JP4071181B2 - Synthetic resin emulsion powder - Google Patents

Synthetic resin emulsion powder Download PDF

Info

Publication number
JP4071181B2
JP4071181B2 JP2003316269A JP2003316269A JP4071181B2 JP 4071181 B2 JP4071181 B2 JP 4071181B2 JP 2003316269 A JP2003316269 A JP 2003316269A JP 2003316269 A JP2003316269 A JP 2003316269A JP 4071181 B2 JP4071181 B2 JP 4071181B2
Authority
JP
Japan
Prior art keywords
synthetic resin
mol
emulsion
powder
emulsion powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003316269A
Other languages
Japanese (ja)
Other versions
JP2004131719A (en
Inventor
征司 谷本
哲夫 村上
昌人 仲前
直樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2003316269A priority Critical patent/JP4071181B2/en
Publication of JP2004131719A publication Critical patent/JP2004131719A/en
Application granted granted Critical
Publication of JP4071181B2 publication Critical patent/JP4071181B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)

Description

本発明は、合成樹脂エマルジョン粉末に関し、さらに詳しくは、ビニルアルコール系重合体を分散剤とし、エチレン性不飽和単量体及びジエン系単量体から選ばれる一種あるいは二種以上の不飽和単量体単位を有する重合体を分散質とするエマルジョン(A)に、エチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)を配合した組成物を乾燥して得られる合成樹脂エマルジョン粉末に関する。   The present invention relates to a synthetic resin emulsion powder, and more specifically, a vinyl alcohol polymer as a dispersant, and one or more unsaturated monomers selected from ethylenically unsaturated monomers and diene monomers. Synthetic resin emulsion powder obtained by drying a composition in which a vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units is blended in an emulsion (A) having a polymer having a body unit as a dispersoid About.

合成樹脂エマルジョン粉末は、合成樹脂エマルジョンを噴霧乾燥することにより製造され、合成樹脂エマルジョンに比べて粉末であることにより、取り扱いおよび輸送の点で優れている。また、使用に際しては、水を添加し、攪拌することにより容易に水中に再分散するため、セメントあるいはモルタルへの混和材、接着剤、塗料用バインダーなどの広範な用途に使用されている。なかでもモルタルへの混和材に関しては、粉末であることから、プレミックスが可能であり、多様な商品形態を可能にすることから、広く用いられている。しかしながら、従来の合成樹脂エマルジョンでは、それをそのまま噴霧乾燥した場合には、分散質が容易に融着し、水に再分散しないため、多量のポリビニルアルコールを後添加し、さらにはブロッキング防止剤として無水珪酸等の無機粉末を多量に併用する必要があるのが現状であった。後添加するポリビニルアルコールとしては、粉末化後、使用時に再乳化しうることが必要であることから、従来部分けん化PVAが広く用いられてきた(特許文献1)。しかしながら、後述する比較例7〜8から明らかなように、得られた粉末の再分散性が、必ずしも充分優れているとは言えず、また得られたエマルジョン粉末を再分散させたエマルジョンの耐水性は粉末化前に比べ劣るという問題点があった。
特開平11−263849号公報(請求項1、[0011]、[0012])
The synthetic resin emulsion powder is produced by spray-drying the synthetic resin emulsion, and is superior in terms of handling and transportation because it is a powder compared to the synthetic resin emulsion. Further, in use, it is easily redispersed in water by adding water and stirring, and therefore, it is used in a wide range of applications such as an admixture to cement or mortar, an adhesive, and a binder for paint. Among them, the admixture for mortar is widely used because it is a powder and can be premixed and can be used in various commercial forms. However, in the conventional synthetic resin emulsion, when it is spray-dried as it is, the dispersoid easily melts and does not re-disperse in water, so a large amount of polyvinyl alcohol is added afterwards, and further as an anti-blocking agent. At present, it is necessary to use a large amount of inorganic powder such as silicic anhydride. As the polyvinyl alcohol to be added later, conventional partly saponified PVA has been widely used since it is necessary to re-emulsify after use after powdering (Patent Document 1). However, as is apparent from Comparative Examples 7 to 8 described later, the redispersibility of the obtained powder is not necessarily excellent enough, and the water resistance of the emulsion obtained by redispersing the obtained emulsion powder is not satisfactory. Has a problem that it is inferior to that before pulverization.
JP-A-11-263849 (Claims 1, [0011], [0012])

本発明の目的は、前述の問題点を解決し、再分散性に優れ、さらに耐水性にも優れ、さらにまた再分散した場合の造膜性、低温における放置安定性などにも優れた合成樹脂エマルジョン粉末を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and is a synthetic resin excellent in redispersibility, excellent in water resistance, film forming property when redispersed, and standing stability at low temperatures. It is to provide an emulsion powder.

本発明者らは、上記の実情に鑑み、鋭意検討した結果、ビニルアルコール系重合体を分散剤とし、エチレン性不飽和単量体及びジエン系単量体から選ばれる一種あるいは二種以上の不飽和単量体単位を有する重合体を分散質とするエマルジョン(A)に、分子内にエチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)を配合した組成物を乾燥して得られる合成樹脂エマルジョン粉末が、上記課題を解決するものであることを見出し、本発明を完成するに至った。   As a result of intensive investigations in view of the above circumstances, the present inventors have found that one or two or more kinds of solvents selected from ethylenically unsaturated monomers and diene monomers using a vinyl alcohol polymer as a dispersant. A composition in which a vinyl alcohol polymer (B) containing 1 to 12 mol% of an ethylene unit in the molecule is blended in an emulsion (A) having a polymer having a saturated monomer unit as a dispersoid is dried. The synthetic resin emulsion powder obtained has been found to solve the above problems, and the present invention has been completed.

本発明により、再分散性に優れ、さらに耐水性にも優れ、さらにまた再分散した場合の造膜性、低温における放置安定性などにも優れた合成樹脂エマルジョン粉末が得られる。
本発明のエマルジョン粉末を使用することにより、セメントモルタルなどの水硬性物質への分散性に優れ、得られる水硬性物質の強度にも優れる水硬性物質用混和材が得られる。また、本発明のエマルジョン粉末を使用することにより、接着性および耐久性に優れ、さらに機械的強度にも優れる水硬性物質用打継ぎ材が得られる。
According to the present invention, it is possible to obtain a synthetic resin emulsion powder having excellent redispersibility, excellent water resistance, and excellent film-forming properties when redispersed and stability at low temperatures.
By using the emulsion powder of the present invention, an admixture for a hydraulic substance having excellent dispersibility in a hydraulic substance such as cement mortar and excellent strength of the obtained hydraulic substance can be obtained. Moreover, by using the emulsion powder of the present invention, a joining material for a hydraulic substance that is excellent in adhesiveness and durability and also excellent in mechanical strength can be obtained.

以下、本発明の合成樹脂エマルジョン粉末について詳細に説明する。
本発明において、エマルジョン(A)の分散質は、エチレン性不飽和単量体及びジエン系単量体から選ばれる一種あるいは二種以上の不飽和単量体単位を有する重合体からなる。エチレン性不飽和単量体としては、エチレン、プロピレン、イソブテン等のオレフィン類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化オレフィン類、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル、ピバリン酸ビニル等のビニルエステル類、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシル等のアクリル酸エステル類、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸i−プロピル、メタクリル酸n−ブチル、メタクリル酸i−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシル等のメタクリル酸エステル類、アクリロニトリル、メタクリロニトリル等のニトリル類、酢酸アリル、塩化アリル等のアリル化合物、スチレン、α−メチルスチレン、p−メチルスチレンスルホン酸およびそのナトリウム、カリウム塩等のスチレン系単量体類、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロライド、3−アクリルアミドプロピルトリメチルアンモニウムクロライド、3−メタクリルアミドプロピルトリメチルアンモニウムクロライド、N−(3−アリルオキシ−2−ヒドロキシプロピル)ジメチルアミンの4級アンモニウム塩、N−(4−アリルオキシ−3−ヒドロキシブチル)ジエチルアミンの4級アンモニウム塩、さらにはアクリルアミド、N−メチルアクリルアミド、N−エチルアクリルアミド、N,N−ジメチルアクリルアミド、ジアセトンアクリルアミド、N−メチロールアクリルアミド、メタクリルアミド、N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−メチロールメタクリルアミド等の4級アンモニウム塩、メタクリル酸ヒドロキシプロピルトリメチルアンモニウムクロライド、アクリル酸ヒドロキシプロピルトリメチルアンモニウムクロライド、N−ビニルピロリドン等が挙げられ、またジエン系単量体としては、ブタジエン、イソプレン、クロロプレン等が挙げられる。これらの単量体は単独もしくは二種以上を組み合わせて使用される。
上記の単量体単位からなる重合体のうち、酢酸ビニル系重合体で代表されるビニルエステル系重合体、エチレン−酢酸ビニル共重合体で代表されるオレフィン−ビニルエステル共重合体などは、本発明の好ましい態様の一つである。
Hereinafter, the synthetic resin emulsion powder of the present invention will be described in detail.
In the present invention, the dispersoid of the emulsion (A) is composed of a polymer having one or more unsaturated monomer units selected from ethylenically unsaturated monomers and diene monomers. Examples of the ethylenically unsaturated monomer include olefins such as ethylene, propylene, and isobutene, halogenated olefins such as vinyl chloride, vinylidene chloride, vinyl fluoride, and vinylidene fluoride, vinyl formate, vinyl acetate, vinyl propionate, Vinyl esters such as vinyl versatate and vinyl pivalate, acrylic acid, methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n-butyl acrylate, i-butyl acrylate, acrylic acid Acrylic acid esters such as t-butyl, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n methacrylate -Butyl, meta Methacrylic acid esters such as i-butyl acrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate and octadecyl methacrylate, nitriles such as acrylonitrile and methacrylonitrile, allyl such as allyl acetate and allyl chloride Compound, Styrene monomers such as styrene, α-methylstyrene, p-methylstyrenesulfonic acid and sodium and potassium salts thereof, trimethyl- (3-acrylamido-3-dimethylpropyl) -ammonium chloride, 3-acrylamidopropyl Trimethylammonium chloride, 3-methacrylamidopropyltrimethylammonium chloride, quaternary ammonium salt of N- (3-allyloxy-2-hydroxypropyl) dimethylamine, N- (4-allyloxy- 3-hydroxybutyl) diethylamine quaternary ammonium salt, acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetone acrylamide, N-methylolacrylamide, methacrylamide, N-methylmethacrylamide Quaternary ammonium salts such as N-ethylmethacrylamide and N-methylolmethacrylamide, hydroxypropyltrimethylammonium methacrylate methacrylate, hydroxypropyltrimethylammonium chloride acrylate, N-vinylpyrrolidone and the like, and diene monomers Examples thereof include butadiene, isoprene, chloroprene and the like. These monomers are used alone or in combination of two or more.
Among the polymers composed of the above monomer units, vinyl ester polymers typified by vinyl acetate polymers, olefin-vinyl ester copolymers typified by ethylene-vinyl acetate copolymers, etc. This is one of the preferred embodiments of the invention.

