の上述のシミュレーションが実行されたとき、等式31の右側のパラメータはすべて誤差を全く伴わずに感知または測定されるものとされた。これはθh-sおよびMhに対しては有効な仮定であり、なぜならば、それらは本質的に固定されるものであり正確に測定され得るからである。さらに、ThおよびTSは適切な温度センサを用いることによって所望されるように正確にされ得、Phは制御信号CTLから既知である。しかしながら、数多くの電子装置が一度に1つテストされる大量生産環境では、ヒータ13′と各装置11′との間の物理的接触における微視的変動のため、パラメータθd-hは平均値からいくらかの範囲内で変動するかもしれない。
θd-hの平均値が評価器構成要素73に送られる一方で、θd-hの実際の値はその平均値とは異なる場合、その評価された装置温度において誤差が生ずる。この結果、図12の制御システムによって調節された装置11′の実際の温度と設定された点温度との間にずれが生ずる。このことは図14から明らかであり、曲線91′(一連の小さな円からなる)は、実際のθd-hが平均θd-hより20%小さい場合に評価された装置温度が時間とともにどのように変動するかを示し、曲線92′(実線である)は、実際の装置温度が時間とともにどのように変動するかを示す。
あるタイプの装置11′がテストされる場合、実際の装置温度と設定された点温度との間におけるいくらかのずれは受入れ可能であってもよく、その場合には、θd-hの平均値を評価器73に送れば十分である。しかしながら、そのずれ量が受入れ可能でない場合には、テストされる各装置ごとに実際のθd-hを測定することによってそのずれを低減し得る。
実際のθd-hが各装置ごとに測定され得る1つの好ましい方法を図15および図16に示す。ステップ1〜3を含むこの方法は、これも図15に再生される等式2に基づく。θd-hがその平均値よりも小さい場合、Td−Thは減少する。したがって、項32cは減少し、したがって、項32dにおけるヒータ温度の変化割合も減少する。逆に、θd-hがその平均値よりも大きい場合には、項32dにおけるヒータ温度の変化割合が増大する。
図15のプロセスのステップ1において、装置11′のパワー散逸は0にセットされる。次いで、ステップ2において、ヒータのパワーPhをある所定の態様にて変動させる。好適には、ヒータのパワーは、段階的に増大されるか、または段階的に減少されるか、または正弦波として変動される。次に、ステップ3において、ヒータのパワーを変動させることが
Figure 0004077523
に対して有する影響を感知してθd-hに相関付ける。
Figure 0004077523
が平均よりも速く変動する場合、実際のθd-hはその平均値よりも大きく、
Figure 0004077523
が平均よりも遅く変動する場合には、θd-hはその平均値よりも小さい。これは図16において曲線93、94および95により示される。曲線93は、θd-hをその平均値に等しくセットし、Phを設定された点にまで上昇させて装置温度がその設定された点に到達するまで待機し、次いでPhを0に降下させることによって得られた。曲線94および95も同様にして得られたが、実際のθd-hは平均θd-hから20%偏差した。
平均からの任意の偏差に対してθd-hの実際の値を測定するために、ヒータ温度を、Phが0に降下した後のある時間、たとえば0.04秒に等しい時間にて感知する。次いで、曲線93、94および95からの外挿によって実際のθd-hを得る。
次に、図17〜図19を参照して、図1および図12の温度制御システムにおいて熱抵抗θd-hを最小限にするための好ましいプロセスを説明する。このプロセスは重要なものであり、なぜならば、θd-hを減少させるにつれ、ヒータから電子装置に伝達され得る熱の量は、ヒータからヒートシンクに伝達される熱の量に対して増大するからである。このような熱伝達は、図14に関連して先に説明されたように、ヒータ温度が装置温度を超える場合に生ずる。
電子装置11(または11′)とヒータ13(または13′)との間に乾接点がなされ、その接触面が非常に平坦(つまり完全な面から5μm未満の偏差)である場合、それら接触面間にて得られうる抵抗率は約1.3℃ cm2/ワットである。この抵抗率は、接触面がより平坦でない場合にはより大きくなる。2つの平坦でない面の間に熱パッドを置くことによって、それらの間の抵抗率は低減されるが、熱パッドを介して得られ得る実際的な抵抗率は約1.0℃ cm2/ワットである。これに比して、図17〜図19の方法を用いると、電子装置からヒータへの抵抗率は0.07℃ cm2/ワットにまで低減された。これは、1.0÷0.07、つまり1000%を超える改善である。
