JP4069910B2 - Exhaust manifold assembly structure - Google Patents

Exhaust manifold assembly structure Download PDF

Info

Publication number
JP4069910B2
JP4069910B2 JP2004219666A JP2004219666A JP4069910B2 JP 4069910 B2 JP4069910 B2 JP 4069910B2 JP 2004219666 A JP2004219666 A JP 2004219666A JP 2004219666 A JP2004219666 A JP 2004219666A JP 4069910 B2 JP4069910 B2 JP 4069910B2
Authority
JP
Japan
Prior art keywords
exhaust manifold
pipe
intermediate member
assembly
collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004219666A
Other languages
Japanese (ja)
Other versions
JP2004301132A (en
Inventor
和久 三瓶
哲 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004219666A priority Critical patent/JP4069910B2/en
Publication of JP2004301132A publication Critical patent/JP2004301132A/en
Application granted granted Critical
Publication of JP4069910B2 publication Critical patent/JP4069910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、複数本のパイプを組合わせて溶接したパイプ型エキゾーストマニホルドの集合部の構造に関する。   The present invention relates to a structure of a collecting portion of a pipe type exhaust manifold in which a plurality of pipes are welded in combination.

複数本のパイプをパイプ端を成形して集合させ溶接にて一体化させることによりパイプ型エキゾーストマニホルドを構成し、このエキゾーストマニホルドのパイプ集合部の下流側端部を集合管の上流側端部に挿入して溶接接合したエキゾーストマニホルド集合部構造は、たとえば実開平5−1819号公報により知られている。
従来のエキゾーストマニホルドの集合部構造は、パイプ集合部がシリンダヘッド端面(エキゾーストマニホルド入口フランジ端面)から比較的近い位置にあるタイプのもの(図8〜11に示すもので、以下、Aタイプという)と、パイプ集合部がシリンダヘッド端面(エキゾーストマニホルド入口フランジ端面)から比較的遠い位置にあるタイプのもの(図12〜14に示すもので、以下、Bタイプという)と、に大別される。
実開平5−1819号公報
A pipe-type exhaust manifold is constructed by forming a pipe end at the pipe end and integrating them by welding to form a pipe-type exhaust manifold. The downstream end of the pipe manifold portion of the exhaust manifold is used as the upstream end of the collecting pipe. An exhaust manifold assembly structure that is inserted and welded is known, for example, from Japanese Utility Model Laid-Open No. 5-1819.
The conventional exhaust manifold assembly structure is a type in which the pipe assembly is relatively close to the cylinder head end face (exhaust manifold inlet flange end face) (shown in FIGS. 8 to 11, hereinafter referred to as A type). The pipe assembly is roughly divided into a type (shown in FIGS. 12 to 14, hereinafter referred to as B type) in which the pipe assembly is located relatively far from the cylinder head end surface (exhaust manifold inlet flange end surface).
Japanese Utility Model Publication No. 5-1819

従来のエキゾーストマニホルドの集合部構造には、つぎの問題がある。
(i) パイプ集合部の下流側端のパイプ間溶接部には、大きな熱応力がかかること、直交する分離壁の交点は高い温度になること(図15のマニホルド温度分布参照)、直交する溶接線の重なり点となって溶接品質が悪いこと、の3つの厳しい条件が重なるため、強度上の信頼性を高く保つことが困難である。
(ii)熱応力の緩和を目的として実開平5−1819号公報のように直交する分離壁の両方を曲面壁とすると、パイプ集合部の断面剛性が低下して変形が促進してしまい、熱応力緩和の効果を相殺し十分な亀裂発生抑制効果が得られず、場合によっては亀裂発生を早める。
本発明の目的は、強度上の信頼性を向上できるエキゾーストマニホルド集合部構造を提供することにある。
The conventional exhaust manifold assembly structure has the following problems.
(i) A large thermal stress is applied to the welded part between pipes at the downstream end of the pipe assembly part, the intersection of the orthogonal separation walls becomes a high temperature (see the manifold temperature distribution in FIG. 15), and the orthogonal welding Since three severe conditions of overlapping of lines and poor welding quality overlap, it is difficult to maintain high reliability in strength.
(ii) If both of the orthogonal separating walls are curved walls as described in Japanese Utility Model Laid-Open No. 5-1819 for the purpose of relaxing thermal stress, the cross-sectional rigidity of the pipe assembly portion is reduced, and deformation is promoted. The effect of stress relaxation is offset and a sufficient cracking suppression effect cannot be obtained, and in some cases, cracking is accelerated.
An object of the present invention is to provide an exhaust manifold assembly structure that can improve strength reliability.