本発明において、エマルジョン(A)の分散剤にはビニルアルコール系重合体が用いられる。ビニルアルコール系重合体は、例えば、ビニルエステルを重合して得られるビニルエステル系重合体をけん化することにより製造される。該ビニルアルコール系重合体のけん化度は、特に制限されないが、70〜99モル%が好適であり、より好ましくは、80〜98モル%、さらに好ましくは83〜95モル%である。けん化度が70モル%未満の場合には、ビニルアルコール系重合体本来の性質である水溶性が低下する懸念が生じる。またけん化度が99モル%を越える場合、乳化重合が不安定になる懸念がある。該ビニルアルコール系重合体の粘度平均重合度(以下重合度と略す)も特に制限されないが、100〜8000の範囲が好適であり、300〜3000、さらには300〜2500がより好ましい。また、エマルジョン(A)の分散剤のビニルアルコール系重合体としては、1,2−グリコール結合が1.9モル%以上のビニルアルコール系重合体が好適に用いられる。1,2−グリコール結合が1.9モル%以上の重合体の製法としては、例えば、ビニレンカーボネートを上記の1,2−グリコール結合量になるようビニルエステル系単量体と共重合する方法、またはビニルエステル系単量体を重合する際、重合温度を通常の条件より高い温度、例えば75〜200℃で、加圧下に重合する方法などが挙げられる。後者の方法において、重合温度は特に制限されないが通常95〜190℃、好ましくは100〜180℃で実施される。   In the present invention, a vinyl alcohol polymer is used as the dispersant for the emulsion (A). The vinyl alcohol polymer is produced, for example, by saponifying a vinyl ester polymer obtained by polymerizing a vinyl ester. The saponification degree of the vinyl alcohol polymer is not particularly limited, but is preferably 70 to 99 mol%, more preferably 80 to 98 mol%, and still more preferably 83 to 95 mol%. When the degree of saponification is less than 70 mol%, there is a concern that water solubility, which is the original property of the vinyl alcohol polymer, is lowered. Further, when the degree of saponification exceeds 99 mol%, there is a concern that emulsion polymerization becomes unstable. The viscosity average polymerization degree (hereinafter abbreviated as polymerization degree) of the vinyl alcohol polymer is not particularly limited, but is preferably in the range of 100 to 8000, more preferably 300 to 3000, and even more preferably 300 to 2500. Moreover, as a vinyl alcohol polymer of the dispersing agent of emulsion (A), a vinyl alcohol polymer having a 1,2-glycol bond of 1.9 mol% or more is preferably used. As a method for producing a polymer having a 1,2-glycol bond of 1.9 mol% or more, for example, a method of copolymerizing vinylene carbonate with a vinyl ester monomer so as to have the above 1,2-glycol bond amount, Alternatively, when polymerizing a vinyl ester monomer, a method of polymerizing under pressure at a temperature higher than normal conditions, for example, 75 to 200 ° C., may be mentioned. In the latter method, the polymerization temperature is not particularly limited, but is usually 95 to 190 ° C, preferably 100 to 180 ° C.

該ビニルアルコール系重合体は、本発明の効果を損なわない範囲で共重合可能なエチレン性不飽和単量体を共重合したものでも良い。このようなエチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、フマル酸、(無水)マレイン酸、イタコン酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、N−ビニルピロリドン、 N−ビニルホルムアミド、 N−ビニルアセトアミド等のN−ビニルアミド類が挙げられる。また、チオール酢酸、メルカプトプロピオン酸などのチオール化合物の存在下で、酢酸ビニルなどのビニルエステル系単量体と上記エチレン性不飽和単量体とを共重合し、得られた共重合体をけん化することによって得られる末端変性物を用いることもできる。   The vinyl alcohol polymer may be a copolymer of an ethylenically unsaturated monomer that can be copolymerized within a range that does not impair the effects of the present invention. Examples of such ethylenically unsaturated monomers include acrylic acid, methacrylic acid, fumaric acid, (anhydrous) maleic acid, itaconic acid, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, trimethyl- (3-acrylamide). -3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene N-vinylamides such as sodium vinylsulfonate, sodium allylsulfonate, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, and the like. Also, vinyl ester monomers such as vinyl acetate and the above ethylenically unsaturated monomers are copolymerized in the presence of thiol compounds such as thiol acetic acid and mercaptopropionic acid, and the resulting copolymer is saponified. It is also possible to use a terminally modified product obtained by doing so.

本発明に用いる合成樹脂エマルジョン(A)は、上記のビニルアルコール系重合体の存在下で、エチレン性不飽和単量体及びジエン系単量体から選ばれる1種あるいは2種以上の単量体を乳化重合することによって得られ、また合成樹脂エマルジョン粉末は合成樹脂エマルジョンを乾燥、とくに噴霧乾燥して得られる。該合成樹脂エマルジョンの製造において、乳化重合の開始剤としては、通常乳化重合に用いられる重合開始剤、すなわち過硫酸カリウム、過硫酸アンモニウム、過酸化水素、t−ブチルハイドロパーオキサイド等の水溶性開始剤やアゾビスイソブチロニトリル、ベンゾイルパーオキサイド等の油溶性開始剤が単独または各種還元剤との組み合わせによるレドックス系で用いられる。これらの使用方法は特に制限はないが、初期一括で添加する方法や、連続的に重合系に添加する方法等が採用できる。   The synthetic resin emulsion (A) used in the present invention is one or more monomers selected from ethylenically unsaturated monomers and diene monomers in the presence of the above-mentioned vinyl alcohol polymer. The synthetic resin emulsion powder is obtained by drying, particularly spray drying, the synthetic resin emulsion. In the production of the synthetic resin emulsion, as an initiator for emulsion polymerization, a polymerization initiator usually used for emulsion polymerization, that is, a water-soluble initiator such as potassium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, etc. In addition, oil-soluble initiators such as azobisisobutyronitrile and benzoyl peroxide are used in redox systems alone or in combination with various reducing agents. Although there are no particular limitations on the method of using these, a method of adding in an initial batch, a method of adding continuously to a polymerization system, or the like can be employed.

本発明に用いる合成樹脂エマルジョン(A)において、ビニルアルコール系重合体の使用量は特に制限されないが、通常単量体100重量部に対して2〜30重量部、好ましくは3〜15重量部、さらに好ましくは3〜10重量部である。ビニルアルコール系重合体が2重量部未満の場合、合成樹脂エマルジョンの重合安定性が低下すると共にビニルアルコール系重合体を分散剤とする合成樹脂エマルジョンの特徴である機械的安定性や化学的安定性の低下、皮膜強度の低下等が起こる懸念がある。また、ビニルアルコール系重合体が30重量部を越える場合、重合系の粘度上昇による反応熱除去の問題や皮膜耐水性の低下等の懸念がある。
ビニルアルコール系重合体の添加方法は特に制限はなく、初期に一括して添加する方法、初期にビニルアルコール系重合体の一部を添加し、重合中に連続的に重合系へ添加する方法等がある。
また、従来公知のノニオン性、アニオン性、カチオン性、両性の界面活性剤やヒドロキシエチルセルロース等の水溶性高分子をビニルアルコール系重合体と併用してもかまわない。
In the synthetic resin emulsion (A) used in the present invention, the amount of the vinyl alcohol polymer used is not particularly limited, but is usually 2 to 30 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the monomer. More preferably, it is 3-10 weight part. When the vinyl alcohol polymer is less than 2 parts by weight, the polymerization stability of the synthetic resin emulsion is lowered, and the mechanical stability and chemical stability which are the characteristics of the synthetic resin emulsion using the vinyl alcohol polymer as a dispersant are characteristic. There is a concern that a decrease in film strength and a decrease in film strength may occur. On the other hand, when the amount of the vinyl alcohol polymer exceeds 30 parts by weight, there are concerns such as a problem of removal of reaction heat due to an increase in the viscosity of the polymerization system and a decrease in water resistance of the film.
There is no particular limitation on the method of adding the vinyl alcohol polymer, a method of adding all at once in the initial stage, a method of adding a part of the vinyl alcohol polymer in the initial stage, and continuously adding to the polymerization system during the polymerization, etc. There is.
In addition, a conventionally known nonionic, anionic, cationic or amphoteric surfactant or a water-soluble polymer such as hydroxyethyl cellulose may be used in combination with the vinyl alcohol polymer.

本発明に用いる合成樹脂エマルジョン(A)を製造する際の単量体の添加方法として、初期に一括して重合系に添加する方法、初期に単量体の一部を添加し、残りを重合中に連続的に添加する方法、単量体と水と分散剤を予め乳化したものを重合系に連続的に添加する方法等、各種の方法が可能である。   As a method for adding a monomer when producing the synthetic resin emulsion (A) used in the present invention, a method of adding to the polymerization system all at once, adding a part of the monomer at the initial stage, and polymerizing the rest Various methods are possible, such as a method of continuously adding the monomer, water and a dispersant previously emulsified, and a method of continuously adding to the polymerization system.

また、本発明に用いる合成樹脂エマルジョン(A)を製造する際に、連鎖移動剤を添加することもできる。連鎖移動剤としては、連鎖移動が起こるものであれば特に制限はないが、連鎖移動の効率の点でメルカプト基を有する化合物が好ましい。メルカプト基を有する化合物としては、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン等のアルキルメルカプタン、2−メルカプトエタノール、3−メルカプトプロピオン酸等が挙げられる。
連鎖移動剤の添加量は、単量体100重量部に対して5重量部以下が好ましい。連鎖移動剤の添加量が5重量部を越える場合には、合成樹脂エマルジョンの重合安定性が低下する上、分散質を形成する重合体の分子量が著しく低下し、エマルジョン物性の低下が起こる懸念がある。
Moreover, a chain transfer agent can also be added when manufacturing the synthetic resin emulsion (A) used for this invention. The chain transfer agent is not particularly limited as long as chain transfer occurs, but a compound having a mercapto group is preferable from the viewpoint of chain transfer efficiency. Examples of the compound having a mercapto group include alkyl mercaptans such as n-octyl mercaptan, n-dodecyl mercaptan and t-dodecyl mercaptan, 2-mercaptoethanol, and 3-mercaptopropionic acid.
The addition amount of the chain transfer agent is preferably 5 parts by weight or less with respect to 100 parts by weight of the monomer. When the addition amount of the chain transfer agent exceeds 5 parts by weight, the polymerization stability of the synthetic resin emulsion is lowered, and the molecular weight of the polymer forming the dispersoid is remarkably lowered, and there is a concern that the physical properties of the emulsion may be lowered. is there.

上記エマルジョン(A)に配合される、分子内にエチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)は、ビニルエステルとエチレンとの共重合体をけん化することにより得ることができる。分子内にエチレン単位を1〜12モル%含有することは重要で、エチレン単位の量は好ましくは、1.5モル%以上、さらには2モル%以上である。エチレン単位の含有量がこの範囲を下回ると、後述する比較例5から明らかなように、エマルジョン粉末の再分散性が低下し、またエチレン単位の含有量がこの範囲を上回ると、後述する比較例6および比較例9から明らかなように、エマルジョン粉末の再分散性は極めて悪く、造膜性も悪い。また、プロピレン単位を含有させたものでは後述する比較例10から明らかなように、エマルジョン粉末の再分散性は悪く、造膜性も悪い。   The vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units in the molecule and blended in the emulsion (A) can be obtained by saponifying a copolymer of vinyl ester and ethylene. it can. It is important to contain 1 to 12 mol% of ethylene units in the molecule, and the amount of ethylene units is preferably 1.5 mol% or more, and more preferably 2 mol% or more. When the ethylene unit content is below this range, as will be apparent from Comparative Example 5 described later, the redispersibility of the emulsion powder decreases, and when the ethylene unit content exceeds this range, the Comparative Example described below. As is apparent from 6 and Comparative Example 9, the redispersibility of the emulsion powder is extremely poor and the film forming property is also poor. In addition, in the case of containing propylene units, the redispersibility of the emulsion powder is poor and the film forming property is also poor, as will be apparent from Comparative Example 10 described later.

また、エチレン単位を1〜12モル%含有するビニルアルコ−ル系重合体(B)としては、エチレン単位の含有量をXモル%とするとき、1,2−グリコール結合を(1.7−X/40)〜4モル%含有するビニルアルコール系重合体も本発明の好ましい態様の一つであり、この重合体を使用することにより、得られるエマルジョン粉末の再分散性がより改善される。
この重合体の製法としては、例えば、ビニレンカーボネートを上記の1,2−グリコール結合量になるようビニルエステル系単量体およびエチレンと共重合する方法、エチレンとビニルエステル系単量体を共重合する際、重合温度を通常の条件より高い温度、例えば75〜200℃で、加圧下に重合する方法などが挙げられる。後者の方法において、重合温度は特に制限されないが通常95〜190℃、好ましくは100〜160℃で実施される。
The vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units has a 1,2-glycol bond (1.7-X when the content of ethylene units is X mol%). / 40) to 4 mol% of a vinyl alcohol polymer is also one of the preferred embodiments of the present invention, and the use of this polymer further improves the redispersibility of the resulting emulsion powder.
As a method for producing this polymer, for example, a method in which vinylene carbonate is copolymerized with vinyl ester monomer and ethylene so as to have the above 1,2-glycol bond amount, and ethylene and vinyl ester monomer are copolymerized. In this case, the polymerization temperature may be higher than normal conditions, for example, 75 to 200 ° C., and polymerization may be performed under pressure. In the latter method, the polymerization temperature is not particularly limited, but is usually 95 to 190 ° C, preferably 100 to 160 ° C.

この場合、1,2−グリコール結合の含有量は、(1.7−X/40)モル%以上であることが好ましく、より好ましくは(1.75−X/40)モル%以上、最適には(1.8−X/40)モル%以上である。また、1,2−グリコール結合の含有量は4モル%以下であることが好ましく、さらに好ましくは3.5モル%以下、最適には3.2モル%以下である。ここで1,2−グリコール結合の含有量はNMRスペクトルの解析から求められる。   In this case, the content of 1,2-glycol bond is preferably (1.7-X / 40) mol% or more, more preferably (1.75-X / 40) mol% or more, optimally. Is (1.8-X / 40) mol% or more. The 1,2-glycol bond content is preferably 4 mol% or less, more preferably 3.5 mol% or less, and most preferably 3.2 mol% or less. Here, the content of 1,2-glycol bonds can be determined from analysis of NMR spectra.

該ビニルアルコール系重合体(B)の重合度は、各種の状況に応じて選定すればよく、特に制限はないが、粉末化時の作業性の観点から通常100〜3000が好適であり、さらに好ましくは150〜2000、より好ましくは200〜1600、最適には200〜1000である。一方、ビニルアルコール系重合体(B)のけん化度も特に制限されないが、70〜99モル%であることが好ましく、75〜98モル%がより好ましく、80〜96モル%がさらに好ましい。   The degree of polymerization of the vinyl alcohol polymer (B) may be selected according to various situations and is not particularly limited, but is usually preferably 100 to 3000 from the viewpoint of workability during powderization, Preferably it is 150-2000, More preferably, it is 200-1600, Optimally, it is 200-1000. On the other hand, the saponification degree of the vinyl alcohol polymer (B) is not particularly limited, but is preferably 70 to 99 mol%, more preferably 75 to 98 mol%, and further preferably 80 to 96 mol%.

該ビニルアルコール系重合体(B)は本発明の効果を損なわない範囲で共重合可能なエチレン性不飽和単量体を共重合したものでも良い。このようなエチレン性不飽和単量体としては、例えば、アクリル酸、メタクリル酸、フマル酸、(無水)マレイン酸、イタコン酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸およびそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類が挙げられ、量は特に制限されないが、通常5モル%以下のものが用いられる。また、チオール酢酸、メルカプトプロピオン酸などのチオール化合物の存在下で、酢酸ビニルなどのビニルエステル系単量体をエチレンと共重合し、得られる共重合体をけん化することによって得られる末端変性物を用いることもできる。   The vinyl alcohol polymer (B) may be a copolymer of an ethylenically unsaturated monomer that can be copolymerized within a range that does not impair the effects of the present invention. Examples of such ethylenically unsaturated monomers include acrylic acid, methacrylic acid, fumaric acid, (anhydrous) maleic acid, itaconic acid, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, trimethyl- (3-acrylamide). -3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid and its sodium salt, ethyl vinyl ether, butyl vinyl ether, vinyl chloride, vinyl bromide, vinyl fluoride, vinylidene chloride, vinylidene fluoride, tetrafluoroethylene N-vinyl amides such as sodium vinyl sulfonate, sodium allyl sulfonate, N-vinyl pyrrolidone, N-vinyl formamide, N-vinyl acetamide, etc. Le% following can be used. In addition, a terminal modified product obtained by copolymerizing a vinyl ester monomer such as vinyl acetate with ethylene in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid, and saponifying the resulting copolymer. It can also be used.

合成樹脂エマルジョン(A)に配合するビニルアルコール系重合体(B)の配合比は、合成樹脂エマルジョン(A)の固形分(分散質)100重量部に対してビニルアルコール系重合体(B)1〜50重量部であることが好適であり、さらに好ましくは3〜30重量部、より好ましくは5〜20重量部、さらには7〜20重量部である。ビニルアルコール系重合体(B)が1重量部未満の場合、粉末化後の再分散性が低下する懸念があり、またエマルジョン粉末を水硬性物質に混和した際の機械的安定性が不足し、水硬性物質への分散性が低下する懸念がある。また、50重量部を越える場合、得られるエマルジョン粉末の耐水性などの物性が低下し、またこのエマルジョン粉末を使用した水硬性物質の強度が低下する懸念がある。   The compounding ratio of the vinyl alcohol polymer (B) to be blended with the synthetic resin emulsion (A) is such that the vinyl alcohol polymer (B) 1 is 100 parts by weight of the solid content (dispersoid) of the synthetic resin emulsion (A). It is suitable that it is -50 weight part, More preferably, it is 3-30 weight part, More preferably, it is 5-20 weight part, Furthermore, it is 7-20 weight part. When the vinyl alcohol polymer (B) is less than 1 part by weight, there is a concern that the redispersibility after pulverization is lowered, and the mechanical stability when the emulsion powder is mixed with a hydraulic substance is insufficient. There is a concern that the dispersibility in a hydraulic substance may be reduced. On the other hand, when the amount exceeds 50 parts by weight, there is a concern that physical properties such as water resistance of the obtained emulsion powder are lowered and the strength of the hydraulic substance using the emulsion powder is lowered.