まず、図17〜図19のプロセスにおいて、ヒータ13(または13′)に接触させられる電子装置11(または11′)の表面に、特定のタイプの液体101を1滴滴下する。このステップを図17に示す。液体101の2つの制限的特性は、a)空気に対して十分な熱導体であること、およびb)電子装置に損傷を与えない非常に低い温度でいかなる残渣も残さず蒸発すること、である。好ましくは、液体101は摂氏200度未満の温度で蒸発する。
液体101の1つの好ましい例は水である。液体101の第2の例は、水と揮発性原料(たとえばエチレングリコール)との混合物であり、この揮発性原料はその混合物の沸点を水の沸点を超えて上昇させるような原料である。液体101の第3の例は、水と揮発性原料(たとえばメタノール)との混合物であって、その揮発性原料はその混合物の凝固点を水の凝固点より下に抑えるような原料である。液体101の第4の例は、水と揮発性原料(たとえばエタノール)との混合物であって、その揮発性原料はその混合物の湿潤度が水の湿潤度を超えるように高められるような原料である。
液体101が上述のように電子装置上に滴下された後、ヒータの表面13aをその液体に押付ける。このステップを図18に示す。この結果、もともと滴下された液体101のうちいくらかは絞り出され、残りの液体101′は電子装置とヒータとの間に本質的に存在する微視的な隙間を満たす。これらの隙間は、ヒータの表面13aとそれに係合する電子装置の面とが完全に平坦でないために生ずるものである。
液体101′の存在により、ヒータ13(または13′)から電子装置11(または11′)への熱抵抗率は、液体が存在しない他の態様におけるよりも実質的に低減される。液体101′が水であり、係合する面の平坦度が5μm未満である場合、上述した約0.07℃ cm2/ワットの抵抗率が得られる。
電子装置とヒータとの係合面の聞の隙間の大きさを低減する1つの方法は、それら2つの面が押付け合わされる圧力を増大させることであり、次いで、これによってθd-hを減少させることになる。しかしながら、あまりに大きな圧力が与えられると、電子装置またはそれへの相互接続がひび割れ得る。したがって、電子装置が露出した集積回路ダイである場合に対しては、それとヒータとの間の圧力は好ましくは10psi未満である。
図18も、ヒータとヒートシンクとの間の係合面が完全に平坦ではないことを示す。しかしながら、それら2つの面は、好ましくは、永久的な態様、たとえば熱伝導性エポキシからなる層102によって接合される。層102に対する好適な厚みは50μm〜80μmである。
電子装置とヒータとヒートシンクとがすべて図18に示されるようにともに結合される一方で、電子装置がテストされ、その温度が図1または図12の制御システムによって設定された点付近に保たれる。この後、テストが完了すると、電子装置はヒータから分離される。次いで、液体101′が電子装置から蒸発によって除去され、これを図19において矢印103で示す。
液体101′のすべてを蒸発させるのにかかる総時間は、露出される液体101′の面積に比例する。電子装置が寸法Lを各辺に伴う方形である場合、図19における露出した面積はL2である。これに比して、電子装置が図18の構造にてテストされている最中である場合、液体101′の露出した面積は(4L)(5μm)に大きく低減される。
電子装置が典型的な集積回路チップである場合には、Lは2分の1インチ未満である。この場合、液体101′は、図18の構造において、図19におけるよりも500倍以上遅く蒸発する。したがって、短いテストの間では(つまり1時間未満)、蒸発によって図18の構造から有意な量の液体101′が失われることはない。
上述のプロセスの1つの特徴は、液体101′を蒸発させた後、電子装置上に残渣が全く残らないという点である。この結果、その電子装置はいかなる付加的な清浄工程も伴うことなく最終製品に組込まれ得る。
上記のプロセスのもう1つの特徴は、それが非常に容易かつ安価に実行されるという点である。図17に示されるように、電子装置上に液体101を1滴滴下するのにはわずか1つの工程を必要とするにすぎず、図18に示されるように、ヒータを電子装置に押付けるにはわずか1つの工程しか必要としない。
これら別個ではあるが関連した発明を、ここで、より詳細に、それぞれ、図1〜図10、図11〜図16、および図17〜図19に関連して説明した。これに加えて、これら図の詳細に対し、これらの発明の性質および精神から逸脱することなく、さまざまな変更および修正をなすことも可能である。
たとえば、図20は、レーザを用いることによって、電子装置11(または11′)の温度を、設定された点付近に保つ変形例を示す。この図20の変形例は、先に説明した図1、図12および図18の温度制御システムに組入れられ得る。
図20において、参照番号13″は変形された電気ヒータを示し、参照番号14″は変形されたヒートシンクを示す。変形されたヒータ13″に含まれるのは、赤外線レーザビーム13b″を発生するレーザ13a″と、一片の薄い平らな赤外線レーザビーム吸収材料13c″である。この材料13c″は、電子構成要素11(または11′)およびヒートシンク14″にそれぞれ抗する2つの主面13d″および13e″を有する。
変形されたヒートシンク14″は、基部14a″が2つの窓14e″および14f″を含み、その基部においてそれら窓の間には冷却フィンが配されないという点を除き、図1または図12の先に記載されたヒートシンクと同じである。窓14e″は赤外線レーザビーム13b″に対して透過性があり、熱伝導性を有する。窓14f″もレーザビーム13b″に対して透過性を有するが、熱伝導性を有する必要はない。好適には、これらの窓は単結晶シリコンからなる。
動作において、電子装置11(または11′)の温度は、図1の制御装置のように直接感知されるか、または図12の制御装置のように評価される。次いで、装置温度Tdが設定された点を上回る場合には、線13f″上におけるレーザへのパワーPhが、図1の制御回路15または図12の制御回路15′によって低減される。逆に、装置温度が設定された点を下回る場合には、レーザへのパワーPhを増大させる。
もう1つの変形例として、図18に示される向上した熱インタフェースを、図1および図12以外の温度制御システム内に組込み得る。この変形例の一例を図21に示す。図1の制御システムにおいては、ヒータ13(または13′または13″)およびヒータのパワーPhを制御するための対応の回路系を除去し、ヒートシンク14(または14′)を液体膜101′が間に配される状態で電子装置に押付ける。
図21の変形例では、電子装置11(または11′)の温度は、ヒータ13(または13′または13″)が存在する場合よりも、設定された点から実質的により大きく変動する。しかしながら、一方では、電子装置の温度は、図21の変形例では、液体膜101′が存在しない場合に生ずる変動よりも実質的に小さく変動する。パワー散逸において小さな変動を伴うチップなどのような特定の電子装置に対する特定のテストに対しては、図21の変形例で達成される温度調整量で十分であり、ヒータおよびその制御回路に関連付けられるすべての費用が削減される。
もう1つの変形例として、図1の温度制御システムを変化させることにより、電子装置11がパワー調節器16にTEMP信号を全く送らない開ループ制御システムを与えることができる。この変形例では、テスタが電子装置11に送る各特定のTEST_IN信号ごとに、テスタがパワー調節器16に信号線12dで一連の予測される温度をシーケンスで送る。これに応答して、パワー調節器16は予測される電子装置11の温度を設定された点温度と比較する。予測される温度が設定された点温度未満である場合には、調節器16は、ヒータ13への可変パワーPhを増大するように制御信号CTLを発生する。逆に、予測される温度が設定された点温度を超える場合には、調節器16は、ヒータ13への可変パワーPhを減少するように制御信号CTLを発生する。
さらに別の変形例として、赤外線レーザビーム吸収材料13c″を除去するように図20の電気ヒータ13″を変更し得る。この変形例では、窓14e″が電子装置11(または11′)に抗して配され、レーザビーム13b″は電子装置によって直接吸収される。
別の変形例として、図1の温度制御システムは、電子装置11の外表面に取付けられる温度センサから信号線12c上のTEMP信号が発生するように変更され得る。この変形例は、温度センサが電子装置11内に集積されない場合に有用である。
別の変形例として、図1および図12の温度制御システムは、信号線12d上の設定された点温度が時間とともに変動するように変更され得る。たとえば、設定された点温度は1つのレベルから他のレベルにステップ状に進んでもよく、または勾配を伴うかもしくは正弦波態様で連続的に変動してもよい。
したがって、これらの発明は任意の1つの図における任意の1つの実施例の詳細に限定されるものではなく、請求の範囲により規定されるものであることを理解されたい。

Claims (24)

  1. 電子装置の温度を設定された点温度付近に維持する温度制御システムであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータとを備え、前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上に電気抵抗器を含み、さらに、
    ヒートシンクとを備え、前記ヒートシンクは、前記ヒータが前記ヒートシンクと前記電子装置との間に配置されるように、前記ヒータの前記第2の面に結合され、さらに、
    前記電子装置に結合される温度センサと、
    前記温度センサと前記ヒータとに結合され、前記抵抗器に電力を送る制御回路とを含み、
    前記制御回路は、前記電子装置の感知された温度が前記設定された点を上回る場合には前記抵抗器に送る電力を低減し、逆の場合にはその逆を行ない
    前記ヒータが前記電子装置と前記ヒートシンクとの間に配置されるために、安定した状態条件下で前記電子装置の感知された温度が前記設定された点にある場合に、前記電子装置によって発生する熱が前記ヒータを介して前記ヒートシンクに流れることを特徴とする、温度制御システム。
  2. 電子装置の温度を設定された点温度付近に維持する温度制御システムであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータとを備え、前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上にレーザ吸収材料を含み、さらに、
    ヒートシンクとを備え、前記ヒートシンクは、前記ヒータが前記ヒートシンクと前記電子装置との間に配置されるように、前記ヒータの前記第2の面に結合され、さらに、
    前記電子装置に結合される温度センサと、
    前記温度センサと前記ヒータとに結合され、レーザで前記レーザ吸収材料を加熱する制御回路とを含み、
    前記制御回路は、前記電子装置の感知された温度が前記設定された点を上回る場合には前記レーザを発生するための電力を低減し、逆の場合にはその逆を行ない
    前記ヒータが前記電子装置と前記ヒートシンクとの間に配置されるために、安定した状態条件下で前記電子装置の感知された温度が前記設定された点にある場合に、前記電子装置によって発生する熱が前記ヒータを介して前記ヒートシンクに流れることを特徴とする、温度制御システム。
  3. 前記温度センサは前記電子装置に集積される、請求項1または2に記載の温度制御システム。
  4. 温度センサは前記電子装置の外部に取付けられる、請求項1または2に記載の温度制御システム。
  5. 前記ヒータの各面は一定の長さを有し、その長さに比較して前記ヒータの前記第1の面から前記第2の面までの間が薄い、請求項1または2に記載の温度制御システム。
  6. 前記ヒータは平坦でありかつ4分の1センチメートルの厚みである、請求項1または2に記載の温度制御システム。
  7. 前記ヒータの熱マスは前記電子装置の熱マスの3倍以下である、請求項1または2に記載の温度制御システム。
  8. 前記ヒータの熱マスは前記電子装置の熱マス未満である、請求項1または2に記載の温度制御システム。
  9. 前記ヒータから前記電子装置への熱抵抗は前記ヒータから前記ヒートシンクへの熱抵抗の3倍未満である、請求項1または2に記載の温度制御システム。
  10. 前記ヒータから前記電子装置への熱抵抗は前記ヒータから前記ヒートシンクへの熱抵抗未満である、請求項1または2に記載の温度制御システム。
  11. 前記電子装置は、入力信号に応じてオンおよびオフに切換わるトランジスタを含み、
    前記電子装置からの熱散逸は、前記電子装置に与えられる前記入力信号に応じて変動し、
    前記電子装置は、前記入力信号と、前記入力信号に応じてオンおよびオフに切換わる前記トランジスタに応じて出力される出力信号とに基づいてテストされる、請求項1または2に記載の温度制御システム。
  12. 前記ヒータの前記第1の面と前記電子装置との間に配されるのは、電子装置に損傷を与えない温度でいかなる残渣も残すことなく蒸発する液体である、請求項1または2に記載の温度制御システム。
  13. 電子装置の温度を調節する温度制御システムにおいて用いられる温度制御サブアセンブリであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータと、
    前記ヒータの前記第2の面に結合され、前記ヒータを介して前記電子装置から熱を吸収することによって前記電子装置を冷却するヒートシンクとを含み、
    前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上にレーザ吸収材料と、前記レーザ吸収材料にレーザビームを照射するレーザとを含む、温度制御アセンブリ。
  14. 電子装置の温度を調節する温度制御システムにおいて用いるための温度制御サブアセンブリであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータを含み、前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上にレーザ吸収材料を含み、さらに
    赤外線レーザビームを発生するレーザと、
    前記ヒータの前記第2の面に結合され、前記ヒータを介して前記電子装置から熱を吸収することによって前記電子装置を冷却するヒートシンクとを含み、
    前記ヒートシンクは、前記レーザビームを前記ヒートシンクを介して前記電子装置に送る窓を有する、温度制御アセンブリ。
  15. 電子装置の温度を設定された点温度付近に維持する温度制御システムであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータとを備え、前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上に電気抵抗器を含み、さらに、
    前記ヒータの前記第2の面に結合され、前記ヒータの前記第2の面を介して前記電子装置から熱を吸収するヒートシンクと、
    前記ヒータおよび前記ヒートシンクに結合されるそれぞれの温度センサと、
    前記温度センサに結合され、前記電子装置の温度を、感知されたヒータ温度および感知されたヒートシンク温度の予め定められた関数に基づいて推定する評価器回路と、
    前記評価器回路および前記ヒータに結合され、前記抵抗器に電力を送る制御回路とを含み、
    前記制御回路は、前記電子装置の推定された温度が前記設定された点を上回る場合には前記抵抗器に送る電力を減少させ、逆の場合にはその逆を行な
    前記評価器回路が前記電子装置の温度Tdを推定する前記関数は、
    Figure 0004077523
    温度制御システム。
  16. 電子装置の温度を設定された点温度付近に維持する温度制御システムであって、
    前記電子装置と接触するための第1の面と、前記第1の面に対向する第2の面とを有するヒータとを備え、前記ヒータは、前記第1の面と前記第2の面との間または前記第1および第2の面上にレーザ吸収材料を含み、さらに、
    前記ヒータの前記第2の面に結合され、前記ヒータの前記第2の面を介して前記電子装置から熱を吸収するヒートシンクと、
    前記ヒータおよび前記ヒートシンクに結合されるそれぞれの温度センサと、
    前記温度センサに結合され、前記電子装置の温度を、感知されたヒータ温度および感知されたヒートシンク温度の予め定められた関数に基づいて推定する評価器回路と、
    前記評価器回路および前記ヒータに結合され、レーザで前記レーザ吸収材料を加熱する制御回路とを含み、
    前記制御回路は、前記電子装置の推定された温度が前記設定された点を上回る場合には前記レーザを発生するための電力を減少させ、逆の場合にはその逆を行な
    前記評価器回路が前記電子装置の温度Tdを推定する前記関数は、
    Figure 0004077523
    温度制御システム。
  17. 前記評価器回路は、(a)前記ヒータの第1の面から前記装置への熱抵抗、(b)前記ヒータの第2の面から前記ヒートシンクへの熱抵抗、および(c)前記ヒータの熱マスのそれぞれの値を記憶するメモリを含み、前記評価器回路は前記記憶される値を前記関数において装置温度を推定するために用いる、請求項15または16に記載の温度制御システム。
  18. 前記評価器回路はデジタルマイクロプロセッサである、請求項15または16に記載の温度制御システム。
  19. 前記評価器回路はアナログ回路である、請求項15または16に記載の温度制御システム。
  20. 前記ヒートシンクは0.1℃ cm2/ワットより大きい熱抵抗率を介して前記ヒータの前記第2の面に結合される、請求項15または16に記載の温度制御システム。
  21. 前記ヒータから前記電子装置への熱抵抗は前記ヒータから前記ヒートシンクへの熱抵抗の3倍未満である、請求項15または16に記載の温度制御システム。
  22. 前記ヒータの熱マスは前記電子装置の熱マスの3倍以下である、請求項15または16に記載の温度制御システム。
  23. 前記ヒータの各面は一定の長さを有し、その長さに比較して前記ヒータの前記第1の面から前記第2の面までの間薄い、請求項15または16に記載の温度制御システム。
  24. 前記ヒータの前記第1の面と前記電子装置との間に配されるのは、電子装置に損傷を与えない温度でいかなる残渣も残すことなく蒸発する液体である、請求項15または16に記載の温度制御システム。
JP54295898A 1997-04-04 1998-04-03 電子装置用温度制御システム Expired - Lifetime JP4077523B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US08/833,369 1997-04-04
US08/833,368 US5844208A (en) 1997-04-04 1997-04-04 Temperature control system for an electronic device in which device temperature is estimated from heater temperature and heat sink temperature
US08/833,369 US5821505A (en) 1997-04-04 1997-04-04 Temperature control system for an electronic device which achieves a quick response by interposing a heater between the device and a heat sink
US08/833,273 US5864176A (en) 1997-04-04 1997-04-04 Electro-mechnical subassembly having a greatly reduced thermal resistance between two mating faces by including a film of liquid, that evaporates without leaving any residue, between the faces
US08/833,273 1997-04-04
US08/833,368 1997-04-04
PCT/US1998/006701 WO1998046059A1 (en) 1997-04-04 1998-04-03 Temperature control system for an electronic device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005066502A Division JP4122009B2 (ja) 1997-04-04 2005-03-10 電子機械的サブアセンブリ、および電子装置を熱交換部材に熱結合する方法
JP2007301819A Division JP2008118149A (ja) 1997-04-04 2007-11-21 電子機械的アセンブリ、および電子装置を熱交換部材に熱結合する方法

Publications (3)

Publication Number Publication Date
JP2001526837A JP2001526837A (ja) 2001-12-18
JP2001526837A5 JP2001526837A5 (ja) 2005-11-10
JP4077523B2 true JP4077523B2 (ja) 2008-04-16

Family

ID=27420238

Family Applications (3)

Application Number Title Priority Date Filing Date
JP54295898A Expired - Lifetime JP4077523B2 (ja) 1997-04-04 1998-04-03 電子装置用温度制御システム
JP2005066502A Expired - Fee Related JP4122009B2 (ja) 1997-04-04 2005-03-10 電子機械的サブアセンブリ、および電子装置を熱交換部材に熱結合する方法
JP2007301819A Pending JP2008118149A (ja) 1997-04-04 2007-11-21 電子機械的アセンブリ、および電子装置を熱交換部材に熱結合する方法

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2005066502A Expired - Fee Related JP4122009B2 (ja) 1997-04-04 2005-03-10 電子機械的サブアセンブリ、および電子装置を熱交換部材に熱結合する方法
JP2007301819A Pending JP2008118149A (ja) 1997-04-04 2007-11-21 電子機械的アセンブリ、および電子装置を熱交換部材に熱結合する方法

Country Status (4)

Country Link
EP (4) EP0993243B1 (ja)
JP (3) JP4077523B2 (ja)
DE (3) DE69822158T2 (ja)
WO (1) WO1998046059A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503127A (ja) * 2003-08-21 2007-02-15 ユニシス コーポレイシヨン Icモジュールに液体冷媒液滴を噴霧し、放射(輻射)を向ける温度制御システム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668570B2 (en) 2001-05-31 2003-12-30 Kryotech, Inc. Apparatus and method for controlling the temperature of an electronic device under test
US6658736B1 (en) * 2002-08-09 2003-12-09 Unisys Corporation Method of fabricating a heat exchanger, for regulating the temperature of multiple integrated circuit modules, having a face of a solid malleable metal coated with a release agent
US6975028B1 (en) 2003-03-19 2005-12-13 Delta Design, Inc. Thermal apparatus for engaging electronic device
US7199597B2 (en) * 2004-02-16 2007-04-03 Delta Design, Inc. Dual feedback control system for maintaining the temperature of an IC-chip near a set-point
DE102004042075A1 (de) * 2004-08-31 2005-10-20 Infineon Technologies Ag Schaltungsanordnung mit temperaturgesteuerter Schaltungseinheit und Verfahren zur Temperatursteuerung
DE102005001163B3 (de) * 2005-01-10 2006-05-18 Erich Reitinger Verfahren und Vorrichtung zum Testen von Halbleiterwafern mittels einer temperierbaren Aufspanneinrichtung
JP4418772B2 (ja) 2005-04-28 2010-02-24 富士通マイクロエレクトロニクス株式会社 温度制御装置
JP4315141B2 (ja) 2005-09-09 2009-08-19 セイコーエプソン株式会社 電子部品の温度制御装置並びにハンドラ装置
JP5552452B2 (ja) * 2011-03-04 2014-07-16 パナソニック株式会社 加熱冷却試験方法および加熱冷却試験装置
BR112014012455A2 (pt) 2011-11-24 2017-06-06 Wintershall Holding GmbH composto, processo para preparar um composto, e, uso de um composto
GB2507732A (en) * 2012-11-07 2014-05-14 Oclaro Technology Ltd Laser temperature control
DE102013010088A1 (de) * 2013-06-18 2014-12-18 VENSYS Elektrotechnik GmbH Kühlvorrichtung für ein Stromumrichtermodul
KR20180033223A (ko) * 2015-07-21 2018-04-02 델타 디자인, 인코포레이티드 연속적인 유체 열계면 재료 공급
KR200494784Y1 (ko) * 2018-11-06 2021-12-28 김진국 세정기
CN113412031A (zh) * 2021-06-21 2021-09-17 合肥联宝信息技术有限公司 一种升温模组及电子设备
AU2022204614A1 (en) * 2021-08-27 2023-03-16 Ametek, Inc. Temperature dependent electronic component heating system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979671A (en) * 1975-03-06 1976-09-07 International Business Machines Corporation Test fixture for use in a high speed electronic semiconductor chip test system
JPS5961027A (ja) * 1982-09-29 1984-04-07 Toshiba Corp 半導体基板加熱装置
JPS5986235A (ja) * 1982-11-09 1984-05-18 Shimada Phys & Chem Ind Co Ltd 半導体基板の電気的特性測定方法
US4567505A (en) * 1983-10-27 1986-01-28 The Board Of Trustees Of The Leland Stanford Junior University Heat sink and method of attaching heat sink to a semiconductor integrated circuit and the like
US4854726A (en) * 1986-05-29 1989-08-08 Hughes Aircraft Company Thermal stress screening system
JPH07105422B2 (ja) * 1987-03-16 1995-11-13 東京エレクトロン株式会社 半導体ウエハ載置台
BE1000697A6 (fr) * 1987-10-28 1989-03-14 Irish Transformers Ltd Appareil pour tester des circuits electriques integres.
JPH01152639A (ja) * 1987-12-10 1989-06-15 Canon Inc 吸着保持装置
US4848090A (en) * 1988-01-27 1989-07-18 Texas Instruments Incorporated Apparatus for controlling the temperature of an integrated circuit package
US4962416A (en) * 1988-04-18 1990-10-09 International Business Machines Corporation Electronic package with a device positioned above a substrate by suction force between the device and heat sink
US4975766A (en) * 1988-08-26 1990-12-04 Nec Corporation Structure for temperature detection in a package
US4975803A (en) * 1988-12-07 1990-12-04 Sundstrand Corporation Cold plane system for cooling electronic circuit components
JP3201868B2 (ja) * 1992-03-20 2001-08-27 アジレント・テクノロジーズ・インク 導電性熱インターフェース及びその方法
JPH05267200A (ja) * 1992-03-24 1993-10-15 Hitachi Ltd 半導体熱処理装置
US5448147A (en) * 1992-05-08 1995-09-05 Tel-Varian Limited Selectable feedback control system
US5420521A (en) 1992-10-27 1995-05-30 Ej Systems, Inc. Burn-in module
JP3067480B2 (ja) * 1993-08-26 2000-07-17 三菱自動車工業株式会社 レーザ焼入れ用レーザ吸収剤
JPH08286551A (ja) * 1995-04-12 1996-11-01 Ricoh Co Ltd 温度制御装置
GB9610663D0 (en) * 1996-05-22 1996-07-31 Univ Paisley Temperature control apparatus and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503127A (ja) * 2003-08-21 2007-02-15 ユニシス コーポレイシヨン Icモジュールに液体冷媒液滴を噴霧し、放射(輻射)を向ける温度制御システム

Also Published As

Publication number Publication date
EP0993243A3 (en) 2000-07-12
DE69822158D1 (de) 2004-04-08
DE69818468T2 (de) 2004-07-22
EP0993243B1 (en) 2004-03-03
EP0993243A2 (en) 2000-04-12
EP2086306B1 (en) 2013-06-05
JP2005249798A (ja) 2005-09-15
JP2008118149A (ja) 2008-05-22
EP0994645B1 (en) 2003-09-24
WO1998046059A1 (en) 1998-10-15
DE69839520D1 (de) 2008-07-03
JP2001526837A (ja) 2001-12-18
DE69818468D1 (de) 2003-10-30
EP1016337B1 (en) 2008-05-21
EP2086306A1 (en) 2009-08-05
EP1016337A1 (en) 2000-07-05
JP4122009B2 (ja) 2008-07-23
EP0994645A2 (en) 2000-04-19
EP0994645A3 (en) 2000-07-12
DE69822158T2 (de) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4122009B2 (ja) 電子機械的サブアセンブリ、および電子装置を熱交換部材に熱結合する方法
US5844208A (en) Temperature control system for an electronic device in which device temperature is estimated from heater temperature and heat sink temperature
US5864176A (en) Electro-mechnical subassembly having a greatly reduced thermal resistance between two mating faces by including a film of liquid, that evaporates without leaving any residue, between the faces
US5821505A (en) Temperature control system for an electronic device which achieves a quick response by interposing a heater between the device and a heat sink
US7394271B2 (en) Temperature sensing and prediction in IC sockets
US6476627B1 (en) Method and apparatus for temperature control of a device during testing
US5260668A (en) Semiconductor surface resistivity probe with semiconductor temperature control
US7271604B2 (en) Method and apparatus for testing semiconductor wafers by means of a temperature-regulated chuck device
US6786639B2 (en) Device for sensing temperature of an electronic chip
WO2006096543A2 (en) Temperature sensing and prediction in ic sockets
EP3799111B1 (en) Inspection device and temperature control method
JP2019153717A (ja) 検査装置
EP3937216A1 (en) Method for controlling temperature of substrate support and inspection apparatus
US6466038B1 (en) Non-isothermal electromigration testing of microelectronic packaging interconnects
Siegal An Introduction to diode thermal measurements
JP2004361197A (ja) 電子部品発熱量測定方法
Hamilton Thermal aspects of burn-in of high power semiconductor devices
WO2023047999A1 (ja) 基板載置機構、検査装置、および検査方法
JPH04144248A (ja) 半導体集積回路の試験方法
JPH07130816A (ja) エレクトロマイグレーション評価方法および装置並びに被験体
Hongshuo et al. Study of the junction to case thermal resistance test method for IC based on ETM
JPH03195038A (ja) 半導体集積回路の評価装置
JP2005326217A (ja) 温度制御システムおよび半導体試験装置
McElreath Sockets and Heat Sinks In High-Power Burn-In.
Monthei Thermal Measurements

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070309

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term