JP4069399B2 - Method for producing sulfided alkenes - Google Patents

Method for producing sulfided alkenes Download PDF

Info

Publication number
JP4069399B2
JP4069399B2 JP4299899A JP4299899A JP4069399B2 JP 4069399 B2 JP4069399 B2 JP 4069399B2 JP 4299899 A JP4299899 A JP 4299899A JP 4299899 A JP4299899 A JP 4299899A JP 4069399 B2 JP4069399 B2 JP 4069399B2
Authority
JP
Japan
Prior art keywords
sulfur
alkene
alkenes
sulfide
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4299899A
Other languages
Japanese (ja)
Other versions
JP2000239250A (en
Inventor
稔章 丹下
孝一 伊藤
滋 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP4299899A priority Critical patent/JP4069399B2/en
Publication of JP2000239250A publication Critical patent/JP2000239250A/en
Application granted granted Critical
Publication of JP4069399B2 publication Critical patent/JP4069399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硫化アルケンの製造方法に関する。
【0002】
【従来の技術】
ジアルキルポリスルフィドに代表される硫化アルケンは、例えば金属同士の摩擦、磨耗減少及び焼き付きを防止する極圧添加剤として、切削油、塑性加工油、ギヤー油、摺動面油、グリース等に幅広く利用されている。
【0003】
従来、この硫化アルケンは、触媒を添加した常温のアルケン類に、フレーク状の固形硫黄を反応槽上部より投入し、次いで、反応槽内を120〜140℃程度に昇温後、硫化水素と反応させて製造している。
【0004】
硫黄は、引火点207℃、発火点246℃、爆発範囲は粉塵下限2%と粉塵爆発の可能性を有するため、固体として取り扱う場合には、窒素等の不活性ガスで置換し爆発範囲から外れた環境下となるような措置が必要となる。
【0005】
上記したような従来の製造方法では、大規模な生産を前提にした場合、反応系に硫黄投入する際に、折角窒素置換された反応系が、外気と接触し開放系となるが、その結果、固体の硫黄を投入する際に発生する粉塵により粉塵爆発を起こす危険性が高い。
【0006】
また従来のフレーク状の固体硫黄は、比重が2.0前後、かつ10〜12ミリメートル程度の大きさであり質量が0.6〜0.9g/個と大きいため、反応系にて沈降しやすく、攪拌しても分散浮上しないため攪拌翼への負担が大きい。さらに突起部を有する。
【0007】
したがって、大規模生産設備の場合、この様な固体硫黄は、反応系を均一に攪拌する攪拌翼により破砕されて、それを支持する攪拌軸の軸受け部の隙間に入り易く、その結果、軸受けが磨耗し、攪拌軸の横揺れが経時的に大きくなり、運転不良を引き起こしやすい。
【0008】
更に、固体硫黄はアルケン類中では攪拌しているのにも係わらず液中へ分散することはない。反応時には硫黄が液状の状態で硫化水素と反応するが、溶解途中で凝集し分散性を更に悪化させ攪拌機への負担を増大させている。
【0009】
【発明が解決しようとする課題】
本発明の目的は、分散性の向上による攪拌機等設備の負担軽減、外気遮断による作業時の安全性の確保による作業の合理化を提供することにある。
【0010】
【課題を解決するための手段】
本発明者らは、上記実状に鑑みて鋭意検討したところ、硫化アルケン製造時の原料である硫黄の形態を、従来の固形から液体へと替えて反応を行うことにより、本発明を完成するに至った。
【0011】
即ち本発明は、次の発明を提供する。
1.アルケン類と溶融硫黄とを混合後、硫化水素と反応させる硫化アルケンの製造方法。
【0012】
2.反応槽内で密閉加熱したアルケンに、溶融硫黄を圧入滴下し硫黄を固化させることなく液状のまま硫化水素と反応させる上記1記載の製造方法。
【0013】
3.使用する硫黄の温度を、125〜155℃とする上記1記載の製造方法。
【0014】
4.使用するアルケン類の温度を、120〜140℃とする上記1記載の製造方法。
【0015】
【発明の実施形態】
本発明では、アルケン類と溶融硫黄と硫化水素とを反応させることにより、硫化アルケンを製造する。本発明では、この硫黄を溶融状態にてアルケン類のガスと混合することを特徴とする。
【0016】
ここで硫黄は、消防法危険物第二類に属する、常温で可燃性の固体であり、融点120℃、沸点445℃である。本発明において、この硫黄は、温度120〜155℃で溶融された状態で用いられる。前記温度範囲おける粘度は約10cpと安定している。比重は、溶融時1.79〜1.80である。
【0017】
本発明に於いて使用するアルケン類としては、公知慣用のものがいずれも使用できるが、例えば炭素数6〜18のアルケン類が挙げられる。硫化ジイソブチレンの様な極圧添加剤のための硫化アルケンの製造に当たっては、ジイソブチレンが好適に使用できる。このジイソブチレンの粘度は、常温において、約1cpである。
【0018】
本発明においては、通常、まず液状を呈しているアルケン類と、液状を呈している溶融硫黄とが混合される。この混合に当たっては、例えば、密閉可能な反応槽内の空気を不活性ガスにて置換し、そこにアルケン類を充填してから、そこに溶融硫黄を注入すれば良い。
【0019】
アルケン類が常温気体の場合には、反応槽を加圧して液状としてから溶融硫黄と混合するのが好ましい。
【0020】
アルケン類が常温液状であり常圧の沸点以上で反応させる場合には、反応槽内を加熱加圧して、沸点を高める事により、それを液状とすることが出来る。また溶融硫黄は、液状アルケン類が充填された反応槽に、反応に必要な全量を一度に加えるよりは、滴下することが好ましい。
【0021】
硫黄は、溶融状態で粘度が上記した通りほぼ一定であり比重の変動もごく僅かなのでポンプへの負荷も少なく安定した仕込みが可能となる。
【0022】
本発明に於いては、例えば、硫黄の融点以上に加熱し加圧密閉高温下の液状となったアルケン類に液状硫黄を加圧滴下するので、硫黄はアルケン類中で固化することなく液体状態のまま存在することができる。
【0023】
アルケン類と溶融硫黄との混合時の温度は、用いるそれらの組み合わせにより異なるが、硫化ジイソブチレンを製造する場合は、125〜155℃の液状の溶融硫黄を120〜140℃のアルケン類中に滴下することが好ましい。
【0024】
本発明において、アルケン類と硫黄との化学量割合は、特に制限されるものではないが、通常、アルケン類1モル当たり、硫黄0.5〜3モルである。
【0025】
これらアルケン類のガスと硫黄とは、硫黄が溶融状態にある温度を保ちながら、均一に両者が接触するまで攪拌されるが、この攪拌混合に要する時間は、通常0.5〜25時間である。
【0026】
次いで、アルケン類のガスと溶融硫黄との均一混合系に、硫化水素が加えられ、反応させられる。硫化水素は、常温気体であるが、加圧して液化されたものが一般的に用いられる。液化された硫化水素は、例えば液化状態のまま均一混合系へ加えてその系内温度で本来のガス状(気体)として反応に関与させる方法もあるが、予め気化させてから前記均一混合系へ加えることにより、反応に関与させるのが好ましい。
【0027】
硫化水素の使用化学量は、最終的に得る硫化アルケンに含ませる硫黄含有率にに応じて調整され、その使用量は特に制限されないが、通常、アルケン類1モル当たり、硫化水素0.5〜2モルである。硫化水素は、反応に必要な全量を、アルケン類のガスと溶融硫黄との均一混合系に一度に加えることも出来るが、反応槽の急激な圧力上昇や副反応等を防止するために、反応に必要な全量を分割して加える様にするのが好ましい。
【0028】
この反応においては、必要に応じて触媒を用いることが出来る。触媒としては、例えば、アルキルアミン、アリールアミン、ポリアミン等が挙げられる。触媒の使用量は、仕込み原料合計100重量部に対して通常0.05〜0.5重量部である。
【0029】
ここでの反応時間は、特に制限されるものではないが、通常25〜35時間である。反応の終点は、例えば、反応系からのサンプリング操作による原料のイソブチレンの消失や、硫化水素分圧が一定となり変化しなくなることで確認することが出来る。
【0030】
こうして反応が終了された後は、反応槽が加圧されている場合には常圧に戻し、反応槽温度を取り出し可能な温度、例えば常温〜40℃となる様に冷却される。この後、硫化アルケンを含む粗生成物は、必要に応じて、不活性ガスでバブリングさせたり、濾過等を行うことにより、未反応原料等を除去して取り出される。
【0031】
こうして得られた硫化アルケン粗生成物は、そのまま各種用途において使用に供することが出来るが、さらに吸着剤等により精製して脱色してから用いることも出来る。
【0032】
本発明で得られた硫化アルケンは、極圧添加剤として好適に用いることができる。硫化アルケンは、公知慣用の油脂を必須成分として、必要に応じて水や界面活性剤(乳化剤)、アミン類等と混合することにより、機械加工液組成物とし、金属同士の摩擦磨耗低減や焼き付け防止に優れた作用を発現させることができる。
【0033】
機械加工液組成物を調製するに当たっては、さらに腐食防止剤、防カビ剤、殺菌剤、酸化防止剤、消泡剤、金属粒子沈殿剤等を適宜適量添加することが出来る。
【0034】
【実施例】
以下、本発明の実施例を説明する。
【0035】
実施例1
攪拌翼(羽根)式攪拌機付きの容量2L(リットル)の硝子製オートクレーブの空気を窒素ガスにて置換した後、その中に、ジイソブチレン450g及びアミン類(触媒)0.4gを仕込み密閉し、120℃まで加熱すると内部圧力(ゲージ圧)が1.0kg/cm2 まで上昇した。次に、それとは別に、溶融硫黄220.2gを140℃に保温した滴下ポット内に仕込み、窒素で1.5kg/cmまで加圧した。
【0036】
オートクレーブの攪拌翼を作動させながら、その中に、滴下ポットから溶融硫黄の滴下を25g/分の速度で行ったところ、前記した全量滴下する間中、溶融硫黄が固化することなくジイソブチレン中で攪拌分散されていることが確認された。また、この状態では従来の固形硫黄仕込みに見られる攪拌軸の振動は見られずスムーズな攪拌状態を維持していた。
【0037】
次いで、硫化水素をこのオートクレーブ中に6g/分の速度で12.5時間導入し、温度120℃で反応させた。反応終点を確認の上、オートクレーブ温度を下げ、かつ常圧に戻し、未反応原料を蒸留し回収した。得られた反応液分析の結果、従来と同等の品質を有する硫化ジイソブチレンであることが確認された。
【0038】
実施例2
窒素パージした容量12m3 の反応槽にジイソブチレン5400kg及びアミン類(触媒)21kgを仕込み、窒素雰囲気中120℃まで密閉加熱したところ、内部圧力(ゲージ圧)が2.9kg/cm2 まで上昇した。反応槽の攪拌機を作動させ毎分100回転で攪拌しながら、液状硫黄2605kg(温度135℃)をポンプを使用して4.5kg/cm2 で加圧滴下したところ80分を要した(以下の比較例1の従来の固形硫黄仕込み法に比べ、70分の時間短縮であった。)。この際、従来の固形硫黄仕込みでの頻発する攪拌軸の振動は見られず、攪拌の回転数を低下させることなく、硫化水素と反応させることが出来た。ここでの硫化水素としては、硫化水素の全量880kgを、5.2kg/cm2 を保ちながら注入したところ注入に20時間を要した。反応時間は、20.5時間であり、従来法の26.8時間に比べ、6.3時間の時間短縮を実現した。製品分析の結果、従来製品と同等の品質を有することが確認された。
【0039】
比較例1(従来法)
容量12m3 の反応槽にジイソブチレン5400kgを仕込み、槽内部を窒素雰囲気とし、攪拌翼を毎分100回転で攪拌しながら、粉塵爆発に注意しながらフレーク状の固形硫黄2605kgとアミン類(触媒)21kgを反応槽マンホールより投入した。硫黄の仕込みに要した時間は150分であった。マンホールを閉め120℃まで密閉加熱したところ、途中110℃付近で攪拌翼の軸の振動が見られ危険だったので、回転数を毎分50回転に低下させた。反応槽が120℃に至るまでに、3時間を要した。以降回転数を毎分50回転とする以外は実施例2と同様に硫化水素と反応させた。反応時間は、26.8時間であった。
【0040】
尚、攪拌翼の回転数を毎分100回転のまま比較例1を実施すれば、同一反応槽を用いて多数ロット生産後における攪拌翼の振動は、ロットを経る毎に大きくなることは明らかであり、そのままの使用は危険であるし、危険防止には、攪拌翼軸とそれの軸受けの交換というメンテナンス頻度を高めることが必要となることが明らかである。
【0041】
しかも、溶融硫黄を用いることにより、単に固体硫黄を溶融状態とするに必要な時間を遥かに越える以上の予想外の反応時間の短縮を図ることが出来、従来と同量の硫化アルケンをより短時間に製造することが出来ることが明らかである。
【0042】
【発明の効果】
本発明では、アルケン類と溶融硫黄とを混合後、硫化水素と反応させて硫化アルケンを製造するので、従来の様な粉塵爆発や攪拌翼の異常振動による危険性を避けられるうえ、しかも同一量なら硫化アルケンをより短時間で得ることが出来るという格別顕著な効果を奏する。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an alkene sulfide.
[0002]
[Prior art]
Alkene sulfides typified by dialkyl polysulfides are widely used in cutting oils, plastic working oils, gear oils, sliding surface oils, greases, etc. as extreme pressure additives to prevent metal friction, wear reduction and seizure, for example. ing.
[0003]
Conventionally, this alkene sulfide is charged with flaky solid sulfur from the upper part of the reaction tank to the room temperature alkene to which a catalyst is added, and then the reaction tank is heated to about 120 to 140 ° C. and then reacted with hydrogen sulfide. It is manufactured.
[0004]
Sulfur has a flash point of 207 ° C, an ignition point of 246 ° C, and the explosion range is 2% of the lower limit of dust. There is a possibility of dust explosion, so when handling as solid, replace with inert gas such as nitrogen and get out of the explosion range. Measures are required to create a suitable environment.
[0005]
In the conventional manufacturing method as described above, when large-scale production is assumed, when the sulfur is charged into the reaction system, the reaction system in which the nitrogen substitution is performed comes into contact with the outside air and becomes an open system. There is a high risk of dust explosion due to dust generated when solid sulfur is introduced.
[0006]
Further, the conventional flake-shaped solid sulfur has a specific gravity of around 2.0, a size of about 10 to 12 millimeters, and a mass as large as 0.6 to 0.9 g / piece, so that it easily settles in the reaction system. Even if agitation is performed, the load on the agitation blade is large because the particles do not float and float. Furthermore, it has a protrusion.
[0007]
Therefore, in the case of a large-scale production facility, such solid sulfur is easily crushed by a stirring blade that uniformly stirs the reaction system, and easily enters a gap in the bearing portion of the stirring shaft that supports the reaction system. Wear and rolling of the stirring shaft increases over time, which tends to cause poor operation.
[0008]
In addition, solid sulfur is not dispersed in the liquid in spite of stirring in the alkenes. During the reaction, sulfur reacts with hydrogen sulfide in a liquid state, but aggregates in the middle of dissolution to further deteriorate dispersibility and increase the burden on the stirrer.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a rationalization of work by reducing burden on facilities such as a stirrer by improving dispersibility and ensuring safety during work by blocking outside air.
[0010]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied in view of the above circumstances, and have completed the present invention by reacting the form of sulfur, which is a raw material at the time of production of sulfurized alkene, from conventional solid to liquid. It came.
[0011]
That is, the present invention provides the following inventions.
1. A method for producing an alkene sulfide in which an alkene and molten sulfur are mixed and then reacted with hydrogen sulfide.
[0012]
2. 2. The production method according to 1 above, wherein molten sulfur is injected and dropped into an alkene heated in a reaction vessel and reacted with hydrogen sulfide in a liquid state without solidifying the sulfur.
[0013]
3. 2. The production method according to 1 above, wherein the temperature of sulfur used is 125 to 155 ° C.
[0014]
4). 2. The production method according to 1 above, wherein the temperature of the alkene used is 120 to 140 ° C.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, alkene sulfide is produced by reacting alkenes, molten sulfur and hydrogen sulfide. In the present invention, this sulfur is mixed with an alkene gas in a molten state.
[0016]
Here, sulfur is a flammable solid at room temperature belonging to the second class of dangerous materials of the Fire Service Act, and has a melting point of 120 ° C. and a boiling point of 445 ° C. In this invention, this sulfur is used in the state fuse | melted at the temperature of 120-155 degreeC. The viscosity in the temperature range is stable at about 10 cp. The specific gravity is 1.79 to 1.80 when melted.
[0017]
As the alkenes used in the present invention, any known and commonly used alkenes can be used, and examples thereof include alkenes having 6 to 18 carbon atoms. Diisobutylene can be preferably used in the production of an alkene sulfide for an extreme pressure additive such as diisobutylene sulfide. The viscosity of this diisobutylene is about 1 cp at room temperature.
[0018]
In the present invention, usually, the alkene presenting a liquid state is first mixed with the molten sulfur presenting a liquid state. For this mixing, for example, the air in the sealable reaction tank is replaced with an inert gas, and the alkene is filled therewith, and then molten sulfur is injected therein.
[0019]
When the alkenes are normal temperature gases, it is preferable to pressurize the reaction tank to make it liquid and then mix it with molten sulfur.
[0020]
When the alkenes are liquid at room temperature and are reacted at a boiling point higher than the normal pressure, the reaction tank can be heated and pressurized to increase the boiling point, thereby making it liquid. The molten sulfur is preferably added dropwise to the reaction vessel filled with the liquid alkene, rather than adding the entire amount necessary for the reaction at once.
[0021]
Sulfur has a substantially constant viscosity in the molten state as described above, and the variation in specific gravity is negligible, so that the load on the pump is small and stable charging is possible.
[0022]
In the present invention, for example, since liquid sulfur is pressure-dropped to alkenes heated to a melting point of sulfur or higher and liquefied under high pressure and pressure, the sulfur is in a liquid state without solidifying in the alkenes. Can exist as is.
[0023]
Although the temperature at the time of mixing alkene and molten sulfur changes with those combinations to be used, when manufacturing diisobutylene sulfide, 125-155 degreeC liquid molten sulfur is dripped in 120-140 degreeC alkene. It is preferable to do.
[0024]
In the present invention, the stoichiometric ratio of alkenes and sulfur is not particularly limited, but is usually 0.5 to 3 moles of sulfur per mole of alkenes.
[0025]
The gas and sulfur of these alkenes are stirred until they are uniformly in contact with each other while maintaining the temperature at which the sulfur is in a molten state. The time required for this stirring and mixing is usually 0.5 to 25 hours. .
[0026]
Next, hydrogen sulfide is added to the homogeneous mixed system of the alkene gas and the molten sulfur and allowed to react. Although hydrogen sulfide is a normal temperature gas, what was liquefied by pressurization is generally used. The liquefied hydrogen sulfide can be added to the homogeneous mixing system in the liquefied state and allowed to participate in the reaction as the original gaseous state (gas) at the temperature in the system, for example. By adding, it is preferable to participate in the reaction.
[0027]
The use chemical amount of hydrogen sulfide is adjusted according to the sulfur content contained in the finally obtained alkene sulfide, and the amount used is not particularly limited, but usually 0.5 to 0.5 hydrogen sulfide per mole of alkenes. 2 moles. Hydrogen sulfide can be added to the homogeneous mixture of alkene gas and molten sulfur all at once, but in order to prevent a sudden increase in pressure in the reaction tank, side reactions, etc. It is preferable to divide and add all the necessary amount.
[0028]
In this reaction, a catalyst can be used as necessary. Examples of the catalyst include alkylamines, arylamines, polyamines and the like. The usage-amount of a catalyst is 0.05-0.5 weight part normally with respect to 100 weight part of charge raw materials total.
[0029]
The reaction time here is not particularly limited, but is usually 25 to 35 hours. The end point of the reaction can be confirmed, for example, by disappearance of isobutylene as a raw material by sampling operation from the reaction system or by the fact that the hydrogen sulfide partial pressure becomes constant and does not change.
[0030]
After the reaction is completed in this manner, when the reaction vessel is pressurized, the reaction vessel is returned to normal pressure and cooled to a temperature at which the reaction vessel temperature can be taken out, for example, from room temperature to 40 ° C. Thereafter, the crude product containing the alkene sulfide is taken out by removing unreacted raw materials and the like by bubbling with an inert gas or filtering, if necessary.
[0031]
The crude alkene sulfide product thus obtained can be used in various applications as it is, but it can also be used after purification with an adsorbent or the like and decolorization.
[0032]
The sulfurized alkene obtained in the present invention can be suitably used as an extreme pressure additive. Alkylene sulfide is a machining fluid composition by mixing known fats and oils as essential components with water, surfactants (emulsifiers), amines, etc. as necessary, reducing friction wear between metals and baking. An effect excellent in prevention can be expressed.
[0033]
In preparing the machining fluid composition, an appropriate amount of a corrosion inhibitor, an antifungal agent, a bactericide, an antioxidant, an antifoaming agent, a metal particle precipitant, and the like can be added as appropriate.
[0034]
【Example】
Examples of the present invention will be described below.
[0035]
Example 1
After replacing the air of a 2 L (liter) glass autoclave equipped with a stirring blade (blade) type stirrer with nitrogen gas, 450 g of diisobutylene and 0.4 g of amines (catalyst) were charged and sealed therein. When heated to 120 ° C., the internal pressure (gauge pressure) increased to 1.0 kg / cm 2. Next, separately, 220.2 g of molten sulfur was charged into a dropping pot kept at 140 ° C. and pressurized to 1.5 kg / cm 2 with nitrogen.
[0036]
While operating the stirring blade of the autoclave, the molten sulfur was dropped from the dropping pot at a rate of 25 g / min. During the dropping of the entire amount, the molten sulfur was not solidified in the diisobutylene. It was confirmed that they were dispersed with stirring. Further, in this state, the vibration of the stirring shaft seen in the conventional solid sulfur charging was not observed, and the smooth stirring state was maintained.
[0037]
Next, hydrogen sulfide was introduced into the autoclave at a rate of 6 g / min for 12.5 hours and reacted at a temperature of 120 ° C. After confirming the end point of the reaction, the autoclave temperature was lowered and returned to normal pressure, and the unreacted raw material was distilled and recovered. As a result of the obtained reaction solution analysis, it was confirmed that it was a diisobutylene sulfide having the same quality as the conventional one.
[0038]
Example 2
When a nitrogen purged reactor of 12 m 3 was charged with 5400 kg of diisobutylene and 21 kg of amine (catalyst) and heated to 120 ° C. in a nitrogen atmosphere, the internal pressure (gauge pressure) rose to 2.9 kg / cm 2. While stirring the reactor in the reaction vessel at 100 revolutions per minute, 2605 kg of liquid sulfur (temperature 135 ° C.) was added dropwise at 4.5 kg / cm 2 using a pump, and 80 minutes were required (the following comparison) Compared to the conventional solid sulfur charging method of Example 1, the time was shortened by 70 minutes.) At this time, the vibration of the stirring shaft which frequently occurs in the conventional solid sulfur charging was not observed, and it was possible to react with hydrogen sulfide without reducing the rotational speed of stirring. As hydrogen sulfide here, a total amount of 880 kg of hydrogen sulfide was injected while maintaining 5.2 kg / cm @ 2, and it took 20 hours for the injection. The reaction time was 20.5 hours, and a time reduction of 6.3 hours was realized compared with 26.8 hours of the conventional method. As a result of product analysis, it was confirmed that the product had the same quality as the conventional product.
[0039]
Comparative Example 1 (conventional method)
Charge 5400 kg of diisobutylene into a 12 m 3 reaction tank, make the inside of the tank a nitrogen atmosphere, stir the stirring blade at 100 revolutions per minute, and pay attention to dust explosion 2605 kg of flaky solid sulfur and 21 kg of amines (catalyst) Was charged from the reaction vessel manhole. The time required for the charging of sulfur was 150 minutes. When the manhole was closed and hermetically heated to 120 ° C., it was dangerous because the vibration of the shaft of the stirring blade was observed near 110 ° C., so the rotation speed was reduced to 50 rpm. It took 3 hours for the reactor to reach 120 ° C. Thereafter, it was reacted with hydrogen sulfide in the same manner as in Example 2 except that the number of revolutions was 50 revolutions per minute. The reaction time was 26.8 hours.
[0040]
In addition, if Comparative Example 1 is carried out with the rotation speed of the stirring blade being 100 rotations per minute, it is clear that the vibration of the stirring blade after production of a large number of lots using the same reaction tank increases with each lot. It is clear that use as it is is dangerous, and to prevent danger, it is necessary to increase the maintenance frequency of exchanging the stirring blade shaft and its bearing.
[0041]
In addition, by using molten sulfur, it is possible to shorten the unexpected reaction time that far exceeds the time required to make solid sulfur into a molten state, and to shorten the same amount of alkene sulfide as before. It is clear that it can be manufactured in time.
[0042]
【The invention's effect】
In the present invention, alkenes and molten sulfur are mixed and then reacted with hydrogen sulfide to produce sulfide alkene. Therefore, it is possible to avoid the danger of dust explosion and abnormal vibration of the stirring blade as in the conventional case, and the same amount. If this is the case, the alkene sulfide can be obtained in a shorter time.

Claims (4)

120〜140℃に加熱した炭素数6〜18のアルケン類と125〜155℃に加熱し、且つ、比重を溶融時1.79〜1.80に保った溶融硫黄とを混合後、硫化水素と反応させる硫化アルケンの製造方法。After mixing the alkene having 6 to 18 carbon atoms heated to 120 to 140 ° C. and the molten sulfur heated to 125 to 155 ° C. and maintaining the specific gravity at 1.79 to 1.80 upon melting , hydrogen sulfide and A method for producing an alkene sulfide to be reacted. 反応槽内で密閉加熱したアルケンに、液状の溶融硫黄を圧入滴下し硫黄を固化させることなく液状のまま硫化水素と反応させる請求項1の製造方法。  2. The method according to claim 1, wherein liquid molten sulfur is injected and dropped into an alkene heated and sealed in a reaction vessel to react with hydrogen sulfide in a liquid state without solidifying the sulfur. 使用する硫黄の温度を、125〜155℃とする請求項1の製造方法。  The manufacturing method of Claim 1 which makes the temperature of the sulfur to be used 125-155 degreeC. 使用するアルケン類の温度を、120〜140℃程度とする請求項1の製造方法。  The production method according to claim 1, wherein the temperature of the alkene used is about 120 to 140 ° C.
JP4299899A 1999-02-22 1999-02-22 Method for producing sulfided alkenes Expired - Lifetime JP4069399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4299899A JP4069399B2 (en) 1999-02-22 1999-02-22 Method for producing sulfided alkenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4299899A JP4069399B2 (en) 1999-02-22 1999-02-22 Method for producing sulfided alkenes

Publications (2)

Publication Number Publication Date
JP2000239250A JP2000239250A (en) 2000-09-05
JP4069399B2 true JP4069399B2 (en) 2008-04-02

Family

ID=12651697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4299899A Expired - Lifetime JP4069399B2 (en) 1999-02-22 1999-02-22 Method for producing sulfided alkenes

Country Status (1)

Country Link
JP (1) JP4069399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995722A (en) * 2017-04-04 2017-08-01 林群祥 Catalysis pressurization Light chlorimation agitates method to produce Modified Chlorinated Paraffin method
CN107099330A (en) * 2017-04-04 2017-08-29 林群祥 Catalytic light chlorination agitates the hot method production method of Modified Chlorinated Paraffin 70 of air cooling

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580299B2 (en) * 2005-07-25 2010-11-10 ニッポメックス株式会社 Mixer for liquid mixture
JP5060036B2 (en) * 2005-09-29 2012-10-31 Hoya株式会社 Method for producing polythiol oligomer
EP2554535B1 (en) * 2011-08-03 2019-01-16 Cognis IP Management GmbH Method for manufacturing (meth)acrylic acid esters from polyols
EP3034492B1 (en) 2013-09-24 2020-11-25 DIC Corporation Method for producing dialkyl polysulfide, dialkyl polysulfide, extreme-pressure additive and lubricating fluid composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106995722A (en) * 2017-04-04 2017-08-01 林群祥 Catalysis pressurization Light chlorimation agitates method to produce Modified Chlorinated Paraffin method
CN107099330A (en) * 2017-04-04 2017-08-29 林群祥 Catalytic light chlorination agitates the hot method production method of Modified Chlorinated Paraffin 70 of air cooling

Also Published As

Publication number Publication date
JP2000239250A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US5976403A (en) Organoalkali compounds and their preparation
US11018334B2 (en) Stabilized lithium metal impressions coated with alloy-forming elements and method for production thereof
JP2699026B2 (en) Alkali metal dispersion
JP4069399B2 (en) Method for producing sulfided alkenes
CN101945934B (en) Method for reducing hydrogen sulfide evolution from asphalt
US10910669B2 (en) Alkali metal halide production method, and sulfide solid electrolyte production method
US20160243622A1 (en) Methods for producing metal powders
EP1029095A1 (en) Molten aluminum treatment
PL129870B1 (en) Organo-magnesium composition and method of making the same
JP7072153B2 (en) Method for producing 1,1,2-trifluoroethylene, hexafluoro-1,3-butadiene or 1,2-dichlorohexafluorocyclobutane
JP3852650B2 (en) Method for producing sulfurized fats and oils
JPS622584B2 (en)
US3155736A (en) Method of making organolithium compounds
EP1302441B1 (en) An improved method for making lithium borohydride
CN117447317B (en) Preparation method of red aluminum
CN111171893A (en) Preparation method of polyurea lubricating grease
US6305622B1 (en) Process for producing trihydrocarbyl aluminums
WO1997006910A1 (en) Alkali metal dispersions
US2969382A (en) Process for the manufacture of cyclopentadienyl group iii-a metal compounds
CN100584847C (en) Method for preparation methyl lithium
US3366453A (en) Production of hydrides of alkaline earth metals and lithium
JP4309478B6 (en) Method for producing trihydrocarbyl aluminum
JP2001253866A (en) Method for producing polysulfide
NO811842L (en) DISSOLUTION OF ALKYL SODIUM COMPOUNDS AND PROCEDURES FOR PRODUCING THEREOF
US6294705B1 (en) Method for producing alkali metal alcoholates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040412

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term