本発明の合成樹脂エマルジョン粉末は、上記の合成樹脂エマルジョン(A)にビニルアルコール系重合体(B)を配合した後、乾燥、好適には噴霧乾燥して得られる。噴霧乾燥には、流体を噴霧して乾燥する通常の噴霧乾燥が使用できる。噴霧の形式により、ディスク式、ノズル式、衝撃波式などがあるが、いずれの方法でも良い。また、熱源として、熱風や加熱水蒸気等が用いられる。乾燥条件は、噴霧乾燥機の大きさや種類、合成樹脂エマルジョンの濃度、粘度、流量等によって適宜選択すればよい。乾燥温度は、100℃〜150℃が適当であり、この乾燥温度の範囲内で、十分に乾燥した粉末が得られるように、他の乾燥条件を設定することが望ましい。
ビニルアルコール系重合体(B)の添加方法としては、ビニルアルコール系重合体(B)の水溶液を、エマルジョン(A)に添加する方法が好適な方法であるが、ビニルアルコール系重合体(B)の粉末、フレークまたはペレットをエマルジョン(A)に添加する方法も挙げられる。また、乳化重合してエマルジョン(A)を製造する際、乳化重合の後半にビニルアルコール系重合体(B)を添加(一括または連続添加)する方法も挙げられる。
The synthetic resin emulsion powder of the present invention is obtained by blending the above-mentioned synthetic resin emulsion (A) with the vinyl alcohol polymer (B) and then drying, preferably spray drying. For spray drying, normal spray drying in which a fluid is sprayed to dry can be used. Depending on the type of spraying, there are disc type, nozzle type, shock wave type, etc. Any method may be used. Moreover, hot air, heating steam, etc. are used as a heat source. The drying conditions may be appropriately selected depending on the size and type of the spray dryer, the concentration, viscosity, flow rate, etc. of the synthetic resin emulsion. The drying temperature is suitably from 100 ° C to 150 ° C, and it is desirable to set other drying conditions so that a sufficiently dried powder can be obtained within this drying temperature range.
As a method for adding the vinyl alcohol polymer (B), a method in which an aqueous solution of the vinyl alcohol polymer (B) is added to the emulsion (A) is a suitable method, but the vinyl alcohol polymer (B). The method of adding the powder, flakes or pellets of (1) to the emulsion (A) is also mentioned. Moreover, when manufacturing emulsion (A) by emulsion polymerization, the method of adding a vinyl alcohol polymer (B) (lump or continuous addition) to the latter half of emulsion polymerization is also mentioned.

また、本発明の合成樹脂エマルジョン粉末の貯蔵安定性、水への再分散性を向上させる目的で、無機粉末(ブロッキング防止剤)を使用することが望ましい。無機粉末は、噴霧乾燥後のエマルジョン粉末に添加して均一に混合しても良いが、噴霧乾燥する際に合成樹脂エマルジョンを無機粉末の存在下に噴霧すると(同時噴霧)、均一な混合を行うことができ好適である。無機粉末は平均粒径0.1〜100μmの微粒子であることが好適である。無機粉末としては、微粒子の無機粉末が好ましく、炭酸カルシウム、クレー、無水珪酸、珪酸アルミニウム、ホワイトカーボン、タルク、アルミナホワイト等が使用される。これらの無機粉末のうち、無水珪酸が好適である。無機粉末の使用量は、性能上、エマルジョン粉末に対して20重量%以下さらには10重量%以下が好ましい。下限値については0.1重量%以上、さらには0.2重量%以上が好ましい。また、有機系のフィラーも使用できる。   Moreover, it is desirable to use inorganic powder (antiblocking agent) for the purpose of improving the storage stability and redispersibility in water of the synthetic resin emulsion powder of the present invention. The inorganic powder may be added to the emulsion powder after spray drying and mixed uniformly. However, when the synthetic resin emulsion is sprayed in the presence of the inorganic powder during spray drying (simultaneous spraying), uniform mixing is performed. This is preferable. The inorganic powder is preferably fine particles having an average particle size of 0.1 to 100 μm. As the inorganic powder, fine inorganic powder is preferable, and calcium carbonate, clay, anhydrous silicic acid, aluminum silicate, white carbon, talc, alumina white and the like are used. Of these inorganic powders, anhydrous silicic acid is preferred. The amount of the inorganic powder used is preferably 20% by weight or less, more preferably 10% by weight or less, based on the performance, in view of performance. The lower limit is preferably 0.1% by weight or more, and more preferably 0.2% by weight or more. Organic fillers can also be used.

本発明の合成樹脂エマルジョン粉末は、水中に再分散させた後、20℃で製膜した皮膜の水中への溶出が少ない場合、特に該皮膜を20℃水中に24時間浸漬したときの溶出率が7%以下である場合に、より優れた再分散性および耐水性を有しており、さらにセメントモルタルなどの水硬性物質に混和した際、得られる水硬性物質の強度をより向上させることができることから好ましい。より好ましい溶出率は6%以下である。   The synthetic resin emulsion powder of the present invention has a dissolution rate when the film formed at 20 ° C. after re-dispersion in water has little elution into water, particularly when the film is immersed in water at 20 ° C. for 24 hours. When it is 7% or less, it has better redispersibility and water resistance, and when mixed with a hydraulic substance such as cement mortar, the strength of the obtained hydraulic substance can be further improved. To preferred. A more preferable elution rate is 6% or less.

合成樹脂エマルジョン粉末の水への再分散性をより向上させるために、各種の水溶性添加剤を加えることもできる。添加剤は、噴霧乾燥前に合成樹脂エマルジョンに添加して噴霧乾燥すると均一に混合されるため好ましい。水溶性添加剤の使用量は特に制限はなく、エマルジョンの耐水性等の物性に悪影響を与えない程度に適宜コントロールされる。このような添加剤としては、ヒドロキシエチルセルロース、メチルセルロース、でんぷん誘導体、ポリビニルピロリドン、ポリエチレンオキサイド等の他、水溶性アルキッド樹脂、水溶性フェノール樹脂、水溶性尿素樹脂、水溶性メラミン樹脂、水溶性ナフタレンスルホン酸樹脂、水溶性アミノ樹脂、水溶性ポリアミド樹脂、水溶性アクリル樹脂、水溶性ポリカルボン酸樹脂、水溶性ポリエステル樹脂、水溶性ポリウレタン樹脂、水溶性ポリオール樹脂、水溶性エポキシ樹脂等が挙げられる。   In order to further improve the redispersibility of the synthetic resin emulsion powder in water, various water-soluble additives can be added. The additive is preferable because it is uniformly mixed when added to the synthetic resin emulsion before spray drying and spray dried. The amount of the water-soluble additive used is not particularly limited, and is appropriately controlled to such an extent that it does not adversely affect physical properties such as water resistance of the emulsion. Examples of such additives include hydroxyethyl cellulose, methyl cellulose, starch derivatives, polyvinyl pyrrolidone, polyethylene oxide, etc., water-soluble alkyd resins, water-soluble phenol resins, water-soluble urea resins, water-soluble melamine resins, water-soluble naphthalene sulfonic acids Examples include resins, water-soluble amino resins, water-soluble polyamide resins, water-soluble acrylic resins, water-soluble polycarboxylic acid resins, water-soluble polyester resins, water-soluble polyurethane resins, water-soluble polyol resins, and water-soluble epoxy resins.

本発明の合成樹脂エマルジョン粉末(平均粒径1〜1000μm、好適には2〜500μm)は、そのまま各種用途に用いることができるが、必要に応じ、本発明の効果を損なわない範囲で、従来公知の各種エマルジョン、エマルジョン粉末を添加して用いることもできる。
本発明の合成樹脂エマルジョン粉末は、とくに水硬性物質用混和材または水硬性物質用打継ぎ材として有用である。ここで、水硬性物質としては、例えばポルトランドセメント、アルミナセメント、スラグセメント、フライアッシュセメントなどの水硬セメント、あるいは石膏、プラスターなどのセメント以外の水硬性材料が挙げられる。
上記の水硬性物質用混和材を、例えば、セメント、骨材および水からなるセメントモルタルに配合して使用する場合、水硬性物質用混和材の配合量は、セメントに対し5〜20重量%が好適である。ここで、骨材としては、川砂、砕砂、色砂、けい砂などの細骨材、川砂利、砕石などの粗骨材が挙げられる。
また、本発明の合成樹脂エマルジョン粉末を、水硬性物質用打継ぎ材として使用する場合は、上記合成樹脂エマルジョン粉末を水で適宜再乳化し、打継ぎ材(プライマー処理材)としてコンクリートなどの水硬性物質基板に塗り付け、その後で、セメントモルタルなどの水硬性物質を塗り付けることにより施工が行われる。このような打継ぎ材を使用することにより、優れた接着性および耐久性、さらには優れた機械的強度などを付与することができる。
The synthetic resin emulsion powder of the present invention (average particle diameter of 1 to 1000 μm, preferably 2 to 500 μm) can be used as it is for various applications as it is, but is conventionally known as long as it does not impair the effects of the present invention. These various emulsions and emulsion powders can also be added and used.
The synthetic resin emulsion powder of the present invention is particularly useful as an admixture for hydraulic materials or a joint material for hydraulic materials. Here, examples of the hydraulic substance include hydraulic cements such as Portland cement, alumina cement, slag cement and fly ash cement, and hydraulic materials other than cement such as gypsum and plaster.
When the above-mentioned admixture for a hydraulic substance is used by blending it in a cement mortar composed of cement, aggregate and water, for example, the blending quantity of the admixture for hydraulic substance is 5 to 20% by weight with respect to the cement. Is preferred. Here, examples of the aggregate include fine aggregates such as river sand, crushed sand, colored sand and silica sand, and coarse aggregates such as river gravel and crushed stone.
When the synthetic resin emulsion powder of the present invention is used as a joining material for hydraulic substances, the synthetic resin emulsion powder is appropriately re-emulsified with water, and water such as concrete is used as the joining material (primer treatment material). The construction is carried out by applying to a hard substance substrate and then applying a hydraulic substance such as cement mortar. By using such a joining material, it is possible to impart excellent adhesion and durability, and excellent mechanical strength.