上記目的を達成する本発明は、次の通りである。
(1) 複数本のパイプのそれぞれの下流側部分を成形して集合させ溶接にて一体化してエキゾーストマニホルドを形成し、前記エキゾーストマニホルドのパイプ集合部を集合管の上流側端部に挿入し該集合管に相対的に固定したエキゾーストマニホルド集合部構造において、前記エキゾーストマニホルドのパイプ集合部の少なくとも下流側部分を円筒状の中間部材に挿入して該中間部材に溶接にて接合し、該中間部材を前記集合管の上流側部分に挿入して溶接にて固定したことを特徴とするエキゾーストマニホルド集合部構造。
The present invention for achieving the above object is as follows.
(1) Forming and assembling downstream portions of each of a plurality of pipes and integrating them by welding to form an exhaust manifold, and inserting the pipe manifold portion of the exhaust manifold into the upstream end portion of the collecting pipe; In an exhaust manifold assembly structure that is relatively fixed to the collecting pipe, at least the downstream side portion of the pipe assembly portion of the exhaust manifold is inserted into a cylindrical intermediate member and joined to the intermediate member by welding, and the intermediate member The exhaust manifold assembly portion structure is characterized in that is inserted into the upstream portion of the collecting pipe and fixed by welding.

上記(1)の構造では、エキゾーストマニホルドを構成する複数本のパイプの熱膨張差に起因するモーメントが中間部材によって分担されるので、パイプ集合部の下流側端面の溶接部にかかるモーメントが低減され、強度上の信頼性が向上される。   In the structure of (1) above, the moment due to the difference in thermal expansion of the plurality of pipes constituting the exhaust manifold is shared by the intermediate member, so the moment applied to the welded portion on the downstream end face of the pipe assembly is reduced. , Reliability on strength is improved.

本発明は、つぎの(i) 、(ii)の2つのグループを含む。
(i) 第1のグループ(請求項1に対応するもの):別体の中間部材を介してパイプ集合部と集合管を溶接しモーメントを中間部材に分担させるもので、本発明の第1実施例を含む。本発明の第1実施例は図1に示されている。
(ii)第2のグループ(請求項2に対応するもの):ほぼ直交する集合部分離壁の一方のみを曲面壁とするもので、本発明の第2、第3実施例を含む。本発明の第2実施例は図2に示されており、本発明の第3実施例は図3に示されている。
The present invention includes the following two groups (i) and (ii).
(i) First group (corresponding to claim 1): a pipe assembly and a collection pipe are welded via a separate intermediate member and the moment is shared by the intermediate member. Includes examples. A first embodiment of the present invention is shown in FIG.
(ii) Second group (corresponding to claim 2): Only one of the substantially perpendicular assembly separating walls is a curved wall, and includes the second and third embodiments of the present invention. A second embodiment of the present invention is illustrated in FIG. 2, and a third embodiment of the present invention is illustrated in FIG.

まず、本発明の全実施例に共通する部分の構成、作用を、図8〜図14を参照して説明する。ただし、図8〜図11はAタイプを示し、図12〜図14はBタイプを示す。
本発明実施例のエキゾーストマニホルド集合部構造は、複数本(気筒数と同じ数)のパイプ(ポートともいう、たとえば、ステンレスパイプからなる)6、7、8、9をそれぞれの下流側(排気ガス流れ方向に見て下流側の意味)部分で集合させ溶接にて一体化してエキゾーストマニホルド(パイプ溶接型エキゾーストマニホルド)10を形成し、このエキゾーストマニホルド10のパイプ集合部14をこれと別体の集合管11の上流側端部に挿入し、集合管11に相対的に固定(直接または間接的に溶接にて一体化)したものからなる。パイプ集合部14(ポート集合部ともいう)は、図11に示すように、パイプ6、7、8、9の下流側部分を各々横断面扇形に成形して、この横断面扇形に成形した部分を扇形のかなめの部分を集合部横断面中心に配し集合部横断面外形が円形となるように集合させ、パイプ集合部14の下流側端面のパイプ合せ部を溶接にて接合したものからなる。パイプ集合部14を集合管11に直接溶接する場合は、集合管11の上流側端とパイプ集合部14の外側面とを溶接する。ただし、本発明の第1実施例では、パイプ集合部14は集合管11に間接的に、すなわち中間部材を介して、接合される。
First, the structure and operation of parts common to all the embodiments of the present invention will be described with reference to FIGS. 8 to 11 show the A type, and FIGS. 12 to 14 show the B type.
The exhaust manifold assembly structure of the embodiment of the present invention has a plurality of pipes (the same number as the number of cylinders) of pipes (also called ports, for example, made of stainless steel pipes) 6, 7, 8, 9 on the downstream side (exhaust gas). The exhaust manifold (pipe welded exhaust manifold) 10 is formed by gathering at a portion (meaning downstream side as viewed in the flow direction) and integrating by welding to form a separate pipe assembly 14 of the exhaust manifold 10. It is inserted into the upstream end of the pipe 11 and is relatively fixed to the collecting pipe 11 (integrated directly or indirectly by welding). As shown in FIG. 11, the pipe assembly portion 14 (also referred to as a port assembly portion) is a portion in which the downstream portions of the pipes 6, 7, 8, 9 are each formed into a sector shape and are formed into a sector shape. Are arranged in such a manner that a fan-shaped crimped portion is arranged in the center of the cross section of the collecting portion so that the outer shape of the cross section of the collecting portion is circular, and the pipe joining portion of the downstream end face of the pipe collecting portion 14 is joined by welding. . When the pipe collecting part 14 is directly welded to the collecting pipe 11, the upstream end of the collecting pipe 11 and the outer surface of the pipe collecting part 14 are welded. However, in the first embodiment of the present invention, the pipe collecting portion 14 is joined to the collecting pipe 11 indirectly, that is, via an intermediate member.

エキゾーストマニホルド10はガスケット10´を介してシリンダヘッド1に取り付けられる。シリンダヘッド1にはその長手方向に順に、#1〜#4気筒の排気ポートが開口している。排気ポート並びの外側に位置する#1、#4気筒の排気ポート2、3に接続されるパイプ6、7の、シリンダヘッドからパイプ曲り部までの、シリンダヘッド長手方向と直角方向の距離L1は、排気ポート並びの内側に位置する#2、#3気筒の排気ポート4、5に接続されるパイプ8、9の、シリンダヘッドからパイプ曲り部までの、シリンダヘッド長手方向と直角方向の距離L2より長い。   The exhaust manifold 10 is attached to the cylinder head 1 via a gasket 10 '. In the cylinder head 1, exhaust ports of # 1 to # 4 cylinders are opened in the longitudinal direction. The distance L1 in the direction perpendicular to the longitudinal direction of the cylinder head of the pipes 6 and 7 connected to the exhaust ports 2 and 3 of the # 1 and # 4 cylinders located outside the exhaust port array is The distance L2 in the direction perpendicular to the longitudinal direction of the cylinder head from the cylinder head to the pipe bent portion of the pipes 8 and 9 connected to the exhaust ports 4 and 5 of the # 2 and # 3 cylinders located inside the exhaust port array Longer.

上記共通構成部分の作用を、たとえばAタイプについて、説明すると、機関運転時にパイプ6、7とパイプ8、9の間の熱膨張差が生じ、パイプ集合部14の、シリンダヘッド長手方向と平行方向に延びる、X−X軸まわりのモーメント12がパイプに生じる。このモーメント12はパイプ集合部14の下流側端面のX−X軸方向の溶接部に熱応力を発生させる。Y点は溶接線がクロスするので強度上厳しくなる。エキゾーストマニホルド10および集合管11の温度分布は図15に示すように、溶接線クロス点Yでとくに高温である。   The operation of the common component will be described, for example, for the A type. A difference in thermal expansion occurs between the pipes 6 and 7 and the pipes 8 and 9 during engine operation, and the pipe assembly 14 is parallel to the longitudinal direction of the cylinder head. A moment 12 around the XX axis is generated in the pipe. This moment 12 generates thermal stress in the welded portion in the XX axis direction on the downstream end face of the pipe assembly portion 14. Since the weld line crosses the Y point, the strength becomes severe. The temperature distribution of the exhaust manifold 10 and the collecting pipe 11 is particularly high at the weld line crossing point Y as shown in FIG.

つぎに、本発明の各実施例に特有な構成、作用を説明する。
本発明の第1実施例の構成については、図1に示すように、エキゾーストマニホルド10をエキゾーストマニホルド10および集合管11とは別体の中間部材27を介して、集合管11に接続する。より詳しくは、パイプ6、7、8、9の各々の下流側部分を横断面扇形に成形し、集合させて溶接にて一体化して横断面外形が円形のパイプ集合部14を形成する。このパイプ集合部14の少なくとも下流側部分を円筒状の中間部材27に挿入し、パイプ集合部下流端と中間部材内周面との間を溶接(溶接部を符号28で示した)するとともに、中間部材上流端とパイプ集合部外周面との間を溶接(溶接部を符号29で示した)する。さらに、この中間部材27を集合管11の上流側部分に挿入して、集合管11の上流端と中間部材外周面との間を、溶接部28と溶接部29の軸方向中間位置で、溶接(溶接部を符号30で示した)にて接合する。
Next, the configuration and operation unique to each embodiment of the present invention will be described.
With respect to the configuration of the first embodiment of the present invention, as shown in FIG. 1, the exhaust manifold 10 is connected to the collecting pipe 11 via an intermediate member 27 separate from the exhaust manifold 10 and the collecting pipe 11. More specifically, the downstream portions of each of the pipes 6, 7, 8, 9 are formed in a cross-sectional sector shape, assembled and integrated by welding to form a pipe assembly portion 14 having a circular cross-sectional outer shape. At least the downstream portion of the pipe assembly portion 14 is inserted into the cylindrical intermediate member 27 and welded between the downstream end of the pipe assembly portion and the inner peripheral surface of the intermediate member (the weld portion is indicated by reference numeral 28), Welding is performed between the upstream end of the intermediate member and the outer peripheral surface of the pipe assembly (the welded portion is indicated by reference numeral 29). Further, the intermediate member 27 is inserted into the upstream portion of the collecting pipe 11, and welding is performed between the upstream end of the collecting pipe 11 and the outer peripheral surface of the intermediate member at an axially intermediate position between the welded portion 28 and the welded portion 29. (The weld is indicated by reference numeral 30).

本発明の第1実施例の作用については、中間部材27の下流側は絞り成形の無い開放端であることからパイプ6、7、8、9の下流側端部の外周を中間部材27の内周面に溶接部28で溶接することができるため、溶接部29での溶接と併せて2ヶ所でつなぐことができるので、モーメント12を中間部材27で分担することができ、中間部材27の剛性によりY点に作用する熱応力を軽減することができる。さらに、中間部材27は集合管11に嵌合され溶接部28と溶接部29の中間点で溶接部30で結合されるため、中間部材27の剛性はさらに高められることになり、さらなる応力緩和効果が得られる。さらに、別の作用として中間部材27を接合した時点で各パイプが一体化されるため、そのサブアッシー状態で中間部材27の端部31をシール面として洩れ検査を容易に実施でき、また、中間部材27の下流側は絞り成形の無い開放端であるため洩れ部位の補修が容易にできる。   Regarding the operation of the first embodiment of the present invention, since the downstream side of the intermediate member 27 is an open end without drawing, the outer periphery of the downstream end of the pipes 6, 7, 8, 9 is arranged inside the intermediate member 27. Since the welded portion 28 can be welded to the peripheral surface, it can be connected at two locations together with the welded portion 29, so that the moment 12 can be shared by the intermediate member 27, and the rigidity of the intermediate member 27 can be shared. Thus, the thermal stress acting on the Y point can be reduced. Furthermore, since the intermediate member 27 is fitted to the collecting pipe 11 and joined by the welded portion 30 at the intermediate point between the welded portion 28 and the welded portion 29, the rigidity of the intermediate member 27 is further enhanced, and a further stress relaxation effect is achieved. Is obtained. Furthermore, as another action, the pipes are integrated when the intermediate member 27 is joined, so that in the sub-assy state, the end portion 31 of the intermediate member 27 can be used as a sealing surface to easily perform a leak test. Since the downstream side of the member 27 is an open end without drawing, it is possible to easily repair the leaked portion.

上記迄の実施例に対して次の変形例にも拡張適用される。
エンジンの構成によって、X−X線と直角なP−P線を中心とするモーメント力の作用が大きくなることが考えられる(Bタイプ)。その場合は本発明の実施例を90°回転して応用することにより同様の効果が実現できる。
耐熱性向上のため管端の扇形成形をやめて、円形のままで合流させてもよい。ただし、円形4本を合流させるためには、集合管の管端をそれに沿う形で成形する必要があり、2つ割り、もしくは4つ割りのプレス成形品を溶接して製造する必要があるため部品点数も増え、コスト高になる。また、パイプ端との溶接線も複雑になるため信頼性確保のためさらにコスト高になる。
また、本発明はエキゾーストマニホルドが下流側に延長された長い集合管11に接続される場合により効果的である。本発明を適用することにより集合管11の曲げ、及び、管端加工のみで低コストで耐熱性が高いエキゾーストマニホルドを提供できる。
The embodiment described above can be extended to the following modification.
Depending on the engine configuration, the action of moment force centered on the PP line perpendicular to the XX line may be increased (B type). In that case, the same effect can be realized by rotating the embodiment of the present invention by 90 °.
In order to improve heat resistance, the fan-shaped shape at the end of the tube may be stopped and joined in a circular shape. However, in order to join four circles, it is necessary to form the tube end of the collecting pipe along the shape, and it is necessary to manufacture by dividing the press-formed product into two or four parts. The number of parts increases and the cost increases. In addition, since the weld line with the pipe end is complicated, the cost is further increased to ensure reliability.
In addition, the present invention is more effective when the exhaust manifold is connected to a long collecting pipe 11 extended downstream. By applying the present invention, it is possible to provide an exhaust manifold that is low in cost and high in heat resistance only by bending the collecting pipe 11 and processing the pipe end.

本発明の第2実施例はAタイプに適用されるものである。本発明の第2実施例の構成については、図2(図9のA−A線に沿う断面図)に示すように、エキゾーストマニホルド10のパイプ集合部14は、4つのポート(パイプ)6、7、8、9の集合部からなり、ほぼ直交する分離壁32、33のうち、シリンダヘッド長手方向と平行なX−X軸に沿った分離壁32が、パイプ集合部14の径方向に湾曲しながら延びる曲面壁とされ、他方の分離壁33が、パイプ集合部14の径方向にストレートに延びる平面壁とされている。   The second embodiment of the present invention is applied to the A type. Regarding the configuration of the second embodiment of the present invention, as shown in FIG. 2 (sectional view taken along line AA in FIG. 9), the pipe assembly 14 of the exhaust manifold 10 has four ports (pipes) 6, 7, 8, 9, of the separating walls 32, 33 that are substantially orthogonal, the separating wall 32 along the XX axis parallel to the longitudinal direction of the cylinder head is curved in the radial direction of the pipe collecting portion 14. The other separation wall 33 is a flat wall extending straight in the radial direction of the pipe assembly portion 14.

本発明の第2実施例の作用を説明する前に、Aタイプのエキゾーストマニホルドにおける熱疲労亀裂の発生のメカニズムをまず説明する。
図8〜図11に示すAタイプのエキゾーストマニホルド10は、前述のように4本のポート(パイプ)6、7、8、9を集合管11に挿入し、これを溶接、接合して成る。集合部14はシリンダヘッド端面(エキゾーストマニホルド入口フランジ34の端面)から比較的近い位置にあるため、集合部14をはさんでポート6、7が向かい合いポート8、9が向かい合う形状となる。また、拘束部位(入口フランジ34、エキマニステイボス35)を結ぶ直線36に対して集合部位置が大きく張り出すことはない。
このエキゾーストマニホルド10では、向かい合うポート6、7および8、9が熱膨張することによって発生する力37、38が集合部14に加わり、ポート集合部14の断面は図5に示すようにつぶれる。この結果、温度が高い中央部39の溶接部に歪が集中し、亀裂発生の要因となる。また、長いポート6、7と短いポート8、9の間では、長さの差分だけ熱膨張量に差を生じるため、それによる力40によって図5の断面の押しつぶし変形は促進され、歪の集中度合が増す。
Before describing the operation of the second embodiment of the present invention, the mechanism of occurrence of thermal fatigue cracks in the A type exhaust manifold will be described first.
The A type exhaust manifold 10 shown in FIGS. 8 to 11 is formed by inserting the four ports (pipes) 6, 7, 8, and 9 into the collecting pipe 11 and welding and joining them as described above. Since the collecting portion 14 is located relatively close to the cylinder head end face (end face of the exhaust manifold inlet flange 34), the ports 6 and 7 face each other and the ports 8 and 9 face each other across the collecting portion 14. Further, the position of the gathering portion does not overhang with respect to the straight line 36 that connects the restraint sites (the inlet flange 34 and the exhaust manifold boss 35).
In the exhaust manifold 10, forces 37 and 38 generated by thermal expansion of the facing ports 6, 7, 8 and 9 are applied to the collecting portion 14, and the cross section of the port collecting portion 14 is crushed as shown in FIG. 5. As a result, strain concentrates on the welded portion of the central portion 39 where the temperature is high, causing cracks. Further, since the thermal expansion amount differs between the long ports 6 and 7 and the short ports 8 and 9 by the difference in length, the crushing deformation of the cross section of FIG. The degree increases.

本発明の第2実施例の作用については、集合部断面をつぶす方向と平行な分離壁32を曲面壁としたので、歪の集中が曲面壁のほぼ全長にわたって分散され、亀裂発生が抑制される。
これに対して、実開平5−1819号公報のように分離壁32、33を両方とも曲面壁とすれば、集合部中央への歪の集中を曲面壁へ分散する機能はあるが、同時に断面剛性を低下させるため図5の変形を促進してしまう。このため、効果が相殺されてしまい、十分な亀裂発生防止効果が得られない。
本発明の第2実施例では、集合部断面をつぶす方向と直角方向の分離壁33は平面壁としたので、曲面壁32によるポート断面剛性の低下は小とされ、図5の変形は促進されず、十分な亀裂発生防止効果がある。
As for the operation of the second embodiment of the present invention, since the separation wall 32 parallel to the direction of crushing the gathering section is a curved wall, the concentration of strain is distributed over almost the entire length of the curved wall, and cracking is suppressed. .
On the other hand, if both the separating walls 32 and 33 are curved walls as in Japanese Utility Model Laid-Open No. 5-1819, there is a function of dispersing the strain concentration at the center of the gathering portion into the curved walls, but at the same time, The deformation shown in FIG. 5 is promoted to reduce the rigidity. For this reason, the effect is offset and a sufficient crack prevention effect cannot be obtained.
In the second embodiment of the present invention, the separation wall 33 in the direction perpendicular to the direction in which the cross section of the gathering portion is crushed is a flat wall. Therefore, the deterioration of the port cross section rigidity due to the curved wall 32 is small, and the deformation of FIG. Therefore, there is a sufficient crack prevention effect.

本発明の第3実施例はBタイプに適用されるものである。本発明の第3実施例の構成については、図3(図13のC−C線に沿う断面図)に示すように、エキゾーストマニホルド10のパイプ集合部14は、4つのポート(パイプ)6、7、8、9の集合部からなり、ほぼ直交する分離壁32、33のうち、シリンダヘッド長手方向と直交するP−P軸に沿った分離壁33が、パイプ集合部14の径方向に湾曲しながら延びる曲面壁とされ、他方の分離壁32が、パイプ集合部14の径方向にストレートに延びる平面壁とされている。   The third embodiment of the present invention is applied to the B type. As for the configuration of the third embodiment of the present invention, as shown in FIG. 3 (cross-sectional view taken along the line CC in FIG. 13), the pipe assembly 14 of the exhaust manifold 10 has four ports (pipes) 6, 7, 8, 9, of the separation walls 32, 33 that are substantially orthogonal, the separation wall 33 along the PP axis perpendicular to the cylinder head longitudinal direction is curved in the radial direction of the pipe assembly 14. The other separation wall 32 is a flat wall that extends straight in the radial direction of the pipe assembly 14.

本発明の第3実施例の作用を説明する前に、Bタイプのエキゾーストマニホルドにおける熱疲労亀裂の発生のメカニズムをまず説明する。
図12〜図14に示すBタイプのエキゾーストマニホルド10も、前述のように4本のポート(パイプ)6、7、8、9を集合管11に挿入し、これを溶接、接合して成る。集合部14はシリンダヘッド端面(エキゾーストマニホルド入口フランジ34の端面)から比較的遠い位置にあるため、集合部14をはさんでポート6、7、ポート8、9が向かい合う形状とはならない。また、拘束部位(入口フランジ34、エキマニステイボス35)を結ぶ直線36に対して集合部位置が大きく張り出す。
このエキゾーストマニホルド10では、Aタイプのような向かい合うポートが集合部14の断面をつぶす変形は起こりにくく(小さく)、代わって、図6、図7に示すようにエキゾーストマニホルド10全体が上流端、下流端34、35の拘束の中で熱膨張しようとする力41によってモーメント42が生じ、集合部断面の内側(流線R、すなわち軸方向に延びる湾曲した軸線R、の内側)がシリンダヘッド長手方向と直角方向P−Pに押しつぶされる変形が主体となる。すなわち、Bタイプでは、Aタイプの場合の力、変形と直交する方向に力、変形が生じる。したがって、Bタイプではシリンダヘッド1の長手方向と平行な分離壁33が曲面壁とされるべきである。
Before describing the operation of the third embodiment of the present invention, the mechanism of the occurrence of thermal fatigue cracks in the B type exhaust manifold will be described first.
The B type exhaust manifold 10 shown in FIGS. 12 to 14 is also formed by inserting the four ports (pipes) 6, 7, 8, and 9 into the collecting pipe 11 and welding and joining them as described above. Since the collecting portion 14 is located relatively far from the end face of the cylinder head (the end face of the exhaust manifold inlet flange 34), the ports 6, 7, and the ports 8, 9 do not face each other across the collecting portion 14. Further, the position of the gathering portion largely protrudes with respect to the straight line 36 that connects the restraint sites (the inlet flange 34 and the exhaust manifold boss 35).
In the exhaust manifold 10, the facing ports such as the A type are less likely to be deformed (smaller) by which the cross section of the assembly portion 14 is crushed. Instead, as shown in FIGS. 6 and 7, the entire exhaust manifold 10 has an upstream end and a downstream end. A moment 42 is generated by the force 41 that is to be thermally expanded in the restraint between the ends 34 and 35, and the inside of the cross section of the assembly (the inside of the streamline R, that is, the curved axis R extending in the axial direction) is the longitudinal direction of the cylinder head. The deformation is mainly crushed in the direction P-P. That is, in the B type, force and deformation are generated in a direction orthogonal to the force and deformation in the case of the A type. Therefore, in the B type, the separation wall 33 parallel to the longitudinal direction of the cylinder head 1 should be a curved wall.

本発明の第3実施例の作用については、集合部断面をつぶす方向(Bタイプではシリンダヘッドの長手方向と平行な方向)に延びる分離壁33を曲面壁としたので、歪の集中が曲面壁33のほぼ全長にわたって分散され、亀裂発生が抑制される。
これに対して、実開平5−1819号公報のように分離壁32、33を両方とも曲面壁とすれば、集合部中央への歪の集中を曲面壁へ分散する機能はあるが、同時に断面剛性を低下させるため図7の変形を促進してしまう。このため、効果が相殺されてしまい、十分な亀裂発生防止効果が得られない。
本発明の第3実施例では、集合部断面をつぶす方向(P−P方向)と直角方向の分離壁32は平面壁としたので、曲面壁33によるポート断面剛性の低下は小とされ、図7の変形は促進されず、十分な亀裂発生防止効果がある。
With respect to the operation of the third embodiment of the present invention, since the separating wall 33 extending in the direction of crushing the cross section of the gathering portion (in the B type, the direction parallel to the longitudinal direction of the cylinder head) is a curved wall, It is dispersed over almost the entire length of 33, and crack generation is suppressed.
On the other hand, if both the separating walls 32 and 33 are curved walls as in Japanese Utility Model Laid-Open No. 5-1819, there is a function of dispersing the strain concentration at the center of the gathering portion into the curved walls, but at the same time, The deformation of FIG. 7 is promoted to reduce the rigidity. For this reason, the effect is offset and a sufficient crack prevention effect cannot be obtained.
In the third embodiment of the present invention, since the separation wall 32 perpendicular to the direction of crushing the gathering section (PP direction) is a flat wall, the decrease in port section rigidity due to the curved wall 33 is small. The deformation of 7 is not promoted, and there is a sufficient cracking prevention effect.

本発明の構造によれば、中間部材を設けたので、熱膨張差に起因するモーメントを中間部材に一部受けもたせることができ、それによってパイプ集合部下流側端面の溶接部にかかるモーメントが低減され、強度上の信頼性が向上される。   According to the structure of the present invention, since the intermediate member is provided, the intermediate member can partially receive the moment resulting from the difference in thermal expansion, thereby reducing the moment applied to the welded portion on the downstream end surface of the pipe assembly portion. And reliability in strength is improved.

本発明の第1実施例に係るエキゾーストマニホルド集合部構造の側面図である。1 is a side view of an exhaust manifold assembly structure according to a first embodiment of the present invention. 本発明の第2実施例に係るエキゾーストマニホルド集合部構造の(図9のA−A線に沿う)断面図である。It is sectional drawing (along the AA line of FIG. 9) of the exhaust manifold assembly part structure which concerns on 2nd Example of this invention. 本発明の第3実施例に係るエキゾーストマニホルド集合部構造の(図13のC−C線に沿う)断面図である。It is sectional drawing (along the CC line of FIG. 13) of the exhaust manifold assembly part structure which concerns on 3rd Example of this invention. Aタイプのエキゾーストマニホルドの力、モーメントのかかり方と変形を示す、エキゾーストマニホルドの側面図である。FIG. 6 is a side view of an exhaust manifold showing the force, moment application and deformation of an A type exhaust manifold. Aタイプのエキゾーストマニホルドの力のかかり方と変形を示す、エキゾーストマニホルドの平面図である。It is a top view of an exhaust manifold which shows how to apply force and deformation of an A type exhaust manifold. Bタイプのエキゾーストマニホルドの力、モーメントのかかり方と変形を示す、エキゾーストマニホルドの側面図である。FIG. 4 is a side view of an exhaust manifold showing the force, moment application, and deformation of a B type exhaust manifold. Bタイプのエキゾーストマニホルドの力のかかり方と変形を示す、エキゾーストマニホルドの平面図である。It is a top view of an exhaust manifold which shows how to apply force and deformation of a B type exhaust manifold. Aタイプのエキゾーストマニホルドの平面図である。It is a top view of an A type exhaust manifold. Aタイプのエキゾーストマニホルドの正面図である。It is a front view of an A type exhaust manifold. Aタイプのエキゾーストマニホルドの側面図である。It is a side view of an A type exhaust manifold. Aタイプのエキゾーストマニホルドのパイプ集合部の、図9のA−A線に沿う、断面図である。FIG. 10 is a cross-sectional view of the pipe assembly portion of the A type exhaust manifold taken along the line AA in FIG. 9. Bタイプのエキゾーストマニホルドの平面図である。It is a top view of a B type exhaust manifold. Bタイプのエキゾーストマニホルドの正面図である。It is a front view of a B type exhaust manifold. Bタイプのエキゾーストマニホルドの側面図である。It is a side view of a B type exhaust manifold. 図9で温度分布を示した図である。It is the figure which showed temperature distribution in FIG.

符号の説明Explanation of symbols

6、7、8、9 パイプ(ポート)
10 エキゾーストマニホルド
11 集合管
12 モーメント
14 パイプ集合部(ポート集合部)
27 中間部材
32、33 分離壁
6, 7, 8, 9 Pipe (port)
10 Exhaust manifold 11 Collecting pipe 12 Moment 14 Pipe assembly (port assembly)
27 Intermediate member 32, 33 Separation wall

Claims (1)

複数本のパイプのそれぞれの下流側部分を成形して集合させ溶接にて一体化してエキゾーストマニホルドを形成し、前記エキゾーストマニホルドのパイプ集合部を集合管の上流側端部に挿入し該集合管に相対的に固定したエキゾーストマニホルド集合部構造において、前記エキゾーストマニホルドのパイプ集合部の少なくとも下流側部分を円筒状の中間部材に挿入して該中間部材に溶接にて接合し、前記中間部材を前記集合管の上流側部分に挿入して、前記パイプ集合部の下流側端より上流側で、前記中間部材を前記集合管に溶接にて固定したことを特徴とするエキゾーストマニホルド集合部構造。   The downstream portions of each of the plurality of pipes are molded, assembled, and integrated by welding to form an exhaust manifold, and the pipe manifold portion of the exhaust manifold is inserted into the upstream end portion of the collecting pipe and inserted into the collecting pipe. In a relatively fixed exhaust manifold assembly structure, at least the downstream part of the pipe assembly portion of the exhaust manifold is inserted into a cylindrical intermediate member and joined to the intermediate member by welding, and the intermediate member is joined to the assembly. An exhaust manifold assembly structure, which is inserted into an upstream portion of a pipe, and the intermediate member is fixed to the collection pipe by welding upstream from the downstream end of the pipe assembly.
JP2004219666A 1995-04-03 2004-07-28 Exhaust manifold assembly structure Expired - Fee Related JP4069910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219666A JP4069910B2 (en) 1995-04-03 2004-07-28 Exhaust manifold assembly structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7745895 1995-04-03
JP2004219666A JP4069910B2 (en) 1995-04-03 2004-07-28 Exhaust manifold assembly structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002081316A Division JP3601520B2 (en) 1995-04-03 2002-03-22 Exhaust manifold assembly structure

Publications (2)

Publication Number Publication Date
JP2004301132A JP2004301132A (en) 2004-10-28
JP4069910B2 true JP4069910B2 (en) 2008-04-02

Family

ID=33421044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219666A Expired - Fee Related JP4069910B2 (en) 1995-04-03 2004-07-28 Exhaust manifold assembly structure

Country Status (1)

Country Link
JP (1) JP4069910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6828658B2 (en) * 2017-11-10 2021-02-10 トヨタ自動車株式会社 Exhaust manifold

Also Published As

Publication number Publication date
JP2004301132A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
EP1039107B1 (en) Structure of an exhaust manifold branch collecting portion
CA2328804C (en) Method of connecting two elongated portions of metallic plate, method of manufacturing exhaust pipe of two-passage construction, and exhaust pipe of two-passage construction
US6155046A (en) Heat-insulation type exhaust manifold
WO2012077711A1 (en) Sheet metal turbine housing
JPH09296724A (en) Converging pipe and manufacture thereof
US8656709B2 (en) Dual-layer to flange welded joint
US5787709A (en) Exhaust manifold
JP2010127096A (en) Exhaust manifold
US6837044B2 (en) Structure of an exhaust manifold branch collecting portion
JP4069910B2 (en) Exhaust manifold assembly structure
JP2010127097A (en) Exhaust manifold
JP3601520B2 (en) Exhaust manifold assembly structure
JP2001263054A (en) Exhaust pipe
JPH09280046A (en) Exhaust pipe structure for engine
US20100011755A1 (en) Collecting part structure of exhaust manifold
JP2553379Y2 (en) Exhaust manifold
JP7116140B2 (en) Exhaust pipe and exhaust pipe manufacturing method
JP4424017B2 (en) Exhaust manifold for internal combustion engines
JP3331885B2 (en) Exhaust pipe for internal combustion engine
JPS6313381Y2 (en)
JPH0960519A (en) Welded part structure exhaust pipe
JPH10238341A (en) Partition structure of exhaust pipe
JP2001020816A (en) Intake manifold
JP2525273Y2 (en) Connection structure between stamped muffler and exhaust pipe
JP3037328B1 (en) Exhaust pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees