JP4073758B2 - Rotating electric machine for vehicles - Google Patents

Rotating electric machine for vehicles Download PDF

Info

Publication number
JP4073758B2
JP4073758B2 JP2002323676A JP2002323676A JP4073758B2 JP 4073758 B2 JP4073758 B2 JP 4073758B2 JP 2002323676 A JP2002323676 A JP 2002323676A JP 2002323676 A JP2002323676 A JP 2002323676A JP 4073758 B2 JP4073758 B2 JP 4073758B2
Authority
JP
Japan
Prior art keywords
rotating shaft
shaft
rotation angle
angle detector
bypass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002323676A
Other languages
Japanese (ja)
Other versions
JP2004159449A (en
Inventor
義信 内海
英規 森角
淑人 浅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002323676A priority Critical patent/JP4073758B2/en
Publication of JP2004159449A publication Critical patent/JP2004159449A/en
Application granted granted Critical
Publication of JP4073758B2 publication Critical patent/JP4073758B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、回転角度検出器を有する車両用回転電機に係り、特には回転角度検出器の回転角度検出精度を高めるための技術に関する。
【0002】
【従来の技術】
一般に、車両用回転電機は、エンジン始動時には同期電動機として、エンジン稼働中は交流発電機として使用される。特に、エンジン始動時に同期電動機として使用する場合、ステータコアやロータコアに巻装された各界磁コイルへの通電タイミングを制御する必要があることから、従来よりロータコアが嵌着される回転軸の一方の軸端部側に回転角度検出器を配置して回転角度を検出するようにしている。
【0003】
ところで、この種の車両用回転電機において、上記の回転角度検出器として磁気式のものやレゾルバを使用する場合、ロータコアに巻装されたロータコイルへの通電により回転軸が磁化され、その結果、回転軸を通じて流れる漏れ磁束によって回転角度検出器の検出精度が影響を受けやすい。
【0004】
そこで、従来技術では、磁気式の回転角度検出器を軸方向に沿って前後に挟む状態で高透磁性の磁気バイパス部材を設け、回転軸を通じて流れる漏れ磁束をこれらの磁気バイパス部材でバイパスさせことにより、回転角度検出器を構成するホール素子と永久磁石との間を漏れ磁束が通過しないようにした構成のものが提案されている(たとえば、特許文献1参照)。
【0005】
この特許文献1に記載されている構成にすれば、磁気式の回転角度検出装置を構成するホール素子と永久磁石との間を通過する漏れ磁束が低減されるため、回転角度検出器の検出精度をある程度高めることが可能である。
【0006】
【特許文献1】
特開2002−171723号公報(第1−6頁、図1−図2)
【0007】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載されているような従来のものは、磁気式の回転角度検出器を挟む前後の磁気バイパス部材の内、ロータコア側に近接した内側の磁気バイパス部材は、ハウジングの側壁に固定されているので、回転軸との間に隙間が形成されている。このため、回転軸を通じて流れる漏れ磁束をこの磁気バイパス部材でバイパスさせる効果が不十分である。
【0008】
また、回転軸の軸端に固定された外側の磁気バイパス部材は、非磁性体からなるリテーナに取り付けられている。そのため、このリテーナに取り付けられた磁気バイパス部材によっても漏れ磁束をバイパスさせる効果が未だ不十分である。
【0009】
このように、従来構成のものは、磁気式の回転角度検出器を挟む前後のいずれの磁気バイパス部材によっても漏れ磁束をバイパスさせるのに不十分で、回転角度検出器の検出精度を高めるのに限界がある。
【0010】
本発明は、上記の課題を解決するためになされたもので、漏れ磁束による回転角度検出器への影響を可及的に低減し、より高精度な回転角度検出を行える車両用回転電機を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記の目的を達成するために、回転軸にロータコアが嵌着され、このロータコアの外方にはこれと同心にステータコアが配置され、また、上記回転軸の一方の軸端部側には回転角度検出器が配置されてなる車両用回転電機において、次の構成を採用している。
【0012】
第1の発明では、上記回転軸の回転角度検出器の取付箇所よりも外側の軸端部には、上記回転軸の径方向外方に向けて張出形成された高透磁性の磁気バイパス部材が取り付けられ、この磁気バイパス部材が上記回転軸の外端側に位置する回転角度検出器保護用の保護カバーに接近され、かつ、上記保護カバーは高透磁性の磁気バイパス部材として形成されていることを特徴としている。
【0013】
第2の発明では、上記回転軸の回転角度検出器の取付箇所よりも外端側には、上記回転軸の軸端部に近接するとともに、上記回転軸の径方向外方に向けて張り出した高透磁性の磁気バイパス部材が配置され、また、上記回転軸のロータコアと回転角度検出器の間に位置する箇所には、高透磁性の磁気バイパス部材が嵌着されていることを特徴としている。
【0014】
【発明の実施の形態】
実施の形態1.
図1は本発明の実施の形態1に係る車両用回転電機の構成を示す縦断面図である。
【0015】
図1において、1は車両用回転電機の全体を示し、2はハウジングで、左右一対のブラケット3,4をねじ5で固定して構成されている。各ブラケット3,4には、図外の車体への取付穴3a,4aや内部冷却用の通気孔3b,3c,3d、4b,4cが形成されている。また、図中左側のブラケット3の側部には円筒状のフード部3fが突設されるとともに、このフード部3fの内方にセンサ取付部3eが形成されている。
【0016】
7は鋼鉄等でできた回転軸、8,9は回転軸7をハウジング2に回転自在に支持する軸受けで、これらの各軸受け8,9はブラケット3,4に個別に取り付けられている。10は図示しないタイミングベルトが懸架されるプーリ、11はプーリ10を回転軸7に固定するためのナット、12は回転軸7に嵌着されたロータコア、13はロータコア12に巻装されたロータコイルである。
【0017】
ロータコア12は、左右一対のコア部材16,17を一体に接合してなり、各々のコア部材16,17は、ロータコイル13が巻回されたボビン13aが収容される筒状部16a,17aからロータコイル13の上を覆って互いに交差する位置まで爪形磁極部16b,17bがそれぞれ延設されてなる。このため、左右の各爪形磁極部16b,17bは、周方向に沿って所定の間隔を存して互い違いに一定ピッチで配列された形状になっている。なお、18,19は各コア部材16,17の外側面に取り付けられた冷却ファンである。
【0018】
22は回転軸7に嵌着されたスリップリングで、このスリップリング22はロータコイル13に電線23を介して電気的に接続されている。したがって、スリップリング22および電線23を介してロータコイル13に界磁電流が流れると、ロータコア12を構成するコア部材16,17の各爪形磁極部16b,17bが周方向に沿って交互に正負の極性が変化するように磁化される。
【0019】
24はロータコア12の外方にこれと同心状に配置されてハウジング2に固定されたステータコア、25はステータコア24に巻装されたステータコイル、26はスリップリング22に接触するブラシ、27は図外の3相インバータ回路に接続するための端子台、28は回路基板である。そして、端子台27は回路基板28および図示しない電線を介してステータコイル25に電気的に接続されている。以上の構成自体は既に公知であり、詳細な説明は省略する。
【0020】
上記回転軸7のプーリ10の取付位置とは反対側の軸端部には回転角度検出器としてのレゾルバ31が配置されている。このレゾルバ31は、回転軸7の軸端部にレゾルバロータ32がねじ33で固定され、また、一方のブラケット3のセンサ取付部3eの内周部にレゾルバステータ34がねじ37で固定され、このレゾルバステータ34にレゾルバコイル35が巻装されて構成されている。このようなレゾルバ31は、比較的簡単な構成であるにもかかわらず機械的振動等の影響を受け難く、回転角度を精度良く検出できる利点がある。なお、36はレゾルバコイル35に接続された信号入出力用の電線、39はレゾルバ31を保護するためにブラケット3のフード部3fの開口端面に固定された平板状の保護カバーである。
【0021】
この実施の形態1の特徴は、軸受け8とレゾルバ31との間に位置する回転軸7の外周部に軟鉄材等からなる高透磁性体でできたリング状の磁気バイパス部材43が圧入等により嵌着されて回転軸7と一体化されていることである。
【0022】
ここで、回転軸7が鋼鉄のような磁性体でできていると、ロータコイル13への通電により回転軸7が磁化され、その結果、図1中の符号Aで示すように、回転軸7を通じて流れる漏れ磁束がレゾルバロータ32からレゾルバステータ34に流れてレゾルバ31の回転角度検出精度が悪くなる。
【0023】
これに対して、この実施の形態1では、回転軸7と一体化された磁気バイパス部材43が設けられているので、ロータコイル13への通電が行われた場合、回転軸7を通じて流れる漏れ磁束は図1中の符号Bで示すように、磁気バイパス部材43からステータコア24に向けて流れる。このため、レゾルバロータ32からレゾルバステータ34に流れる漏れ磁束が非常に小さくなる。したがって、レゾルバ31への漏れ磁束の影響が大幅に低減され、高精度な回転角度検出を行うことが可能になる。また、磁気バイパス部材43は回転軸7に圧入等によって嵌着するだけでよいため、容易に組み立てることができる。
【0024】
実施の形態2.
図2は本発明の実施の形態2に係る車両用回転電機の要部を示す縦断面図であり、図1に示した実施の形態1の構成と同一または相当する部分には同一の符号を付す。
【0025】
この実施の形態2における車両用回転電機の特徴は、回転軸7のレゾルバ31の取付箇所よりも外側の軸端部に、軟鉄材等からなる高透磁性の磁気バイパス部材44がレゾルバロータ32と共にねじ33で固定されている。さらに、ブラケット3のフード部3fの開口端面に取り付けられた保護カバー39も同様に軟鉄材等からなる高透磁性でできており、磁気バイパス部材として兼用されている。
【0026】
そして、回転軸7に固定された磁気バイパス部材44は、これに対向する保護カバー39に漏れ磁束ができるだけ多く流れるように、保護カバー39に極力接近するように形成されている。すなわち、磁気バイパス部材44は保護カバー39に向けて突出してから回転軸7の径方向外方に張り出すように屈曲形成されている。
なお、その他の構成は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
【0027】
このように、この実施の形態2では、回転軸7の軸端部にはその径方向外方に張り出した磁気バイパス部材44が一体固定されているので、回転軸7を通じて流れる漏れ磁束は、図2中の符号Cで示すように、磁気バイパス部材44および保護カバー39に沿って流れる。このため、レゾルバロータ32からレゾルバステータ34に流れる漏れ磁束を非常に小さくすることができ、したがって、レゾルバ31への漏れ磁束の影響が大幅に低減され、高精度な回転角度検出を行うことが可能になる。また、磁気バイパス部材44は回転軸7にねじ33等で固定するだけでよいため、容易に組み立てることができる。
【0028】
なお、この実施の形態2では、保護カバー39を高透磁性の磁気バイパス部材として兼用しているが、回転軸7に固定されている磁気バイパス部材44が回転軸7の径方向外方に大きく張り出すように形成されておれば、保護カバー39として高透磁性のものを使用しなくても上記と同様な効果が得られる。
【0029】
実施の形態3.
図3は本発明の実施の形態3に係る車両用回転電機の要部を示すもので、図1に示した実施の形態1の構成と同一または相当する部分には同一の符号を付す。
【0030】
この実施の形態3における車両用回転電機の特徴は、レゾルバ31を挟む前後の位置にそれぞれ軟鉄材等の高透磁性体でできた磁気バイパス部材43,39が設けられていることである。
【0031】
すなわち、一方の磁気バイパス部材43は、実施の形態1の場合と同様のもので、軸受け8とレゾルバ31との間に位置する回転軸7の外周部に圧入等により嵌着されて回転軸7と一体化されている。また、他方の磁気バイパス部材39は、レゾルバ31を保護する保護カバーを兼用している。このため、この磁気バイパス部材39は、回転軸7の軸端部に対向するとともに、回転軸7の径方向外方に向けて張り出している。
【0032】
そして、保護カバー兼用の磁気バイパス部材39には、回転軸7を通る漏れ磁束が円滑に流れるように、回転軸7の軸端部に近接させるための突出部39aが形成されている。
なお、その他の構成は実施の形態1の場合と同様であるから、ここでは詳しい説明は省略する。
【0033】
このように、この実施の形態3では、回転軸7の軸受け8とレゾルバ31との間に位置する箇所に磁気バイパス部材43を一体に固定しているので、図3中の符号D1で示すように、回転軸7を通じて流れる漏れ磁束の多くはこの磁気バイパス部材43を通じて径方向外方に向かいステータコア24に流れる。
【0034】
また、保護カバー兼用の磁気バイパス部材39は回転軸7の軸端部に近接させているため、上記の磁気バイパス部材43では十分にバイパスできなかった漏れ磁束は、図3の符号D2で示すように、保護カバー兼用の磁気バイパス部材39に沿って流れる。このため、レゾルバロータ32からレゾルバステータ34に流れる漏れ磁束を実施の形態1,2の場合よりもさらに小さくすることができる。したがって、レゾルバ31への漏れ磁束の影響がさらに低減され、一層高精度な回転角度検出を行うことが可能になる。
【0035】
実施の形態4.
図4は本発明の実施の形態4に係る車両用回転電機の要部を示す縦断面図であり、図3に示した実施の形態3の構成と同一または相当する部分には同一の符号を付す。
【0036】
この実施の形態4における車両用回転電機の特徴は、回転軸7の磁気バイパス部材43の嵌着箇所よりも軸端側に位置するレゾルバロータ32の装着箇所がオーステナイト系ステンレス鋼などの非磁性体からなる軸部材40で構成されていていることである。すなわち、非磁性体の軸部材40の凹部を回転軸7の凸部に嵌着することで両者が一体化されている。一体化の手法としてはたとえば圧入や溶接等が適用される。そして、この軸部材40にレゾルバロータ32がねじ33で固定されている。
なお、その他の構成は実施の形態3の場合と同様であるから、ここでは詳しい説明は省略する。
【0037】
このように、この実施の形態4では、回転軸7の軸受け8とレゾルバ31との間に位置する箇所に磁気バイパス部材43を固定しているので、図4中の符号Eで示すように、回転軸7を通じて流れる漏れ磁束の多くはこの磁気バイパス部材43を通じて径方向外方に向かいステータコア24に流れる。
【0038】
また、回転軸7を通じて流れる漏れ磁束の一部がレゾルバ31に向かったとしても、レゾルバロータ32が装着される箇所の軸部材40が非磁性体で構成されているので、漏れ磁束はこの軸部材40によって阻止される。したがって、磁気バイパス部材43を通じてより多くの漏れ磁束が流れるようになり、漏れ磁束がレゾルバロータ32からレゾルバステータ34に流れる漏れ磁束を小さくすることができる。このため、レゾルバ31への漏れ磁束の影響が大幅に低減され、上記の実施の形態1〜3の場合よりもさらに一層高精度な回転角度検出を行うことが可能になる。
【0039】
さらに、軸部材40のために磁気バイパス部材43を通じて流れる漏れ磁束の磁束密度が大きくなってこの部材43が磁気飽和した場合には、漏れ磁束がレゾルバ31に流れる恐れがあるが、その場合には、保護カバーを兼用した磁気バイパス部材39に漏れ磁束が流れるため、レゾルバ31への漏れ磁束の影響が低減され、レゾルバ31によって一層安定した高精度な回転角度検出を行うことができる。
【0040】
なお、本発明は、上記の実施の形態1〜5で説明した構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜に変更して実施することが可能である。たとえば、上記の実施の形態1,3,4では、軸受け8とレゾルバ31との間に位置する回転軸7の外周部に磁気バイパス部材43を嵌着したが、これに限らず、回転軸7に嵌着されたロータコア12とレゾルバ31間に位置する適宜な箇所(たとえば、ロータコア12とスリップリング22との間やスリップリング22と軸受け8との間などの個所)に磁気バイパス部材43を嵌着することができる。
【0041】
【発明の効果】
第1の発明によれば、回転軸の回転角度検出器の取付箇所よりも外側の軸端部には、回転軸の径方向外方に向けて張出形成された高透磁性の磁気バイパス部材を取り付け、この磁気パルス部材を、さらに高透磁性の磁気バイパス部材として形成されている保護カバーに接近して配置しているので、回転軸を通じて流れる漏れ磁束は、回転軸の軸端に設けた磁気バイパス部材および保護カバーを沿って流れる。このため、回転軸を経由して回転角度検出器を通過する漏れ磁束は非常に小さくなるので、回転角度検出器への漏れ磁束の影響が大幅に低減され、高精度な回転角度検出を行うことが可能になる。また、磁気バイパス部材は回転軸にねじ等で固定するだけでよいため、容易に組み立てることができる。
【0042】
また、第2の発明によれば、回転軸の回転角度検出器の取付箇所よりも外端側には、回転軸の軸端部に近接するとともに、回転軸の径方向外方に向けて張り出した高透磁性の磁気バイパス部材が配置され、また、回転軸のロータコアと回転角度検出器の間に位置する箇所には高透磁性の磁気バイパス部材が嵌着されているので、回転軸を通じて流れる漏れ磁束の多くはロータコアと回転角度検出器の間に位置する磁気バイパス部材を通じて径方向外方に向かいステータコアに流れ、この磁気バイパス部材では十分にバイパスできなかった漏れ磁束は、回転軸の軸端部に設けた磁気バイパス部材に沿って流れる。このため、回転軸に沿って流れる漏れ磁束をさらに小さくすることができ、一層高精度な回転角度検出を行うことが可能になる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係る車両用回転電機の構成を示す縦断面図である。
【図2】 本発明の実施の形態2に係る車両用回転電機の要部を示す縦断面図である。
【図3】 本発明の実施の形態3に係る車両用回転電機の要部を示す縦断面図である。
【図4】 本発明の実施の形態4に係る車両用回転電機の要部を示す縦断面図である。
【符号の説明】
1 車両用回転電機、7 回転軸、12 ロータコア、13 ロータコイル、24 ステータコア、25 ステータコイル、31 レゾルバ(回転角度検出器)、39 磁気バイパス部材、40 軸部材(非磁性体)、43 磁気バイパス部材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vehicular rotating electrical machine having a rotation angle detector, and more particularly to a technique for increasing the rotation angle detection accuracy of a rotation angle detector.
[0002]
[Prior art]
In general, a rotating electrical machine for a vehicle is used as a synchronous motor when the engine is started, and as an AC generator while the engine is operating. In particular, when used as a synchronous motor when starting an engine, it is necessary to control the energization timing of each field coil wound around the stator core or the rotor core. A rotation angle detector is arranged on the end side to detect the rotation angle.
[0003]
By the way, in this type of rotating electrical machine for vehicles, when a magnetic type or resolver is used as the rotation angle detector, the rotating shaft is magnetized by energizing the rotor coil wound around the rotor core, and as a result, The detection accuracy of the rotation angle detector is easily affected by the leakage magnetic flux flowing through the rotation shaft.
[0004]
Therefore, in the prior art, a magnetic permeability member having a high magnetic permeability is provided with a magnetic rotation angle detector sandwiched back and forth along the axial direction, and leakage magnetic flux flowing through the rotation shaft is bypassed by these magnetic bypass members. Thus, a configuration in which leakage magnetic flux does not pass between the Hall element and the permanent magnet constituting the rotation angle detector has been proposed (for example, see Patent Document 1).
[0005]
With the configuration described in Patent Document 1, the leakage magnetic flux passing between the Hall element and the permanent magnet constituting the magnetic rotation angle detector is reduced, so that the detection accuracy of the rotation angle detector is reduced. Can be increased to some extent.
[0006]
[Patent Document 1]
JP 2002-171723 (page 1-6, FIG. 1 to FIG. 2)
[0007]
[Problems to be solved by the invention]
However, the conventional one as described in Patent Document 1 has an inner magnetic bypass member close to the rotor core side on the side wall of the housing among the front and rear magnetic bypass members sandwiching the magnetic rotation angle detector. Since it is fixed, a gap is formed between the rotating shaft. For this reason, the effect of bypassing the leakage magnetic flux flowing through the rotating shaft by this magnetic bypass member is insufficient.
[0008]
The outer magnetic bypass member fixed to the shaft end of the rotating shaft is attached to a retainer made of a non-magnetic material. Therefore, the effect of bypassing the leakage magnetic flux is still insufficient even by the magnetic bypass member attached to the retainer.
[0009]
As described above, the conventional configuration is insufficient to bypass the leakage magnetic flux by any of the magnetic bypass members before and after the magnetic rotation angle detector and increases the detection accuracy of the rotation angle detector. There is a limit.
[0010]
The present invention has been made to solve the above-described problems, and provides a vehicular rotating electrical machine that can reduce the influence of leakage magnetic flux on a rotation angle detector as much as possible and perform more accurate rotation angle detection. The purpose is to do.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has a rotor core fitted on a rotary shaft, a stator core is disposed concentrically on the outer side of the rotor core, and one shaft end side of the rotary shaft. Employs the following configuration in a vehicular rotating electrical machine in which a rotation angle detector is arranged.
[0012]
In the first aspect of the present invention, a highly permeable magnetic bypass member is formed at the shaft end portion outside the mounting position of the rotation angle detector of the rotating shaft so as to project outward in the radial direction of the rotating shaft. The magnetic bypass member is approached to a protective cover for protecting the rotational angle detector located on the outer end side of the rotary shaft, and the protective cover is formed as a highly permeable magnetic bypass member. It is characterized by that.
[0013]
In the second aspect of the invention, the outer end side of the rotation angle detector of the rotating shaft is close to the shaft end of the rotating shaft and projects outward in the radial direction of the rotating shaft. A highly permeable magnetic bypass member is disposed, and a highly permeable magnetic bypass member is fitted at a position located between the rotor core of the rotating shaft and the rotation angle detector . .
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing a configuration of a vehicular rotating electrical machine according to Embodiment 1 of the present invention.
[0015]
In FIG. 1, reference numeral 1 denotes the entire vehicular rotating electrical machine, and reference numeral 2 denotes a housing. The brackets 3 and 4 are formed with mounting holes 3a and 4a to the vehicle body (not shown) and ventilation holes 3b, 3c, 3d, 4b and 4c for internal cooling. In addition, a cylindrical hood portion 3f protrudes from a side portion of the left bracket 3 in the drawing, and a sensor attachment portion 3e is formed inward of the hood portion 3f.
[0016]
Reference numeral 7 denotes a rotating shaft made of steel or the like. Reference numerals 8 and 9 denote bearings which rotatably support the rotating shaft 7 on the housing 2. These bearings 8 and 9 are individually attached to the brackets 3 and 4. 10 is a pulley on which a timing belt (not shown) is suspended, 11 is a nut for fixing the pulley 10 to the rotating shaft 7, 12 is a rotor core fitted to the rotating shaft 7, and 13 is a rotor coil wound around the rotor core 12. It is.
[0017]
The rotor core 12 is formed by integrally joining a pair of left and right core members 16, 17. Each of the core members 16, 17 is formed from cylindrical portions 16 a, 17 a in which a bobbin 13 a around which the rotor coil 13 is wound is accommodated. The claw-shaped magnetic pole portions 16b and 17b are respectively provided so as to cover the rotor coil 13 and cross each other. For this reason, the left and right claw-shaped magnetic pole portions 16b, 17b are alternately arranged at a constant pitch with a predetermined interval along the circumferential direction. Reference numerals 18 and 19 denote cooling fans attached to the outer surfaces of the core members 16 and 17.
[0018]
Reference numeral 22 denotes a slip ring fitted to the rotary shaft 7, and the slip ring 22 is electrically connected to the rotor coil 13 via an electric wire 23. Therefore, when a field current flows to the rotor coil 13 via the slip ring 22 and the electric wire 23, the claw-shaped magnetic pole portions 16b and 17b of the core members 16 and 17 constituting the rotor core 12 are alternately positive and negative along the circumferential direction. It is magnetized so that its polarity changes.
[0019]
24 is a stator core disposed concentrically outside the rotor core 12 and fixed to the housing 2, 25 is a stator coil wound around the stator core 24, 26 is a brush contacting the slip ring 22, and 27 is not shown A terminal block 28 for connecting to the three-phase inverter circuit 28 is a circuit board. The terminal block 27 is electrically connected to the stator coil 25 via a circuit board 28 and an electric wire (not shown). The above configuration itself is already known, and detailed description is omitted.
[0020]
A resolver 31 as a rotation angle detector is disposed at the shaft end of the rotating shaft 7 opposite to the position where the pulley 10 is attached. In the resolver 31, a resolver rotor 32 is fixed to a shaft end portion of the rotary shaft 7 with a screw 33, and a resolver stator 34 is fixed to an inner peripheral portion of a sensor mounting portion 3e of one bracket 3 with a screw 37. A resolver coil 35 is wound around a resolver stator 34. Such a resolver 31 has an advantage of being able to detect the rotation angle with high accuracy because it is not easily affected by mechanical vibration or the like in spite of its relatively simple configuration. Reference numeral 36 denotes a signal input / output electric wire connected to the resolver coil 35, and reference numeral 39 denotes a flat protective cover fixed to the open end face of the hood portion 3f of the bracket 3 in order to protect the resolver 31.
[0021]
The feature of the first embodiment is that a ring-shaped magnetic bypass member 43 made of a highly permeable material made of a soft iron material or the like is press-fitted on the outer periphery of the rotating shaft 7 located between the bearing 8 and the resolver 31. It is fitted and integrated with the rotating shaft 7.
[0022]
Here, if the rotating shaft 7 is made of a magnetic material such as steel, the rotating shaft 7 is magnetized by energization of the rotor coil 13, and as a result, as shown by the symbol A in FIG. The leakage magnetic flux flowing through the resolver rotor 32 flows from the resolver rotor 32 to the resolver stator 34, and the rotational angle detection accuracy of the resolver 31 is deteriorated.
[0023]
On the other hand, in this Embodiment 1, since the magnetic bypass member 43 integrated with the rotating shaft 7 is provided, the leakage magnetic flux that flows through the rotating shaft 7 when the rotor coil 13 is energized. Flows from the magnetic bypass member 43 toward the stator core 24, as indicated by reference numeral B in FIG. For this reason, the leakage magnetic flux flowing from the resolver rotor 32 to the resolver stator 34 becomes very small. Therefore, the influence of the leakage magnetic flux on the resolver 31 is greatly reduced, and the rotation angle can be detected with high accuracy. Further, since the magnetic bypass member 43 only needs to be fitted to the rotary shaft 7 by press fitting or the like, it can be easily assembled.
[0024]
Embodiment 2. FIG.
2 is a longitudinal sectional view showing a main part of a rotating electrical machine for a vehicle according to a second embodiment of the present invention. The same reference numerals are given to the same or corresponding parts as those in the first embodiment shown in FIG. Attached.
[0025]
A feature of the vehicular rotating electrical machine according to the second embodiment is that a magnetically permeable magnetic bypass member 44 made of a soft iron material and the like, together with the resolver rotor 32, is disposed at the shaft end portion outside the attachment portion of the resolver 31 of the rotating shaft 7. It is fixed with a screw 33. Further, the protective cover 39 attached to the opening end face of the hood portion 3f of the bracket 3 is also made of a high magnetic permeability made of a soft iron material or the like, and is also used as a magnetic bypass member.
[0026]
The magnetic bypass member 44 fixed to the rotating shaft 7 is formed so as to be as close as possible to the protective cover 39 so that as much leakage flux as possible flows through the protective cover 39 facing the rotating shaft 7. That is, the magnetic bypass member 44 is bent so as to protrude toward the protective cover 39 and project outward in the radial direction of the rotating shaft 7.
Since other configurations are the same as those in the first embodiment, detailed description thereof is omitted here.
[0027]
As described above, in the second embodiment, since the magnetic bypass member 44 projecting radially outward is integrally fixed to the shaft end portion of the rotating shaft 7, the leakage magnetic flux flowing through the rotating shaft 7 is 2 flows along the magnetic bypass member 44 and the protective cover 39. For this reason, the leakage magnetic flux that flows from the resolver rotor 32 to the resolver stator 34 can be made extremely small. Therefore, the influence of the leakage magnetic flux on the resolver 31 is greatly reduced, and highly accurate rotation angle detection can be performed. become. Moreover, since the magnetic bypass member 44 only needs to be fixed to the rotating shaft 7 with a screw 33 or the like, it can be easily assembled.
[0028]
In the second embodiment, the protective cover 39 is also used as a high magnetic permeability magnetic bypass member. However, the magnetic bypass member 44 fixed to the rotating shaft 7 is large outward in the radial direction of the rotating shaft 7. If formed so as to protrude, the same effect as described above can be obtained without using a highly permeable protective cover 39.
[0029]
Embodiment 3 FIG.
FIG. 3 shows a main part of the rotating electrical machine for a vehicle according to the third embodiment of the present invention, and the same reference numerals are given to the same or corresponding parts as those of the first embodiment shown in FIG.
[0030]
The feature of the vehicular rotating electrical machine in the third embodiment is that magnetic bypass members 43 and 39 made of a highly magnetic material such as a soft iron material are provided at positions before and after sandwiching the resolver 31, respectively.
[0031]
That is, one magnetic bypass member 43 is the same as that in the first embodiment, and is fitted to the outer peripheral portion of the rotating shaft 7 positioned between the bearing 8 and the resolver 31 by press-fitting or the like. And integrated. The other magnetic bypass member 39 also serves as a protective cover for protecting the resolver 31. For this reason, the magnetic bypass member 39 faces the shaft end portion of the rotating shaft 7 and projects outward in the radial direction of the rotating shaft 7.
[0032]
The magnetic bypass member 39 also serving as a protective cover is formed with a protruding portion 39a for allowing the leakage magnetic flux passing through the rotating shaft 7 to flow smoothly, close to the shaft end of the rotating shaft 7.
Since other configurations are the same as those in the first embodiment, detailed description thereof is omitted here.
[0033]
Thus, in this Embodiment 3, since the magnetic bypass member 43 is integrally fixed to the location located between the bearing 8 of the rotating shaft 7 and the resolver 31, as shown by the code | symbol D1 in FIG. In addition, most of the leakage magnetic flux that flows through the rotating shaft 7 flows radially outward through the magnetic bypass member 43 to the stator core 24.
[0034]
Further, since the magnetic bypass member 39 also serving as a protective cover is placed close to the shaft end portion of the rotating shaft 7, the leakage magnetic flux that could not be sufficiently bypassed by the magnetic bypass member 43 is indicated by reference numeral D2 in FIG. In addition, it flows along the magnetic bypass member 39 also serving as a protective cover. For this reason, the leakage magnetic flux flowing from the resolver rotor 32 to the resolver stator 34 can be made smaller than those in the first and second embodiments. Therefore, the influence of the leakage magnetic flux on the resolver 31 is further reduced, and the rotation angle can be detected with higher accuracy.
[0035]
Embodiment 4 FIG.
FIG. 4 is a longitudinal sectional view showing a main part of a rotating electrical machine for a vehicle according to Embodiment 4 of the present invention. The same or corresponding parts as those in Embodiment 3 shown in FIG. Attached.
[0036]
The vehicular rotating electrical machine according to the fourth embodiment is characterized in that the mounting position of the resolver rotor 32 located on the shaft end side with respect to the mounting position of the magnetic bypass member 43 of the rotating shaft 7 is a non-magnetic material such as austenitic stainless steel. It is comprised with the shaft member 40 which consists of. In other words, the non-magnetic shaft member 40 is integrated by fitting the concave portion of the non-magnetic shaft member 40 to the convex portion of the rotating shaft 7. As an integration method, for example, press-fitting or welding is applied. The resolver rotor 32 is fixed to the shaft member 40 with screws 33.
Since other configurations are the same as those in the third embodiment, detailed description thereof is omitted here.
[0037]
Thus, in this Embodiment 4, since the magnetic bypass member 43 is being fixed to the location located between the bearing 8 of the rotating shaft 7, and the resolver 31, as shown with the code | symbol E in FIG. Most of the leakage magnetic flux that flows through the rotating shaft 7 flows radially outward through the magnetic bypass member 43 to the stator core 24.
[0038]
Even if a part of the leakage magnetic flux flowing through the rotating shaft 7 is directed to the resolver 31, the leakage flux is generated by the shaft member because the shaft member 40 at the place where the resolver rotor 32 is mounted is made of a non-magnetic material. 40 is blocked. Therefore, more leakage magnetic flux flows through the magnetic bypass member 43, and leakage magnetic flux flowing from the resolver rotor 32 to the resolver stator 34 can be reduced. For this reason, the influence of the leakage magnetic flux on the resolver 31 is significantly reduced, and it becomes possible to detect the rotation angle with higher accuracy than in the case of the first to third embodiments.
[0039]
Further, when the magnetic flux density of the leakage magnetic flux flowing through the magnetic bypass member 43 increases due to the shaft member 40 and this member 43 is magnetically saturated, the leakage magnetic flux may flow to the resolver 31. Since the leakage magnetic flux flows through the magnetic bypass member 39 also serving as a protective cover, the influence of the leakage magnetic flux on the resolver 31 is reduced, and the resolver 31 can perform more stable and highly accurate rotation angle detection.
[0040]
In addition, this invention is not limited to the structure demonstrated in said Embodiment 1-5, It is possible to implement by changing suitably in the range which does not deviate from the meaning of this invention. For example, in the above-described first, third, and fourth embodiments, the magnetic bypass member 43 is fitted to the outer peripheral portion of the rotating shaft 7 positioned between the bearing 8 and the resolver 31. The magnetic bypass member 43 is fitted at an appropriate position (for example, between the rotor core 12 and the slip ring 22 or between the slip ring 22 and the bearing 8) located between the rotor core 12 and the resolver 31 that are fitted to each other. Can be worn.
[0041]
【The invention's effect】
According to the first aspect of the present invention, a highly permeable magnetic bypass member is formed at the shaft end portion outside the attachment position of the rotation angle detector of the rotation shaft, and is projected outward in the radial direction of the rotation shaft. Since this magnetic pulse member is arranged close to a protective cover formed as a magnetic permeability member having high permeability, leakage magnetic flux flowing through the rotating shaft is provided at the shaft end of the rotating shaft. It flows along the magnetic bypass member and the protective cover. For this reason, the leakage magnetic flux passing through the rotation angle detector via the rotation axis becomes very small, so the influence of the leakage magnetic flux on the rotation angle detector is greatly reduced, and highly accurate rotation angle detection is performed. Is possible. Further, since the magnetic bypass member only needs to be fixed to the rotating shaft with a screw or the like, it can be easily assembled.
[0042]
In addition, according to the second aspect of the present invention, the outer end side of the rotation angle detector mounting portion of the rotating shaft is close to the shaft end portion of the rotating shaft and projects outward in the radial direction of the rotating shaft. In addition, a highly permeable magnetic bypass member is disposed, and a highly permeable magnetic bypass member is fitted at a position located between the rotor core of the rotating shaft and the rotation angle detector, and therefore flows through the rotating shaft. Most of the leakage flux flows radially outward to the stator core through the magnetic bypass member located between the rotor core and the rotation angle detector, and the leakage flux that could not be sufficiently bypassed by this magnetic bypass member It flows along the magnetic bypass member provided in the section. For this reason, the leakage magnetic flux that flows along the rotation axis can be further reduced, and the rotation angle can be detected with higher accuracy.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a configuration of a vehicular rotating electrical machine according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing a main part of a vehicular rotating electrical machine according to a second embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing a main part of a vehicular rotating electrical machine according to a third embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing a main part of a vehicular rotating electrical machine according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating electrical machine for vehicles, 7 Rotating shaft, 12 Rotor core, 13 Rotor coil, 24 Stator core, 25 Stator coil, 31 Resolver (rotation angle detector), 39 Magnetic bypass member, 40 Shaft member (nonmagnetic material), 43 Magnetic bypass Element.

Claims (4)

回転軸にロータコアが嵌着され、このロータコアの外方にはこれと同心にステータコアが配置され、また、上記回転軸の一方の軸端部側には回転角度検出器が配置されてなる車両用回転電機において、
上記回転軸の回転角度検出器の取付箇所よりも外側の軸端部には、上記回転軸の径方向外方に向けて張出形成された高透磁性の磁気バイパス部材が取り付けられ、この磁気バイパス部材が上記回転軸の外端側に位置する回転角度検出器保護用の保護カバーに接近され、かつ、上記保護カバーは高透磁性の磁気バイパス部材として形成されていることを特徴とする車両用回転電機。
A rotor core is fitted on a rotating shaft, a stator core is arranged concentrically on the outer side of the rotor core, and a rotation angle detector is arranged on one shaft end side of the rotating shaft. In rotating electrical machines,
A highly permeable magnetic bypass member is formed at the shaft end outside the mounting position of the rotation angle detector of the rotating shaft, and is extended toward the radially outer side of the rotating shaft. A vehicle characterized in that a bypass member is approached to a protective cover for protecting a rotational angle detector located on the outer end side of the rotary shaft, and the protective cover is formed as a highly magnetically permeable magnetic bypass member. Rotating electric machine.
回転軸にロータコアが嵌着され、このロータコアの外方にはこれと同心にステータコアが配置され、また、上記回転軸の一方の軸端部側には回転角度検出器が配置されてなる車両用回転電機において、
上記回転軸の回転角度検出器の取付箇所よりも外端側には、上記回転軸の軸端部に近接するとともに、上記回転軸の径方向外方に向けて張り出した高透磁性の磁気バイパス部材が配置され、また、上記回転軸のロータコアと回転角度検出器の間に位置する箇所には、高透磁性の磁気バイパス部材が嵌着されていることを特徴とする車両用回転電機。
A rotor core is fitted on a rotating shaft, a stator core is arranged concentrically on the outer side of the rotor core, and a rotation angle detector is arranged on one shaft end side of the rotating shaft. In rotating electrical machines,
A highly permeable magnetic bypass that is close to the shaft end of the rotary shaft and projects outward in the radial direction of the rotary shaft, on the outer end side of the rotational angle detector mounting portion of the rotary shaft A rotating electrical machine for a vehicle, wherein a member is disposed, and a highly magnetic permeable magnetic bypass member is fitted at a position located between the rotor core of the rotating shaft and the rotation angle detector .
上記回転軸は、少なくとも磁気バイパス部材の嵌着箇所から回転角度検出器の取付箇所までの間に位置する全部または一部が非磁性体により構成されていることを特徴とする請求項1または請求項2に記載の車両用回転電機。 2. The rotary shaft according to claim 1, wherein at least a part of the rotary shaft located between the fitting position of the magnetic bypass member and the mounting position of the rotation angle detector is made of a nonmagnetic material. Item 3. The rotating electrical machine for a vehicle according to Item 2. 上記回転角度検出器は、レゾルバであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の車両用回転電機。 The vehicular rotating electrical machine according to any one of claims 1 to 3, wherein the rotation angle detector is a resolver .
JP2002323676A 2002-11-07 2002-11-07 Rotating electric machine for vehicles Expired - Lifetime JP4073758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323676A JP4073758B2 (en) 2002-11-07 2002-11-07 Rotating electric machine for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323676A JP4073758B2 (en) 2002-11-07 2002-11-07 Rotating electric machine for vehicles

Publications (2)

Publication Number Publication Date
JP2004159449A JP2004159449A (en) 2004-06-03
JP4073758B2 true JP4073758B2 (en) 2008-04-09

Family

ID=32803481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323676A Expired - Lifetime JP4073758B2 (en) 2002-11-07 2002-11-07 Rotating electric machine for vehicles

Country Status (1)

Country Link
JP (1) JP4073758B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4073759B2 (en) 2002-11-07 2008-04-09 三菱電機株式会社 Rotating electric machine for vehicles
JP2007068366A (en) * 2005-09-02 2007-03-15 Hitachi Ltd Rotary electric machine for vehicle
JP5490169B2 (en) * 2012-03-30 2014-05-14 三菱電機株式会社 Rotating electric machine and rotor position detection sensor
JP2015077032A (en) * 2013-10-11 2015-04-20 株式会社日立産機システム Rotary electric machine

Also Published As

Publication number Publication date
JP2004159449A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US8698363B2 (en) Electric rotating machine for vehicle
JP3162285B2 (en) Electric motor
US9577497B2 (en) Rotating electric machine having a magnetic sensor that detects a rotation position of a rotor core
US20140145564A1 (en) Rotary electric machine
JP5390656B2 (en) Rotation angle detector and vehicle rotating electric machine
JP5253599B1 (en) Resolver and rotating electric machine for vehicle
JP2005061865A (en) Variable reluctance type resolver
KR100571636B1 (en) Ac electric machine for vehicle
JP4073758B2 (en) Rotating electric machine for vehicles
JP3573086B2 (en) Randell type rotating electric machine having magnetic rotation angle detecting device
JP5276695B2 (en) Rotating electric machine for vehicles
EP1071193A1 (en) Rotary electric machine
JP5490169B2 (en) Rotating electric machine and rotor position detection sensor
JPH1164354A (en) Rotational speed detector
JP3334459B2 (en) Brushless motor
JP2014142260A (en) Rotation angle detector and vehicular rotary electric machine
JP3814041B2 (en) Stepping motor with rotor position detection mechanism
JP6088465B2 (en) Drive unit
JP3972476B2 (en) AC generator for vehicles
JP4418045B2 (en) Electric motor
US20220393528A1 (en) Rotor
JPH0729733Y2 (en) Brushless motor
JP2006180580A (en) Rotary electric machine
JP2004239799A (en) Rotation angle detecting device
JP2019164067A (en) Rotation angle detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4073758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term