水硬性物質用混和材および打継ぎ材の分散性をより向上させるために、各種の添加剤を加えることもできる。添加剤は、噴霧乾燥前に合成樹脂エマルジョンに添加して噴霧乾燥すると均一に混合されるため好ましい。水溶性添加剤の使用量は特に制限はなく、エマルジョンの耐水性等の物性に悪影響を与えない程度に適宜コントロールされる。このような添加剤としては、ヒドロキシエチルセルロース、メチルセルロース、でんぷん誘導体、ポリビニルピロリドン、ポリエチレンオキサイド等の他、水溶性アルキッド樹脂、水溶性フェノール樹脂、水溶性尿素樹脂、水溶性メラミン樹脂、水溶性ナフタレンスルホン酸樹脂、水溶性アミノ樹脂、水溶性ポリアミド樹脂、水溶性アクリル樹脂、水溶性ポリカルボン酸樹脂、水溶性ポリエステル樹脂、水溶性ポリウレタン樹脂、水溶性ポリオール樹脂、水溶性エポキシ樹脂等が挙げられる。
本発明の水硬性物質用混和材および打継ぎ材には、セメントおよびモルタルなどへの混和材としての用途では、AE剤、減水剤、流動化剤、保水剤、増粘剤、防水剤、消泡剤等が適宜使用される。
本発明の合成樹脂エマルジョン粉末は、接着剤、塗料、紙加工剤などの用途にも使用できる。これらの用途には、粘性改良剤、保水剤、粘着付与剤、増粘剤、顔料分散剤、安定剤等が適宜使用される。
In order to further improve the dispersibility of the admixture for hydraulic substance and the joining material, various additives can be added. The additive is preferable because it is uniformly mixed when added to the synthetic resin emulsion before spray drying and spray dried. The amount of the water-soluble additive used is not particularly limited, and is appropriately controlled to such an extent that it does not adversely affect physical properties such as water resistance of the emulsion. Examples of such additives include hydroxyethyl cellulose, methyl cellulose, starch derivatives, polyvinyl pyrrolidone, polyethylene oxide, etc., water-soluble alkyd resins, water-soluble phenol resins, water-soluble urea resins, water-soluble melamine resins, water-soluble naphthalene sulfonic acids. Examples include resins, water-soluble amino resins, water-soluble polyamide resins, water-soluble acrylic resins, water-soluble polycarboxylic acid resins, water-soluble polyester resins, water-soluble polyurethane resins, water-soluble polyol resins, and water-soluble epoxy resins.
The hydraulic material admixture and jointing material of the present invention include AE agent, water reducing agent, fluidizing agent, water retention agent, thickening agent, waterproofing agent, water proofing agent, etc. for use as an admixture for cement and mortar. A foaming agent etc. are used suitably.
The synthetic resin emulsion powder of the present invention can also be used for applications such as adhesives, paints and paper processing agents. For these uses, viscosity improvers, water retention agents, tackifiers, thickeners, pigment dispersants, stabilizers, and the like are used as appropriate.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらによって何等限定されるものではない。なお、実施例中、「部」および「%」はいずれも重量基準を意味する。
エマルジョン製造例1
窒素吹き込み口、温度計、撹拌機を備えた耐圧オートクレーブにPVA−217((株)クラレ製、重合度1700、けん化度88モル%)の9.5%水溶液80部を仕込み、60℃に昇温してから、窒素置換を行った。酢酸ビニル80部を仕込んだ後、エチレンを4.9MPaまで加圧し、0.5%過酸化水素水溶液2gおよび2%ロンガリット水溶液0.3gを圧入し、重合を開始した。残存酢酸ビニル濃度が10%となったところで、エチレン放出し、エチレン圧力2.0MPaとし、3%過酸化水素水溶液0.3gを圧入し、重合を完結させた。重合中に凝集などがなく、重合安定性に優れており、固形分濃度55%、エチレン含量18重量%のエチレン−酢酸ビニル共重合体エマルジョン(Em−1)が得られた。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the examples, “parts” and “%” mean weight basis.
Emulsion production example 1
A pressure-resistant autoclave equipped with a nitrogen inlet, a thermometer, and a stirrer was charged with 80 parts of a 9.5% aqueous solution of PVA-217 (manufactured by Kuraray Co., Ltd., polymerization degree 1700, saponification degree 88 mol%), and the temperature was raised to 60 ° C. After warming, nitrogen substitution was performed. After charging 80 parts of vinyl acetate, ethylene was pressurized to 4.9 MPa, and 2 g of 0.5% hydrogen peroxide aqueous solution and 0.3 g of 2% Rongalite aqueous solution were injected to initiate polymerization. When the residual vinyl acetate concentration reached 10%, ethylene was released, the ethylene pressure was set to 2.0 MPa, and 0.3 g of 3% hydrogen peroxide aqueous solution was injected to complete the polymerization. There was no aggregation during the polymerization and the polymerization stability was excellent, and an ethylene-vinyl acetate copolymer emulsion (Em-1) having a solid content concentration of 55% and an ethylene content of 18% by weight was obtained.

エマルジョン製造例2
還流冷却器、滴下ロート、温度計、窒素吹込口、撹拌機を備えたガラス製容器に、末端にメルカプト基を有するPVA(重合度550、鹸化度88.3モル%、メルカプト基含量3.3×10−5当量/g)5部とイオン交換水90部を仕込み、95℃で完全溶解させた。次いで、希硫酸によりpH=4とした後、150rpmで撹拌しながらメチルメタクリレート10部、n−ブチルアクリレート10部、n−ドデシルメルカプタン0.1部を添加し、窒素置換後70℃まで昇温した。1%過硫酸カリウム5部を添加し重合を開始し、さらに2時間かけてメチルメタクリレート40部、n−ブチルアクリレート40部、n−ドデシルメルカプタン0.4部を混合したものを連続的に添加した。重合開始3時間後、転化率99.5%となり重合を終了した。固形分濃度52.0%の安定なメチルメタクリレート/n−ブチルアクリレート共重合体エマルジョン(Em−2)を得た。
Emulsion production example 2
In a glass container equipped with a reflux condenser, a dropping funnel, a thermometer, a nitrogen inlet, and a stirrer, PVA having a mercapto group at the end (polymerization degree 550, saponification degree 88.3 mol%, mercapto group content 3.3) × 10 −5 equivalent / g) 5 parts and 90 parts of ion-exchanged water were charged and completely dissolved at 95 ° C. Next, after adjusting the pH to 4 with dilute sulfuric acid, 10 parts of methyl methacrylate, 10 parts of n-butyl acrylate and 0.1 part of n-dodecyl mercaptan were added while stirring at 150 rpm, and the temperature was raised to 70 ° C. after nitrogen substitution. . Polymerization was started by adding 5 parts of 1% potassium persulfate, and a mixture of 40 parts of methyl methacrylate, 40 parts of n-butyl acrylate and 0.4 part of n-dodecyl mercaptan was continuously added over 2 hours. . Three hours after the start of the polymerization, the conversion was 99.5% and the polymerization was terminated. A stable methyl methacrylate / n-butyl acrylate copolymer emulsion (Em-2) having a solid content concentration of 52.0% was obtained.

エマルジョン製造例3
エマルジョン製造例2において末端にメルカプト基を有するPVA(重合度550、けん化度88.3モル%、メルカプト基含有量3.3×10−5当量/g)の代わりに、末端にメルカプト基を有するPVA(エチレン含量0.5モル%、重合度550、けん化度88.3モル%、メルカプト基含有量3.3×10−5当量/g)を使用した以外は、エマルジョン製造例2と同様にしてエマルジョン(Em−3)を得た。
Emulsion production example 3
Instead of PVA having a mercapto group at the terminal in Emulsion Production Example 2 (polymerization degree 550, saponification degree 88.3 mol%, mercapto group content 3.3 × 10 −5 equivalent / g), it has a mercapto group at the terminal Except for using PVA (ethylene content 0.5 mol%, polymerization degree 550, saponification degree 88.3 mol%, mercapto group content 3.3 × 10 −5 eq / g), the same as in Emulsion Production Example 2 was used. Thus, an emulsion (Em-3) was obtained.

エマルジョン製造例1で得たエチレン−酢酸ビニル共重合体エマルジョン(A)(Em−1)固形分100部とエチレン変性PVA(B)(PVA−1、エチレン単位含有量5モル%、重合度500、けん化度95モル%)の5%水溶液200部を混合したものと、エマルジョンの固形分に対して2%の無水珪酸微粉末(平均粒径2μm)とを別々に120℃の熱風中に同時噴霧して乾燥し、平均粒径20μmのエマルジョン粉末を得た。   100 parts of ethylene-vinyl acetate copolymer emulsion (A) (Em-1) solid content obtained in Emulsion Production Example 1 and ethylene-modified PVA (B) (PVA-1, ethylene unit content 5 mol%, polymerization degree 500) , Saponification degree 95 mol%) 200% 5% aqueous solution mixed with 2% silicic anhydride fine powder (average particle size 2 μm) separately in hot air at 120 ° C. Spraying and drying were performed to obtain an emulsion powder having an average particle size of 20 μm.

(エマルジョン粉末の性能評価)
エマルジョン粉末100部に20℃のイオン交換水100部を添加して、攪拌機により十分攪拌し、以下の物性を評価した。結果を表1に示す。
・再分散性;再分散したエマルジョンを200メッシュのステンレス製金網でろ過し、ろ過残渣を105℃で5時間乾燥し、ろ過残渣の割合を測定した。
ろ過残渣(%)=(乾燥後のろ過残渣量/再分散に用いたエマルジョン粉末重量)×100
ろ過残渣は少なければすくないほど、エマルジョン粉末を、水硬性物質用混和材または打ち継ぎ材として用いた場合に、優れた強度を有する水硬物が」得られる。本発明によれば、ろ過残渣5%以下(表1)のエマルジョン粉末を得ることができる。
・再分散後の状態;再分散したエマルジョンの状態を目視及び光学顕微鏡で観察し、以下の基準により判断した。
◎ 再分散液が均一で平均粒子径50μm以下
○ 再分散液が均一で未分散物(ブツ)がない。
△ 再分散はしているが、未分散物が認められる。
× 再分散しない
・造膜性:50℃でガラス板上に再分散物を流延、乾燥させ、造膜性を以下の基準により判断した。
○ 均一な皮膜となり、強靱な皮膜が得られる。
△ 皮膜にはなるがもろい。
× 均一な皮膜が得られない。
・耐水性(皮膜の水中溶出率):再分散したエマルジョンを20℃下で製膜し、皮膜を得た(膜厚100μm)。該皮膜を20℃水中に24時間浸漬し、以下の式により溶出率を算出した。
溶出率(%)={1−(浸漬後の皮膜絶乾重量)/(浸漬前の皮膜絶乾重量)}×100
浸漬前の皮膜絶乾重量;浸漬前の皮膜重量(含水)−(浸漬前の皮膜重量(含
水)× 皮膜含水率(%)/100)
浸漬後の皮膜絶乾重量;浸漬後の皮膜を105℃で絶乾した重量。
溶出率は少なければ少ないほどより優れた耐水性と再分散性を有し、本発明によれば溶出率7%以下(表1)のエマルジョン粉末を得ることができる。
放置安定性:再分散したエマルジョンを20℃、及び0℃に放置し、1週間後
に状態を観察、以下の基準により判断した。
○ 変化なし、
△ 増粘が認められる、
× ゲル化
ゲル分:
20℃の水中再分散して得られたエマルジョン(20℃のイオン交換水100部に対しエマルジョン粉末100部の割合で再分散)を20℃65%RH下で、PETフイルム上に流延し、7日間乾燥させて厚さ500μmの乾燥皮膜を得た。この皮膜を直径2.5cmに打ち抜いたものを試料として、アセトンにて24時間ソックスレー抽出し、さらに煮沸水中で24時間抽出を行い、抽出後の皮膜の不溶分(ゲル分)を求めた。
ゲル分(%)=抽出後の皮膜絶乾重量/抽出前の皮膜絶乾重量×100
抽出前の皮膜絶乾重量=抽出前の皮膜重量(含水)−{抽出前の皮膜重量(含水)×皮膜含水率(%)/100}
*皮膜含水率:皮膜(アセトンおよび煮沸水で抽出する試料とは別の試料)を、105℃、4時間で絶乾し、皮膜の含水率をあらかじめ求める。
*抽出後の皮膜絶乾重量:抽出後の皮膜を105℃、4時間で絶乾燥した重量。
ゲル分は大きければ大きいほど、ビニルアルコール系重合体(B)が分散質(重合体)へより多くグラフトしていることを示し、エマルジョン粉末の再分散性がより向上する。本発明によれば、ゲル分20%以上(表1)エマルジョン粉末を得ることができる。
(Emulsion powder performance evaluation)
100 parts of ion-exchanged water at 20 ° C. was added to 100 parts of the emulsion powder and sufficiently stirred with a stirrer, and the following physical properties were evaluated. The results are shown in Table 1.
-Redispersibility: The redispersed emulsion was filtered through a 200 mesh stainless steel wire mesh, the filtration residue was dried at 105 ° C for 5 hours, and the ratio of the filtration residue was measured.
Filtration residue (%) = (filter residue after drying / emulsion powder weight used for redispersion) × 100
The smaller the filtration residue, the more a hydraulic product with superior strength is obtained when the emulsion powder is used as an admixture or jointing material for hydraulic materials. According to the present invention, an emulsion powder having a filtration residue of 5% or less (Table 1) can be obtained.
-State after re-dispersion: The state of the re-dispersed emulsion was observed visually and with an optical microscope, and judged according to the following criteria.
◎ Uniform redispersion with an average particle size of 50 μm or less ○ Uniform redispersion with no undispersed matter
Δ: Redispersed, but undispersed material is observed.
X Not redispersed / Film-forming property: The re-dispersed material was cast and dried on a glass plate at 50 ° C., and the film-forming property was judged according to the following criteria.
○ A uniform film is obtained and a tough film is obtained.
△ Although it becomes a film, it is fragile.
X A uniform film cannot be obtained.
Water resistance (elution rate of film in water): The redispersed emulsion was formed at 20 ° C. to obtain a film (film thickness 100 μm). The film was immersed in 20 ° C. water for 24 hours, and the elution rate was calculated by the following formula.
Elution rate (%) = {1− (absolute dry weight after immersion) / (absolute dry weight of film before immersion)} × 100
Film dry weight before immersion; film weight before immersion (water content)-(film weight before immersion (water content) x film moisture content (%) / 100)
Absolute dry weight of film after immersion; weight of the absolute dry film after immersion at 105 ° C.
The smaller the elution rate, the better the water resistance and redispersibility. According to the present invention, an emulsion powder having an elution rate of 7% or less (Table 1) can be obtained.
Standing stability: The redispersed emulsion was allowed to stand at 20 ° C. and 0 ° C., and the state was observed after 1 week, and judged according to the following criteria.
○ No change,
△ Thickening is observed,
× Gelled gel content:
An emulsion obtained by redispersion in water at 20 ° C. (redispersion at a ratio of 100 parts of emulsion powder to 100 parts of ion-exchanged water at 20 ° C.) was cast on a PET film at 20 ° C. and 65% RH, The film was dried for 7 days to obtain a dry film having a thickness of 500 μm. A sample obtained by punching this film to a diameter of 2.5 cm was subjected to Soxhlet extraction with acetone for 24 hours, followed by extraction for 24 hours in boiling water, and the insoluble content (gel content) of the film after extraction was determined.
Gel content (%) = absolute dry weight of film after extraction / absolute dry weight of film before extraction × 100
Film absolute dry weight before extraction = film weight before extraction (water content) − {film weight before extraction (water content) × water content of film (%) / 100}
* Moisture content of the film: The film (a sample different from the sample extracted with acetone and boiling water) is completely dried at 105 ° C. for 4 hours, and the moisture content of the film is obtained in advance.
* Extra dry weight of the film after extraction: The weight of the dry film after extraction at 105 ° C. for 4 hours.
The larger the gel content, the more vinyl alcohol polymer (B) is grafted onto the dispersoid (polymer), and the redispersibility of the emulsion powder is further improved. According to the present invention, an emulsion powder having a gel content of 20% or more (Table 1) can be obtained.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、エチレン変性PVA(B)(PVA−2、エチレン単位含有量10モル%、重合度500、けん化度98モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-2, ethylene unit content 10 mol%, polymerization degree 500, saponification degree 98 mol%) was used. An emulsion powder was obtained in the same manner as in Example 1 except that it was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、エチレン変性PVA(B)(PVA−3、エチレン単位含有量5モル%、重合度500、けん化度88モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-3, ethylene unit content 5 mol%, polymerization degree 500, saponification degree 88 mol%) was used. An emulsion powder was obtained in the same manner as in Example 1 except that it was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例1
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、無変性PVA(B)(PVA−4、(株)クラレ製PVA−105、重合度500、けん化度98.5モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 1
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), unmodified PVA (B) (PVA-4, Kuraray Co., Ltd. PVA-105, polymerization degree 500, saponification degree 98.5 mol) %) Was used in the same manner as in Example 1 to obtain an emulsion powder. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例2
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、無変性PVA(B)(PVA−5、(株)クラレ製PVA−205、重合度500、けん化度88モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 2
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), unmodified PVA (B) (PVA-5, PVA-205 manufactured by Kuraray Co., Ltd., polymerization degree 500, saponification degree 88 mol%) An emulsion powder was obtained in the same manner as in Example 1 except that was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例3
実施例1において、エチレン変性PVA(B)(PVA−1)を用いなかった以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 3
In Example 1, an emulsion powder was obtained in the same manner as in Example 1 except that ethylene-modified PVA (B) (PVA-1) was not used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、エチレン変性PVA(B)(PVA−6、エチレン単位含有量5モル%、重合度1300、けん化度93モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-6, ethylene unit content 5 mol%, polymerization degree 1300, saponification degree 93 mol%) was used. An emulsion powder was obtained in the same manner as in Example 1 except that it was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例4
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、無変性PVA(B)(PVA−7、(株)クラレ製PVA−613、重合度1300、けん化度95モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 4
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), unmodified PVA (B) (PVA-7, PVA-613 manufactured by Kuraray Co., Ltd., polymerization degree 1300, saponification degree 95 mol%) An emulsion powder was obtained in the same manner as in Example 1 except that was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の5%水溶液を100部とした以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   An emulsion powder was obtained in the same manner as in Example 1 except that 100 parts of a 5% aqueous solution of ethylene-modified PVA (B) (PVA-1) was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の5%水溶液を300部とした以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   An emulsion powder was obtained in the same manner as in Example 1 except that 300 parts of a 5% aqueous solution of ethylene-modified PVA (B) (PVA-1) was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の5%水溶液を40部とした以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   An emulsion powder was obtained in the same manner as in Example 1 except that 40 parts of a 5% aqueous solution of ethylene-modified PVA (B) (PVA-1) was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の5%水溶液を500部とした以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   An emulsion powder was obtained in the same manner as in Example 1 except that 500 parts of a 5% aqueous solution of ethylene-modified PVA (B) (PVA-1) was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりにエチレン変性PVA(B)(PVA−8、エチレン単位含有量2.5モル%、重合度500、けん化度88モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-8, ethylene unit content 2.5 mol%, polymerization degree 500, saponification degree 88 mol%) An emulsion powder was obtained in the same manner as in Example 1 except that was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりにエチレン変性PVA(B)(PVA−9、エチレン単位含有量1.5モル%、重合度500、けん化度88モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-9, ethylene unit content 1.5 mol%, polymerization degree 500, saponification degree 88 mol%) An emulsion powder was obtained in the same manner as in Example 1 except that was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例5
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりにエチレン変性PVA(B)(PVA−10、エチレン単位含有量0.5モル%、重合度500、けん化度95モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 5
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-10, ethylene unit content 0.5 mol%, polymerization degree 500, saponification degree 95 mol%) An emulsion powder was obtained in the same manner as in Example 1 except that was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例6
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、エチレン変性PVA(B)(PVA−11、エチレン単位含有量25モル%、重合度500、けん化度95モル%)を用いる以外は実施例1と同様にしてエマルジョンの粉末化を試みた。しかし、該PVAは水溶液にした際、激しく白濁し、完溶しなかった。白濁液をエマルジョンに配合し、実施例1と同様にして得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 6
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-11, ethylene unit content 25 mol%, polymerization degree 500, saponification degree 95 mol%) was used. The emulsion was pulverized in the same manner as in Example 1 except that it was used. However, when the PVA was made into an aqueous solution, it became cloudy violently and was not completely dissolved. The cloudy liquid was blended into the emulsion, and the physical properties of the emulsion powder obtained in the same manner as in Example 1 were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、高温重合により得たエチレン変性PVA(B)(PVA−12、エチレン単位含有量3モル%、1,2−グリコール結合量1.9モル%、重合度1300、けん化度93モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) obtained by high temperature polymerization (PVA-12, ethylene unit content 3 mol%, 1,2-glycol bond) An emulsion powder was obtained in the same manner as in Example 1 except that the amount was 1.9 mol%, the degree of polymerization was 1300, and the degree of saponification was 93 mol%. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、高温重合により得たエチレン変性PVA(B)(PVA−13、エチレン単位含有量5モル%、1,2−グリコール結合量2.2モル%、重合度500、けん化度88モル%)を用いる以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) obtained by high-temperature polymerization (PVA-13, ethylene unit content 5 mol%, 1,2-glycol bond) An emulsion powder was obtained in the same manner as in Example 1 except that the amount was 2.2 mol%, the degree of polymerization was 500, and the degree of saponification was 88 mol%. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

実施例1において、Em−1の代わりにエマルジョン製造例2で調製したメチルメタクリレート/n−ブチルアクリレート共重合体エマルジョン(A)(Em−2)を用いた以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。   An emulsion was prepared in the same manner as in Example 1 except that the methyl methacrylate / n-butyl acrylate copolymer emulsion (A) (Em-2) prepared in Emulsion Production Example 2 was used instead of Em-1. A powder was obtained. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例7
実施例13において、エチレン変性PVA(B)(PVA−1)の代わりに、無変性PVA(B)(PVA−5)を用いた以外は実施例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 7
In Example 13, an emulsion powder was obtained in the same manner as in Example 1 except that unmodified PVA (B) (PVA-5) was used instead of ethylene-modified PVA (B) (PVA-1). The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例8
比較例1において、Em−1の代わりにEm-3を使用した以外は、比較例1と同様にしてエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 8
In Comparative Example 1, an emulsion powder was obtained in the same manner as in Comparative Example 1, except that Em-3 was used instead of Em-1. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例9
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、エチレン変性PVA(B)(PVA−14、エチレン単位含有量15モル%、重合度1300、けん化度93モル%)を用いる以外は実施例1と同様にしてエマルジョンの粉末化を試みた。しかし、該PVAは水溶液にした際、白濁し、完溶しなかった。白濁液をエマルジョンに配合し、実施例1と同様にして得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 9
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), ethylene-modified PVA (B) (PVA-14, ethylene unit content 15 mol%, polymerization degree 1300, saponification degree 93 mol%) was used. The emulsion was pulverized in the same manner as in Example 1 except that it was used. However, when the PVA was made into an aqueous solution, it became cloudy and was not completely dissolved. The cloudy liquid was blended into the emulsion, and the physical properties of the emulsion powder obtained in the same manner as in Example 1 were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

比較例10
実施例1において、エチレン変性PVA(B)(PVA−1)の代わりに、プロピレン変性PVA(B)(PVA−15、プロピレン単位含有量5モル%、重合度1300、けん化度93モル%)を用いる以外は実施例1と同様にしてエマルジョンの粉末化を試みた。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
Comparative Example 10
In Example 1, instead of ethylene-modified PVA (B) (PVA-1), propylene-modified PVA (B) (PVA-15, propylene unit content 5 mol%, polymerization degree 1300, saponification degree 93 mol%) was used. The emulsion was pulverized in the same manner as in Example 1 except that it was used. The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

エマルジョン製造例1において、(株)クラレ製「PVA217」の代わりに、高温重合により得たPVA(1,2−グリコール結合量2.2モル%、重合度1700、けん化度88モル%)を使用した以外はエマルジョン製造例1と同様の方法で、固形分濃度55%、エチレン含量18重量%のエチレン−酢酸ビニル共重合体エマルジョン(Em−4)を得た。
次に、実施例1において、エチレン−酢酸ビニル共重合体エマルジョン(A)(Em−1)の代わりに、Em−4を使用した以外は、実施例1と同様の方法でエマルジョン粉末を得た。得られたエマルジョン粉末の物性を実施例1と同様にして評価した。結果を併せて表1に示す。
In emulsion production example 1, instead of “PVA217” manufactured by Kuraray Co., Ltd., PVA obtained by high-temperature polymerization (1,2-glycol bond amount 2.2 mol%, polymerization degree 1700, saponification degree 88 mol%) was used. Except that, an ethylene-vinyl acetate copolymer emulsion (Em-4) having a solid content of 55% and an ethylene content of 18% by weight was obtained in the same manner as in Emulsion Production Example 1.
Next, an emulsion powder was obtained in the same manner as in Example 1, except that Em-4 was used instead of the ethylene-vinyl acetate copolymer emulsion (A) (Em-1). . The physical properties of the obtained emulsion powder were evaluated in the same manner as in Example 1. The results are also shown in Table 1.

Figure 0004071181
Figure 0004071181

次に、上記の実施例1〜14および比較例1〜10で得たエマルジョン粉末を水硬性物質用混和材および水硬性物質用打継ぎ材として使用し、物性を評価した。結果を表2〜3に示す。
(水硬性物質用混和材の性能評価)
セメントモルタル用混和材としての性能
セメントモルタルの物性試験
1)モルタル組成:
水硬性物質用混和材/セメント重量比=0.10
砂/セメント重量比=3.0、水/セメント重量比=0.6
2)スランプ値 :JIS A−1173に準じて測定
(セメントモルタルへの分散性を示す指標)
3)曲げ強度 :JIS A−6203に準じて測定
4)圧縮強度 :JIS A−6203に準じて測定
Next, the emulsion powders obtained in Examples 1 to 14 and Comparative Examples 1 to 10 were used as hydraulic material admixtures and hydraulic material joining materials, and physical properties were evaluated. The results are shown in Tables 2-3.
(Performance evaluation of admixtures for hydraulic materials)
Performance as an admixture for cement mortar Properties test of cement mortar 1) Mortar composition:
Hydraulic material admixture / cement weight ratio = 0.10
Sand / cement weight ratio = 3.0, water / cement weight ratio = 0.6
2) Slump value: Measured according to JIS A-1173
(Indicator of dispersibility in cement mortar)
3) Bending strength: measured according to JIS A-6203 4) Compressive strength: measured according to JIS A-6203

また、水硬性物質用混和材100部にイオン交換水100部を添加して、攪拌機により十分攪拌し、以下の物性を評価した。結果を表1〜2に示す。
・耐水性(皮膜の水中溶出率):再分散したエマルジョンを20℃下で製膜し、皮膜を得た(膜厚100μm)。該皮膜を20℃水中に24時間浸漬し、以下の式により溶出率を算出した。
溶出率(%)={1−(浸漬後の皮膜絶乾重量)/(浸漬前の皮膜絶乾重量)}×100
*浸漬前の皮膜絶乾重量;浸漬前の皮膜重量(含水)−(浸漬前の皮膜重量(含
水)× 皮膜含水率(%)/100)
*浸漬後の皮膜絶乾重量;浸漬後の皮膜を105℃で絶乾した重量。
(水硬性物質用打継ぎ材の性能評価)
セメントモルタル用打継ぎ材としての性能
次に、上記実施例1〜14および比較例1〜10で得たエマルジョン粉末をそのまま打継ぎ材として用い以下の試験を行った。
接着強度試験
1)試験用基板
試験に用いるコンクリート基板としては、建築における標準的な調合である、ポルトランドセメント300部、けい砂800部、粗骨材(バラス)1000部、水180部を練り混ぜた後、合板型枠で300mm×300mm×厚さ50mmの大きさに打設して、試験室{温度20℃、相対湿度(RH)65%}中で28日間養生したものを用いた。
2)塗り付けモルタル
試験に用いる塗り付けモルタルの調合は、重量比でセメント1、骨材(標準砂)2とし、フロー値が170±5となるように水−セメント比を調整して、JIS R5201の9.4の規定に準拠して練り混ぜた。
なお、セメントとしては、JIS R5210(ポルトランドセメント)に規定される普通ポルトランドセメントを、骨材としては、JIS R5210の9.2に規定される豊浦標準砂を用いた。
Moreover, 100 parts of ion-exchanged water was added to 100 parts of the admixture for hydraulic substance, and the mixture was sufficiently stirred with a stirrer to evaluate the following physical properties. The results are shown in Tables 1-2.
Water resistance (elution rate of film in water): The redispersed emulsion was formed at 20 ° C. to obtain a film (film thickness 100 μm). The film was immersed in 20 ° C. water for 24 hours, and the elution rate was calculated by the following formula.
Elution rate (%) = {1− (absolute dry weight after immersion) / (absolute dry weight before immersion)} × 100
* Absolute dry weight before immersion; film weight before immersion (moisture content)-(film weight before immersion (water content) x film moisture content (%) / 100)
* Absolute dry weight after immersion: Weight obtained by absolute drying of the immersed film at 105 ° C.
(Performance evaluation of joint material for hydraulic materials)
Performance as a joining material for cement mortar Next, the following tests were performed using the emulsion powders obtained in Examples 1 to 14 and Comparative Examples 1 to 10 as they were as joining materials.
Adhesive strength test 1) Test substrate As a concrete substrate used for the test, 300 parts of Portland cement, 800 parts of silica sand, 1000 parts of coarse aggregate (ballast) and 180 parts of water, which are standard blends in architecture, are mixed. Then, it was cast in a size of 300 mm × 300 mm × thickness 50 mm with a plywood mold and cured for 28 days in a test room {temperature 20 ° C., relative humidity (RH) 65%}.
2) Coated mortar The composition of the coated mortar used in the test is cement 1 and aggregate (standard sand) 2 by weight ratio, and the water-cement ratio is adjusted so that the flow value becomes 170 ± 5. It knead | mixed according to prescription | regulation of 9.4 of R5201.
In addition, the normal Portland cement prescribed | regulated to JISR5210 (Portland cement) was used as a cement, and the Toyoura standard sand prescribed | regulated to 9.2 of JISR5210 was used as an aggregate.

3)試験体の作製方法
上記打継ぎ材を、上記1)の試験用基板の表面に刷毛で均一に塗り付け、24時間、温度20℃、65%RHの雰囲気下に放置した。なお、打継ぎ材の塗布量は、固形分として50g/mとした。次に、上記2)のモルタルを厚さ6mmになるように金ゴテで塗り付けて、48時間、20℃、80%RH以上の雰囲気下で養生後、さらに試験室中で26日間養生して試験体とした。
4)標準状態の接着強度試験
上記3)で作成した試験体のモルタル面を、寸法40mm×90mmに基板に達するまで切り込んだ後、JIS A6916の5.6に規定する試験方法に準じて接着強度試験を行い、5箇所の測定値の平均値を求めた。
3) Method for preparing test body The joint material was uniformly applied to the surface of the test substrate of 1) with a brush, and left in an atmosphere of a temperature of 20 ° C. and 65% RH for 24 hours. The application amount of the joining material was 50 g / m 2 as a solid content. Next, apply the mortar of 2) above with a gold trowel so that the thickness is 6 mm, and after curing in an atmosphere of 20 ° C. and 80% RH or more for 48 hours, further curing in the test room for 26 days. A test body was obtained.
4) Bond strength test in standard state After the mortar surface of the specimen prepared in 3) above was cut into a size of 40 mm × 90 mm until reaching the substrate, the bond strength was measured according to the test method specified in 5.6 of JIS A6916. The test was performed and the average value of the measured values at five locations was obtained.

5)冷熱繰り返し抵抗性試験(耐久性試験)
上記3)で作成した試験体の表面温度が70℃になるように、105分間赤外線ランプを照射し、その後15分間散水することを1サイクルとして300サイクル継続した。但し、水温は15±5℃とし、試験体1体当たりの散水量は毎分6リットルとした。300サイクル終了後、試験体を標準状態に24時間放置し、上記4)と同様に試験を行った。
5) Cold and hot resistance test (durability test)
Irradiation with an infrared lamp for 105 minutes and subsequent watering for 15 minutes were continued for 300 cycles so that the surface temperature of the test specimen prepared in 3) was 70 ° C. However, the water temperature was 15 ± 5 ° C., and the amount of water sprayed per specimen was 6 liters per minute. After 300 cycles, the specimen was left in the standard state for 24 hours, and the test was conducted in the same manner as in 4) above.

6)凍結融解抵抗性試験(耐久性試験)
上記3)で作成した試験体を、20±3℃の水中に15時間浸漬し、−20±3℃の恒温槽中に3時間浸漬後、70±3℃の恒温槽中に6時間浸漬することを1サイクルとして50サイクル継続した。50サイクル終了後、試験体を標準状態に24時間放置し、上記4)と同様に試験を行った。
6) Freeze-thaw resistance test (durability test)
The specimen prepared in 3) above is immersed in 20 ± 3 ° C. water for 15 hours, immersed in a −20 ± 3 ° C. constant temperature bath for 3 hours, and then immersed in a 70 ± 3 ° C. constant temperature bath for 6 hours. This was regarded as one cycle and continued for 50 cycles. After 50 cycles, the specimen was left in the standard state for 24 hours, and the test was conducted in the same manner as in 4) above.

Figure 0004071181
Figure 0004071181

本発明により、再分散性に優れ、さらに耐水性にも優れ、さらにまた再分散した場合の造膜性、低温における放置安定性などにも優れた合成樹脂エマルジョン粉末が得られ、本発明のエマルジョン粉末を使用することにより、セメントモルタルなどの水硬性物質への分散性に優れ、得られる水硬性物質の強度にも優れる水硬性物質用混和材が得られる。また、本発明のエマルジョン粉末を使用することにより、接着性および耐久性に優れ、さらに機械的強度にも優れる水硬性物質用打継ぎ材が得られる。
According to the present invention, a synthetic resin emulsion powder having excellent redispersibility, water resistance, film forming property when redispersed and excellent standing stability at low temperature can be obtained. By using the powder, it is possible to obtain an admixture for a hydraulic substance that is excellent in dispersibility in a hydraulic substance such as cement mortar and that is excellent in strength of the obtained hydraulic substance. Moreover, by using the emulsion powder of the present invention, a joining material for a hydraulic substance that is excellent in adhesiveness and durability and also excellent in mechanical strength can be obtained.

Claims (10)

ビニルアルコール系重合体を分散剤とし、エチレン性不飽和単量体及びジエン系単量体から選ばれる一種あるいは二種以上の不飽和単量体単位を有する重合体を分散質とするエマルジョン(A)に、分子内にエチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)を配合した組成物を乾燥して得られる合成樹脂エマルジョン粉末。 An emulsion having a vinyl alcohol polymer as a dispersant and a polymer having one or more unsaturated monomer units selected from ethylenically unsaturated monomers and diene monomers as a dispersoid (A ) And a synthetic resin emulsion powder obtained by drying a composition comprising a vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units in the molecule. エチレン単位の含有量が、1.5〜12モル%である請求項1記載の合成樹脂エマルジョン粉末。 The synthetic resin emulsion powder according to claim 1, wherein the ethylene unit content is 1.5 to 12 mol%. エチレン単位の含有量が、2〜12モル%である請求項1または2記載の合成樹脂エマルジョン粉末。 The synthetic resin emulsion powder according to claim 1 or 2, wherein the ethylene unit content is 2 to 12 mol%. エマルジョン(A)の固形分100重量部に対し、エチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)を1〜50重量部配合する請求項1〜3のいずれかに記載の合成樹脂エマルジョン粉末。 The vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units is blended in an amount of 1 to 50 parts by weight per 100 parts by weight of the solid content of the emulsion (A). Synthetic resin emulsion powder. エチレン性不飽和単量体及びジエン系単量体から選ばれる一種あるいは二種以上の不飽和単量体単位を有する重合体が、ビニルエステル系重合体、またはオレフィン−ビニルエステル共重合体である請求項1〜4のいずれかに記載の合成樹脂エマルジョン粉末。 The polymer having one or more unsaturated monomer units selected from ethylenically unsaturated monomers and diene monomers is a vinyl ester polymer or an olefin-vinyl ester copolymer. The synthetic resin emulsion powder in any one of Claims 1-4. エチレン単位を1〜12モル%含有するビニルアルコール系重合体(B)が、エチレン単位の含有量をXモル%とするとき、1,2−グリコール結合を(1.7−X/40)〜4モル%含有するビニルアルコール系重合体である請求項1〜5のいずれかに記載の合成樹脂エマルジョン粉末。 When the vinyl alcohol polymer (B) containing 1 to 12 mol% of ethylene units has an ethylene unit content of X mol%, 1,2-glycol bonds (1.7-X / 40) to The synthetic resin emulsion powder according to any one of claims 1 to 5, which is a vinyl alcohol polymer containing 4 mol%. 分散剤のビニルアルコール系重合体が、1,2−グリコール結合を1.9モル%以上有するビニルアルコール系重合体である請求項1〜6のいずれかに記載の合成樹脂粉末。 The synthetic resin powder according to any one of claims 1 to 6, wherein the vinyl alcohol polymer of the dispersant is a vinyl alcohol polymer having a 1,2-glycol bond of 1.9 mol% or more. 乾燥が噴霧乾燥である請求項1〜7のいずれかに記載の合成樹脂粉末。 The synthetic resin powder according to any one of claims 1 to 7, wherein the drying is spray drying. 合成樹脂エマルジョン粉末が、該粉末を水中に再分散させた後、20℃下で製膜した皮膜を20℃水中に24時間浸漬した場合の溶出率が7%以下を示す請求項1〜8のいずれかに記載の合成樹脂エマルジョン粉末。 The synthetic resin emulsion powder shows an elution rate of 7% or less when the film formed at 20 ° C is immersed in 20 ° C water for 24 hours after the powder is re-dispersed in water. The synthetic resin emulsion powder in any one. 合成樹脂エマルジョン粉末が、無機粉末を含有する請求項1〜9のいずれかに記載の合成樹脂エマルジョン粉末。

The synthetic resin emulsion powder according to any one of claims 1 to 9, wherein the synthetic resin emulsion powder contains an inorganic powder.

JP2003316269A 2002-09-17 2003-09-09 Synthetic resin emulsion powder Expired - Fee Related JP4071181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316269A JP4071181B2 (en) 2002-09-17 2003-09-09 Synthetic resin emulsion powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002269600 2002-09-17
JP2003316269A JP4071181B2 (en) 2002-09-17 2003-09-09 Synthetic resin emulsion powder

Publications (2)

Publication Number Publication Date
JP2004131719A JP2004131719A (en) 2004-04-30
JP4071181B2 true JP4071181B2 (en) 2008-04-02

Family

ID=32301645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316269A Expired - Fee Related JP4071181B2 (en) 2002-09-17 2003-09-09 Synthetic resin emulsion powder

Country Status (1)

Country Link
JP (1) JP4071181B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007145895A (en) * 2005-11-24 2007-06-14 Kuraray Co Ltd Synthetic resin emulsion powder and admixture for hydraulic material
US7728061B2 (en) * 2005-12-27 2010-06-01 Kuraray Co., Ltd. Adhesive composition
JP5324146B2 (en) * 2008-07-10 2013-10-23 株式会社クラレ Adhesive composition

Also Published As

Publication number Publication date
JP2004131719A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP2166028B1 (en) Aqueous synthetic-resin emulsion for cement mortar admixture, re-emulsifiable powder for cement mortar admixture from aqueous synthetic-resin emulsion, and cement mortar admixture comprising the same
US8623462B2 (en) Redispersible polymer powder composition
US20080293884A1 (en) Synthetic resin emulsion powder
KR101288205B1 (en) Adhesive composition
US20110104378A1 (en) Redispersible polymer powder
RU2411266C2 (en) Re-emulsifiable powdered resin, aqueous emulsion and adhesive composition based on said emulsion
WO2007007578A1 (en) Aqueous liquid dispersion, method for producing same, composition, adhesive, and coating material
JP2010522798A (en) Acrylic ester copolymer composition and redispersible powder
JP2000053711A (en) Re-dispersible emulsion powder and its production
JP3618540B2 (en) Method for producing synthetic resin emulsion powder
JP4071182B2 (en) Admixture or joint material for synthetic resin powder and hydraulic material
JP2007016218A (en) Synthetic resin emulsion composition
US6001903A (en) Synthetic resin powder
JP4071181B2 (en) Synthetic resin emulsion powder
WO2006132210A1 (en) Synthetic resin emulsion composition
JP4152984B2 (en) (Meth) acrylic resin emulsion and production method thereof
JP4145466B2 (en) Synthetic resin emulsion powder
JP4738726B2 (en) Synthetic resin emulsion powder and use thereof
JP4574143B2 (en) Admixtures and joints for hydraulic materials
JP2007145895A (en) Synthetic resin emulsion powder and admixture for hydraulic material
JP2004359721A (en) Synthetic resin powder, and admixing agent or joint placing material for hydraulic substance
JP5143777B2 (en) Synthetic resin emulsion powder and method for producing the same
JP3481788B2 (en) Synthetic resin powder
JP2004323571A (en) Synthetic resin emulsion powder and its preparation method
ES2356624T3 (en) REDISPERSABLE SYNTHETIC RESIN POWDER.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees