JP4069248B2 - Catalyst composition for electroless plating - Google Patents

Catalyst composition for electroless plating Download PDF

Info

Publication number
JP4069248B2
JP4069248B2 JP2002356773A JP2002356773A JP4069248B2 JP 4069248 B2 JP4069248 B2 JP 4069248B2 JP 2002356773 A JP2002356773 A JP 2002356773A JP 2002356773 A JP2002356773 A JP 2002356773A JP 4069248 B2 JP4069248 B2 JP 4069248B2
Authority
JP
Japan
Prior art keywords
solution
compound
silver
catalyst composition
electroless plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002356773A
Other languages
Japanese (ja)
Other versions
JP2004190066A (en
Inventor
裕 藤原
順一 片山
晃治 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuno Chemical Industries Co Ltd
Original Assignee
Okuno Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuno Chemical Industries Co Ltd filed Critical Okuno Chemical Industries Co Ltd
Priority to JP2002356773A priority Critical patent/JP4069248B2/en
Publication of JP2004190066A publication Critical patent/JP2004190066A/en
Application granted granted Critical
Publication of JP4069248B2 publication Critical patent/JP4069248B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、無電解めっき用触媒組成物、該触媒組成物の製造方法及び無電解めっき方法に関する。
【0002】
【従来の技術】
プラスチック、セラミックス、ガラスなどの非導電性物質に対して無電解めっきを行う場合には、通常、めっき反応を開始させるために触媒物質を被めっき物に付与する必要がある。
【0003】
現在、無電解めっき用触媒金属としてはパラジウムが広く用いられており、触媒付与方法としては、被めっき物をセンシタイザー溶液(塩化スズ(II)の塩酸溶液)に浸漬した後、アクチベーター溶液(塩化パラジウムの塩酸溶液)に浸漬する方法(センシタイザー−アクチベーター法)、スズ−パラジウム混合コロイド溶液に浸漬して触媒を付与した後、硫酸などの酸性溶液からなるアクセレーター溶液に浸漬して、過剰のスズイオンを溶解させて触媒活性を向上させる方法(キャタリスト-アクセレーター法)等が主として実施されている。
【0004】
しかしながら、これらの方法では、触媒金属として高価な貴金属であるパラジウムを使用しており、無電解めっき処理工程において触媒化処理工程費用の占める割合が非常に大きいものとなっている。
【0005】
このため、パラジウム以外の金属を触媒として使用する方法について古くから種々の検討がなされている。
【0006】
例えば、特許文献1には、銀塩を触媒として用いる方法が記載されている。この方法は、銀塩と界面活性剤を含有する水溶液に、銀塩に対して2〜4倍モルの還元剤を添加して銀ヒドロゾルを形成し、これを被めっき物と接触させて、銀コロイドを付与して、無電解めっきを行う方法である。しかしながら、この方法では、多量の還元剤が必要であり、生産コストが高く、しかも形成される銀ヒドロゾルの安定性が低く、凝集沈殿が発生しやすいという欠点がある。
【0007】
また、特許文献2には、銀塩0.01〜100mmol/l、陰イオン界面活性剤0.01〜0.5wt%、及び銀塩に対して0.1〜0.8倍モルの還元剤を含む無電解めっき用触媒液が記載されており、この触媒液は、銀塩に対して0.01〜0.8倍モルの還元剤を含むことにより、安定性が良好であるとされている。
【0008】
しかしながら、上記した特許文献1及び2に記載された触媒液では、触媒成分である銀コロイドの吸着性が低く、ABS樹脂、エポキシ樹脂、ガラス、セラミックスなどの被めっき物に触媒成分を均一に吸着させることが困難である。このため、触媒付与後の水洗工程や無電解めっき中に、被めっき物から触媒物質が脱落しやすく、めっき析出が不均一になることや、めっき液を汚染することによりめっき浴の分解を促進する等の問題点がある。
【0009】
【特許文献1】
特開平1−68478号公報
【0010】
【特許文献2】
特開平10−30188号公報
【0011】
【発明が解決しようとする課題】
本発明は上記した如き従来技術に鑑みてなされたものであり、その主な目的は、パラジウムを含有しない安価な無電解めっき用触媒組成物であって、安定性が良好で優れた触媒活性を有する新規な触媒液を提供することである。
【0012】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、銀よりも酸化還元電位が卑であって、且つ複数の原子価をとることができ、低原子価の状態にある金属成分を含む化合物と、特定の錯化剤を含む弱酸性〜中性付近の溶液中に、1価の銀化合物を添加することにより、銀化合物が還元されて銀コロイド溶液が形成されることを見出した。そして、この銀コロイドは弱酸性〜中性付近の溶液中では安定であり、しかも、被めっき物に対する吸着性が良好であることから、各種の被めっき物に対して優れた触媒活性を付与できることを見出し、ここに本発明を完成するに至った。
【0013】
即ち、本発明は、下記の無電解めっき用触媒組成物、該触媒組成物の製造方法及び無電解めっき方法を提供するものである。
1. 下記(i)〜(iii)の成分を水に溶解したpH2〜9の溶液からなる無電解めっき用触媒組成物:
(i)1価の銀化合物を0.001〜0.1モル/l、
(ii)銀より卑な酸化還元電位を有し、且つ複数の原子価をとることができ、低原子価の状態にある金属成分を含む化合物を0.01〜3モル/lであって、銀金属量の10〜30倍モル、並びに
(iii)脂肪族モノカルボン酸、脂肪族ジカルボン酸及びこれらの塩からなる群から選ばれた少なくとも一種の化合物を、上記( ii )項の化合物に含まれる金属成分の1〜10倍モル。
.(ii)項に記載された化合物が、2価のスズを含む化合物、2価の鉄を含む化合物、2価のコバルトを含む化合物、3価のセリウムを含む化合物及び3価のチタンを含む化合物からなる群から選ばれた少なくとも一種の化合物である上記項1に記載の無電解めっき用触媒組成物。
. 上記項1又は2に記載された無電解めっき用触媒組成物の製造方法であって、(ii)項に記載された化合物及び(iii)項に記載された化合物を含むpH2〜9の溶液中に、撹拌下に、1価の銀化合物を添加することを特徴とする触媒組成物の製造方法。
. 上記項1に記載された(i)〜(iii)の成分を水に溶解したpH2〜9の溶液を得た後、透析法によって(ii)項に記載された化合物に基づく金属イオン量を減少させることを特徴とする触媒組成物の製造方法。
. 上記項の方法によって得られた触媒組成物であって、(ii)項に記載された化合物の量が、銀金属量の25倍モル以下である触媒組成物。
. 上記項1、2及び5のいずれかに記載の触媒組成物に浸漬した後、無電解めっき液に浸漬することを特徴とする無電解めっき方法。
【0014】
【発明の実施の形態】
本発明の無電解めっき用触媒組成物は、下記(i)〜(iii)の成分を水に溶解してなるpH2〜9の溶液である:
(i)1価の銀化合物、
(ii)銀より卑な酸化還元電位を有し、且つ複数の原子価を取ることができ、低原子価の状態にある金属成分を含む化合物(以下、「還元剤」という場合がある)、並びに
(iii)脂肪族モノカルボン酸、脂肪族ジカルボン酸、オキシカルボン酸、縮合リン酸、アミノカルボン酸及びこれらの塩からなる群から選ばれた少なくとも一種の化合物(以下、「錯化剤」という場合がある)。
【0015】
上記した溶液では、錯化剤を配合することによって、pH2〜9という弱酸性〜中性付近の溶液中で還元剤を安定に存在させることができる。そして、該還元剤の存在によって、1価の銀化合物が還元されて銀コロイドが形成され、形成された銀コロイドは、弱酸性〜中性付近の溶液中では安定に存在するために、安定性に優れたコロイド溶液となる。また、形成される銀コロイドは、被めっき物に対する吸着性が良好であり、各種の被めっき物に対して優れた触媒活性を付与できる。
【0016】
本発明の触媒組成物で用いる1価の銀化合物としては、特に限定はなく、1価の銀を含む水溶性の銀化合物であればよい。この様な銀化合物としては、例えば、硝酸銀、シアン酸銀、過塩素酸銀、亜硫酸銀などの無機銀塩;酢酸銀、クエン酸銀、酒石酸銀、サリチル酸銀などの有機銀塩などを挙げることができる。
【0017】
銀化合物の濃度は、0.001〜0.1モル/l程度であることが好ましく、0.01〜0.05モル/l程度であることがより好ましい。銀化合物の濃度が低すぎると、触媒組成物中の銀コロイド粒子の濃度が不足して被めっき物への吸着量が不十分となり、均一な無電解めっき皮膜を形成することが困難である。一方、銀化合物の濃度が高すぎる場合には、生成した銀コロイド粒子が凝集を起こしやすくなり、触媒組成物が不安定になるので好ましくない。
【0018】
本発明の触媒組成物では、銀化合物を還元する成分として、銀より卑な酸化還元電位を有し、且つ複数の原子価を取ることができ、低原子価の状態にある金属成分を含む化合物を用いる。この様な金属成分を含む化合物を用いることによって、溶液中で金属成分が高原子価の状態となり、銀イオンが還元されて銀コロイドを形成することができる。
【0019】
上記した還元剤としては、2価のスズを含む化合物、2価の鉄を含む化合物、2価のコバルトを含む化合物、3価のセリウムを含む化合物、3価のチタンを含む化合物などを用いることが好ましい。これらの化合物は、一種単独又は二種以上混合して用いることができる。
【0020】
2価のスズを含む化合物の具体例としては、硫酸スズ、塩化スズ、蓚酸スズ、ピロリン酸スズ、酢酸スズ、ホウフッ化スズなどを挙げることができる。2価の鉄を含む化合物としては、塩化鉄、乳酸鉄、硫酸鉄、硫化鉄、蓚酸鉄、フマル酸鉄などを例示できる。2価のコバルトを含む化合物としては、塩化コバルト、硝酸コバルト、硫酸コバルト、硫化コバルト、臭化コバルト、リン酸コバルト、グルコン酸コバルト、ヨウ化コバルトなどを例示できる。3価のセリウムを含む化合物としては、硝酸セリウム、炭酸セリウム、塩化セリウム、フッ化セリウム、酢酸セリウムなどを例示できる。3価のチタンを含む化合物としては、三塩化チタン等を例示できる。
【0021】
上記した還元剤の添加量は、金属分の濃度として、0.01〜3モル/l程度であって、銀化合物に対して10〜30倍モル程度の範囲内とすることが好ましい。特に、金属分の濃度として、0.1〜0.3モル/l程度であることがより好ましい。上記した範囲の還元剤が含まれることによって、生成する銀コロイドが微細化し、安定性に優れたコロイド溶液となる。還元剤の濃度が低すぎる場合及び高すぎる場合には、いずれも、銀コロイド粒子が凝集し易くなって触媒液の安定性が低下するので好ましくない。
【0022】
本発明の触媒組成物では、更に、脂肪族モノカルボン酸、脂肪族ジカルボン酸、オキシカルボン酸、縮合リン酸、アミノカルボン酸及びこれらの塩からなる群から選ばれた少なくとも一種の成分(錯化剤)を配合することが必要である。これらの成分を配合することによって、銀がコロイド状態で安定に存在できる弱酸性〜中性付近の領域において、還元剤を可溶化することができ、該還元剤の還元作用による銀コロイドの形成が可能となる。
【0023】
上記した錯化剤の内で、脂肪族モノカルボン酸としてギ酸、酢酸、プロピオン酸、酪酸を例示できる。脂肪族ジカルボン酸としてはシュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸を例示できる。オキシカルボン酸としてはグリコール酸、乳酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、グルコン酸を例示できる。縮合リン酸としてはピロリン酸、トリポリリン酸などを例示できる。アミノカルボン酸としては、エチレンジアミン四酢酸(EDTA)、イミノジ酢酸、ニトリロトリ酢酸(NTA)、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸などを例示できる。また、これらの成分の塩としては、可溶性の塩であれば特に限定なく使用でき、具体例としては、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩などを挙げることができる。
【0024】
上記した錯化剤の内で、特に、リンゴ酸、クエン酸、グルコン酸等のオキシカルボン酸、ピロリン酸などの縮合リン酸等が好ましい。
【0025】
錯化剤の濃度は、還元剤成分に含まれる金属分に対して1〜10倍モル程度とすることが好ましく、2〜5倍モル程度とすることがより好ましい。錯化剤の濃度が低すぎる場合には、還元剤成分を安定に溶解することが困難となり、良好な銀コロイドが形成されないので好ましくない。
【0026】
本発明の触媒組成物は、上記した各成分を水に溶解してなるpH2〜9程度の溶液である。pHがこの範囲内にあることによって、溶液中において銀が安定なコロイド状態で存在することができる。これに対して、pHが低すぎる場合には、銀が溶解し易く、コロイド状態で安定に存在することは困難である。一方、pHが高すぎると、水酸化物が形成され易くなるので好ましくない。特に、銀コロイドの安定性が良好である点で、pHは、2〜7程度であることが好ましく、4〜6程度であることがより好ましい。
【0027】
本発明の触媒組成物を調製する方法については特に限定はなく、上記した銀化合物、還元剤及び錯化剤を含むpH2〜9の範囲の溶液を形成できる方法であれば良い。
【0028】
例えば、まず、錯化剤を溶解した水溶液中に、還元剤を添加し、所定のpH範囲に調整する。pH調整には、例えば、NaOH、KOH等のアルカリ等を使用できる。次いで、この溶液を撹拌しながら、1価の銀化合物を徐々に添加する。この際、還元剤に含まれる金属イオンが還元剤として作用することにより銀イオンが還元されて、銀コロイド溶液が形成される。触媒液調製時の温度範囲は特に限定されないが、20〜80℃程度とすることが好ましい。この温度範囲において、攪拌、混合しながら銀コロイド溶液を調製することにより、銀コロイド粒子は微細化して吸着性が向上し、触媒液の安定性も向上する。
【0029】
本発明の触媒組成物には、さらに必要に応じて触媒液の性質に悪影響を与えない範囲で界面活性剤などを添加してもよい。
【0030】
また、上記した方法で銀コロイド溶液を調製した後、透析法によって、該銀コロイド溶液中に含まれる金属イオン量を減少させることによって、触媒液の安定性を向上させることができる。例えば透析膜としてセルロース膜を用い、銀コロイド溶液と純水とを該透析膜を介して接触させることによって、銀コロイド溶液中に含まれる金属イオンが純水中に移動して、銀コロイド溶液中の金属イオン量を減少させることができる。透析処理に使用する透析膜(半透膜)は特に限定されず、例えば、セルロース膜、コロジオン膜、硫酸紙、セロハン紙、ゼラチンを布に浸して凝固させた膜などを使用することができる。透析方法としては、通常の透析法以外に限外ろ過法、電気透析法、これらを組み合わせた電気限外ろ過法等を適宜適用できる。
【0031】
前述した方法によって銀コロイド溶液を調製した後、透析法によって金属イオン量を減少させる方法によれば、銀コロイド溶液の形成時には、銀イオンを還元するために必要十分な量の金属イオンが溶液中に存在して十分な還元作用を発揮でき、微細で安定性に優れた銀コロイドすることが可能となり、銀コロイドが生成した後は、不要な金属イオン量を減少させることによって、コロイド溶液の安定性を向上させることができる。
【0032】
透析後のコロイド溶液では、コロイド溶液の安定性を向上させるためには、還元剤に基づく金属イオン量は、銀化合物に対して25倍モル程度以下とすることが好ましく、20倍モル程度以下とすることがより好ましい。透析後のコロイド溶液における金属イオンの下限値は特に限定的ではなく、金属イオンが完全に除去されるまで透析を行っても良いが、銀コロイドの吸着性を良好にするためには、銀化合物に対して5倍モル程度以上の金属イオンがコロイド溶液中に存在することが好ましい。従って、銀コロイド溶液の安定性と吸着性を両立するためには、透析後の金属イオン量は、銀化合物に対して5〜25倍モル程度とすることが好ましく、5〜20倍モル程度とすることがより好ましい。
【0033】
透析後のコロイド溶液では、pHが上昇する傾向があり、pH2〜9程度の範囲において良好な安定性を有するものとなる。特に、透析後のコロイド溶液では、pH4〜9程度において、良好な安定性を発揮できる。
【0034】
本発明の触媒組成物を用いて無電解めっきを行うには、被めっき物の種類に応じて、常法に従って脱脂処理、表面調整などの前処理を行った後、本発明の触媒液により被めっき物に触媒を付与し、その後、常法に従って無電解めっきを行えばよい。
【0035】
被めっき物に触媒を付与する方法としては、通常、被めっき物に無電解めっき用触媒を付与する際に行われている方法、例えば、触媒組成物に浸漬する方法、触媒組成物を被めっき物に塗布した後乾燥する方法等を適用できる。特に、触媒組成物に浸漬する方法が好ましく、この方法によれば、被めっき物に対して簡単な操作で触媒を均一に付与することができる。
【0036】
触媒組成物に浸漬する場合の条件については特に限定的ではないが、通常、触媒液の温度を10〜80℃程度、好ましくは20〜50℃程度として、これに被めっき物を浸漬すればよい。
【0037】
浸漬時間については、30分間程度までの浸漬時間では、浸漬時間の増加に伴って触媒吸着量が増加して無電解めっきの析出性が向上する傾向がある。このため、使用する無電解めっき液の種類などに応じて、適宜必要な浸漬時間を設定すればよい。通常は2〜10分間程度の範囲の浸漬時間とすればよい。
【0038】
上記した方法によって被めっき物に触媒付与した後、水洗し、その後、無電解めっきを行うことにより均一で良好な外観の無電解めっき皮膜を形成することができる。
【0039】
無電解めっき液としては、公知の自己触媒型の無電解めっき液をいずれも使用できる。この様な無電解めっき液としては、例えば、無電解ニッケルめっき液、無電解銅めっき液等の他、Au、Ag、Pd、Rh等の貴金属の無電解めっき液を挙げることができる。
【0040】
被めっき物の種類についても特に限定されず、例えば、プリント基板などの金属−非導電性物質複合材料、プラスチック、セラミックス、ガラスなどの非導電性物質、紙、布などの繊維状物質、金属、金属酸化物等を用いることができる。
【0041】
【発明の効果】
本発明の触媒組成物は、触媒金属として銀を含む比較的安価な触媒液であり、しかも、優れた触媒性能を有すると共に、安定性が良好な溶液である。
【0042】
従って、本発明触媒液を用いることによって、各種の被めっき物に対して、低コストで良好な無電解めっき皮膜を形成することが可能となる。
【0043】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0044】
実施例1
ピロリン酸カリウム0.3モルを純水800mlに溶解し、これに硫酸スズ0.2モルを加えて攪拌して溶解し、浴温50℃に保持した。この溶液中に、硝酸銀0.01モルを純水200mlに溶解した溶液を攪拌しながら加え、30分間加熱、攪拌を行った。
【0045】
硝酸銀水溶液を添加すると直ちにスズ溶液は黒色を示した。その後、室温下に放置して冷却することにより、pH4.2の黒色コロイド溶液が得られた。これを触媒液−1とする。
【0046】
被めっき物としてエポキシ板(5×5cm)を使用し、上記触媒液−1を用いて、下記の工程で無電解めっきを行った。各処理液の液量は500mlとした。各処理の間には水洗を行った。
(無電解めっき工程)
1.脱脂:脱脂剤(エースクリンA-220、奥野製薬工業(株)製)を用いて、60℃の処理液中に5分間浸漬した。
2.表面調整:表面調整剤(AE-B401、奥野製薬工業(株)製)を用いて、60℃の処理液中に5分間浸漬した。
3.触媒液-1を用いて、30℃の触媒液中に5分間浸漬して触媒付与を行った。
4.下記(a)〜(c)の3種類の無電解めっきを行った。
(a) 無電解銅めっき液(TSP-810、奥野製薬工業(株)製)を用いて、pH12.5のめっき浴中に45℃で10分間浸漬した。
【0047】
(b) 無電解銅めっき液(ビルドカッパー、奥野製薬工業(株)製)を用いて、pH12.5のめっき浴中に45℃で10分間浸漬した。
(c)無電解銅めっき液(OPC-700MK、奥野製薬工業(株)製)を用いて、pH13.0のめっき浴中に30℃で10分間浸漬した。
得られた3種類の無電解めっき皮膜について、下記の方法で皮膜被覆率及び被めっき物外観を評価し、更に、触媒液の安定性を評価した。結果を表1に示す。
(試験方法)
1.皮膜被覆率(%):被めっき物上にめっき皮膜が形成された面積の割合を示す。
2.被めっき物外観:目視によりめっき皮膜の外観を示した。
3.触媒液安定性:触媒液を室温で3ヶ月間放置し目視により沈殿の発生を確認した。
【0048】
実施例2
クエン酸カリウム0.3モルを純水800mlに溶解し、これに硫酸鉄0.2モルを加えて攪拌して溶解し、浴温50℃に保持した。この溶液中に、硝酸銀0.02モルを純水200mlに溶解した溶液を攪拌しながら加え、30分間加熱、攪拌を行った。
【0049】
硝酸銀水溶液を添加すると直ちに鉄溶液は黒色を示した。その後、室温下に放置して冷却することによって、pH4.0の黒色コロイド溶液が得られた。これを触媒液−2とする。
【0050】
触媒液−1に代えて、触媒液−2を用いる以外は、実施例1と同様にして、無電解めっきを行い、皮膜被覆率、被めっき物外観及び触媒液の安定性を評価した。
【0051】
実施例3
リンゴ酸ナトリウム0.2モルを純水800mlに溶解し、これに塩化スズ0.1モルを加えて攪拌して溶解した。ここに、ポリエチレングリコール(PEG-6000)を0.1g添加して攪拌して溶解させた。この溶液中に、硝酸銀0.01モルを純水200mlに溶解した溶液を攪拌しながら加え、その後、30分間攪拌を続けた。
【0052】
次いで、透析膜として、スペクトラム社製の分画分子量10000のチューブ状のセルロース膜を用い、この一端を閉じて上記した触媒液を入れ、純水中に48時間保持した。これにより、触媒液中のスズ錯イオンは、ほぼ完全に触媒液から除去された。これを触媒液-3とする。
【0053】
触媒液−1に代えて、触媒液−3を用いる以外は、実施例1と同様にして、無電解めっきを行い、皮膜被覆率、被めっき物外観及び触媒液の安定性を評価した。
【0054】
実施例4
クエン酸カリウム0.3モルを純水800mlに溶解し、これに硫酸スズ0.2モルを加えて攪拌して溶解し、浴温50℃に保持した。この溶液中に、硝酸銀0.02モルを純水200mlに溶解した溶液を攪拌しながら加え、30分間加熱、攪拌を行った。
【0055】
硝酸銀水溶液を添加すると直ちにスズ溶液は黒色を示した。その後、室温下に放置して冷却することによって、pH4.0の黒色コロイド溶液が得られた。
【0056】
この触媒液をセルロース膜中に入れ、純水中に48時間保持することにより過剰のスズ成分溶出させた。これを触媒液−4とする。
【0057】
触媒液−1に代えて、触媒液−4を用いる以外は、実施例1と同様にして、無電解めっきを行い、皮膜被覆率、被めっき物外観及び触媒液の安定性を評価した。
【0058】
比較例1
EDTA-2Na 0.2モルを純水800mlに溶解し、これに硫酸スズ0.05モルを添加し、NaOHにてpHを4.0に調整して硫酸スズを溶解させた。この溶液中に硝酸銀0.01モルを純水200mlに溶解させた溶液を攪拌しながら加え、30分間攪拌を行った。これを比較触媒液−1とする。
【0059】
触媒液−1に代えて、比較触媒液−1を用いる以外は、実施例1と同様にして、無電解めっきを行い、皮膜被覆率、被めっき物外観及び触媒液の安定性を評価した。
【0060】
比較例2
クエン酸カリウム1.0モルを純水800mlに溶解し、これに硫酸スズ0.5モルを加えて攪拌をして溶解し、浴温50℃に保持した。この溶液中に、硝酸銀0.01モルを純水200mlに溶解した溶液を攪拌しながら加え、30分間加熱、攪拌を行った。
【0061】
硝酸銀水溶液を添加すると直ちにスズ溶液は黒色を示した。その後、室温下に放置して冷却することにより、pH4.0の黒色コロイド溶液が得られた。これを比較触媒液−2とする。
【0062】
触媒液−1に代えて、比較触媒液−2を用いる以外は、実施例1と同様にして、無電解めっきを行い、皮膜被覆率、被めっき物外観及び触媒液の安定性を評価した。
【0063】
【表1】

Figure 0004069248
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst composition for electroless plating, a method for producing the catalyst composition, and an electroless plating method.
[0002]
[Prior art]
When electroless plating is performed on a nonconductive material such as plastic, ceramics, or glass, it is usually necessary to apply a catalyst material to the object to be plated in order to start the plating reaction.
[0003]
Currently, palladium is widely used as a catalyst metal for electroless plating. As a method for applying a catalyst, an object to be plated is immersed in a sensitizer solution (tin chloride solution of tin (II) chloride), and then an activator solution ( After immersing in a hydrochloric acid solution of palladium chloride) (sensitizer-activator method), immersing in a tin-palladium mixed colloid solution and applying a catalyst, immersing in an accelerator solution made of an acidic solution such as sulfuric acid, A method of improving catalytic activity by dissolving excess tin ions (catalyst-accelerator method) is mainly implemented.
[0004]
However, in these methods, palladium, which is an expensive noble metal, is used as the catalyst metal, and the proportion of the cost of the catalyzing process in the electroless plating process is very large.
[0005]
For this reason, various studies have been made for a long time with respect to methods of using a metal other than palladium as a catalyst.
[0006]
For example, Patent Document 1 describes a method using a silver salt as a catalyst. In this method, a silver hydrosol is formed by adding 2 to 4 moles of a reducing agent with respect to a silver salt to an aqueous solution containing a silver salt and a surfactant. In this method, a colloid is applied to perform electroless plating. However, this method has a drawback that a large amount of reducing agent is required, the production cost is high, the stability of the formed silver hydrosol is low, and aggregation precipitation is likely to occur.
[0007]
Patent Document 2 discloses a silver salt 0.01 to 100 mmol / l, an anionic surfactant 0.01 to 0.5 wt%, and a 0.1 to 0.8-fold molar reducing agent with respect to the silver salt. A catalyst solution for electroless plating is described, and the catalyst solution is said to have good stability by containing 0.01 to 0.8 moles of reducing agent with respect to the silver salt. Yes.
[0008]
However, the catalyst solutions described in Patent Documents 1 and 2 described above have a low adsorptivity to the silver colloid as the catalyst component, and the catalyst component is evenly adsorbed to the object to be plated such as ABS resin, epoxy resin, glass, and ceramics. It is difficult to do. For this reason, during the water-washing process after applying the catalyst or during electroless plating, the catalytic substance is easily removed from the object to be plated, and the plating deposition becomes uneven and the plating solution is contaminated to accelerate the decomposition of the plating bath. There are problems such as.
[0009]
[Patent Document 1]
Japanese Patent Laid-Open No. 1-68478
[Patent Document 2]
Japanese Patent Laid-Open No. 10-30188
[Problems to be solved by the invention]
The present invention has been made in view of the prior art as described above, and its main purpose is an inexpensive electroless plating catalyst composition containing no palladium, which has good stability and excellent catalytic activity. It is providing the novel catalyst liquid which has.
[0012]
[Means for Solving the Problems]
The present inventor has intensively studied to achieve the above-described object. As a result, the oxidation-reduction potential is lower than that of silver and can have a plurality of valences, a compound containing a metal component in a low valence state, and a weak acidity containing a specific complexing agent ~ It has been found that by adding a monovalent silver compound to a neutral solution, the silver compound is reduced to form a silver colloidal solution. The silver colloid is stable in a weakly acidic to neutral solution, and has good adsorptivity to the object to be plated, so that it can impart excellent catalytic activity to various objects to be plated. The present invention was completed here.
[0013]
That is, the present invention provides the following electroless plating catalyst composition, method for producing the catalyst composition, and electroless plating method.
1. A catalyst composition for electroless plating comprising a solution of pH 2-9 in which the following components (i) to (iii) are dissolved in water:
(I) 0.001 to 0.1 mol / l of a monovalent silver compound ,
(Ii) 0.01 to 3 mol / l of a compound having a redox potential lower than that of silver and having a plurality of valences and containing a metal component in a low valence state , 10-30 fold molar silver metal content, as well as (iii) an aliphatic monocarboxylic acid, at least one compound selected from aliphatic dicarboxylic San及 beauty group consisting of salts, compounds (ii) section 1 to 10 moles of the metal component.
2 . The compound described in the item (ii) is a compound containing divalent tin, a compound containing divalent iron, a compound containing divalent cobalt, a compound containing trivalent cerium and a compound containing trivalent titanium. Item 2. The catalyst composition for electroless plating according to Item 1, which is at least one compound selected from the group consisting of:
3 . A method for producing a catalyst composition for electroless plating as set forth in item 1 or 2 , wherein the compound described in item (ii) and the solution described in item (iii) have a pH of 2 to 9 In addition, a monovalent silver compound is added with stirring to produce a catalyst composition.
4 . After obtaining a solution of pH 2-9 in which the components (i) to (iii) described in item 1 above are dissolved in water, the amount of metal ions based on the compound described in item (ii) is reduced by dialysis. A process for producing a catalyst composition, characterized by comprising:
5 . 5. A catalyst composition obtained by the method of item 4 above, wherein the amount of the compound described in item (ii) is 25 mol or less of the amount of silver metal.
6 . 6. An electroless plating method comprising immersing in a catalyst composition according to any one of items 1 , 2 and 5 and then immersing in an electroless plating solution.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The catalyst composition for electroless plating of the present invention is a solution having a pH of 2 to 9 obtained by dissolving the following components (i) to (iii) in water:
(I) a monovalent silver compound,
(Ii) a compound having a lower redox potential than silver and having a plurality of valences and containing a metal component in a low valence state (hereinafter sometimes referred to as “reducing agent”), And (iii) at least one compound selected from the group consisting of aliphatic monocarboxylic acid, aliphatic dicarboxylic acid, oxycarboxylic acid, condensed phosphoric acid, aminocarboxylic acid and salts thereof (hereinafter referred to as “complexing agent”) Sometimes).
[0015]
In the above-described solution, the reducing agent can be stably present in a weakly acidic to neutral solution having a pH of 2 to 9 by adding a complexing agent. The presence of the reducing agent reduces the monovalent silver compound to form a silver colloid, and the formed silver colloid is stable in a weakly acidic to neutral solution. An excellent colloidal solution. Further, the formed silver colloid has good adsorptivity to the object to be plated, and can impart excellent catalytic activity to various objects to be plated.
[0016]
The monovalent silver compound used in the catalyst composition of the present invention is not particularly limited as long as it is a water-soluble silver compound containing monovalent silver. Examples of such silver compounds include inorganic silver salts such as silver nitrate, silver cyanate, silver perchlorate and silver sulfite; and organic silver salts such as silver acetate, silver citrate, silver tartrate and silver salicylate. Can do.
[0017]
The concentration of the silver compound is preferably about 0.001 to 0.1 mol / l, and more preferably about 0.01 to 0.05 mol / l. When the concentration of the silver compound is too low, the concentration of the silver colloid particles in the catalyst composition is insufficient and the amount of adsorption onto the object to be plated becomes insufficient, and it is difficult to form a uniform electroless plating film. On the other hand, when the concentration of the silver compound is too high, the produced silver colloidal particles tend to aggregate and the catalyst composition becomes unstable, which is not preferable.
[0018]
In the catalyst composition of the present invention, as a component for reducing a silver compound, a compound having a redox potential lower than that of silver and having a plurality of valences and a metal component in a low valence state Is used. By using such a compound containing a metal component, the metal component becomes in a high valence state in the solution, and silver ions are reduced to form a silver colloid.
[0019]
As the above reducing agent, a compound containing divalent tin, a compound containing divalent iron, a compound containing divalent cobalt, a compound containing trivalent cerium, a compound containing trivalent titanium, or the like is used. Is preferred. These compounds can be used singly or in combination of two or more.
[0020]
Specific examples of the compound containing divalent tin include tin sulfate, tin chloride, tin oxalate, tin pyrophosphate, tin acetate, tin borofluoride and the like. Examples of the compound containing divalent iron include iron chloride, iron lactate, iron sulfate, iron sulfide, iron oxalate, and iron fumarate. Examples of the compound containing divalent cobalt include cobalt chloride, cobalt nitrate, cobalt sulfate, cobalt sulfide, cobalt bromide, cobalt phosphate, cobalt gluconate, and cobalt iodide. Examples of the compound containing trivalent cerium include cerium nitrate, cerium carbonate, cerium chloride, cerium fluoride, and cerium acetate. Examples of the compound containing trivalent titanium include titanium trichloride.
[0021]
The addition amount of the reducing agent described above is about 0.01 to 3 mol / l as the concentration of the metal component, and is preferably in the range of about 10 to 30 times mol with respect to the silver compound. In particular, the metal content is more preferably about 0.1 to 0.3 mol / l. By including the reducing agent in the above range, the colloidal silver produced is refined and a colloid solution having excellent stability is obtained. When the concentration of the reducing agent is too low and too high, both of them are not preferable because the silver colloid particles are easily aggregated and the stability of the catalyst solution is lowered.
[0022]
In the catalyst composition of the present invention, at least one component selected from the group consisting of aliphatic monocarboxylic acid, aliphatic dicarboxylic acid, oxycarboxylic acid, condensed phosphoric acid, aminocarboxylic acid and salts thereof (complexation) Agent). By blending these components, the reducing agent can be solubilized in the weakly acidic to neutral region where silver can stably exist in a colloidal state, and the formation of silver colloid by the reducing action of the reducing agent can be achieved. It becomes possible.
[0023]
Among the complexing agents described above, examples of the aliphatic monocarboxylic acid include formic acid, acetic acid, propionic acid, and butyric acid. Examples of the aliphatic dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid. Examples of the oxycarboxylic acid include glycolic acid, lactic acid, malic acid, tartaric acid, citric acid, isocitric acid, and gluconic acid. Examples of condensed phosphoric acid include pyrophosphoric acid and tripolyphosphoric acid. Examples of aminocarboxylic acids include ethylenediaminetetraacetic acid (EDTA), iminodiacetic acid, nitrilotriacetic acid (NTA), diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid. Moreover, as a salt of these components, if it is a soluble salt, it can be used without any limitation, and specific examples thereof include alkali metal salts such as sodium salt and potassium salt, ammonium salt and the like.
[0024]
Of the complexing agents described above, oxycarboxylic acids such as malic acid, citric acid and gluconic acid, and condensed phosphoric acids such as pyrophosphoric acid are particularly preferred.
[0025]
The concentration of the complexing agent is preferably about 1 to 10 times mol, more preferably about 2 to 5 times mol for the metal content in the reducing agent component. When the concentration of the complexing agent is too low, it is difficult to stably dissolve the reducing agent component, and a favorable silver colloid is not formed.
[0026]
The catalyst composition of the present invention is a solution having a pH of about 2 to 9 obtained by dissolving the above-described components in water. When the pH is within this range, silver can exist in a stable colloidal state in the solution. On the other hand, when the pH is too low, silver is easily dissolved and it is difficult to stably exist in a colloidal state. On the other hand, if the pH is too high, hydroxide is likely to be formed, which is not preferable. In particular, the pH is preferably about 2 to 7 and more preferably about 4 to 6 in that the stability of the silver colloid is good.
[0027]
The method for preparing the catalyst composition of the present invention is not particularly limited as long as it can form a solution having a pH in the range of 2 to 9 containing the silver compound, the reducing agent, and the complexing agent.
[0028]
For example, first, a reducing agent is added to an aqueous solution in which a complexing agent is dissolved, and the pH is adjusted to a predetermined pH range. For pH adjustment, for example, alkali such as NaOH and KOH can be used. Next, the monovalent silver compound is gradually added while stirring the solution. At this time, the metal ions contained in the reducing agent act as a reducing agent, whereby the silver ions are reduced to form a silver colloid solution. Although the temperature range at the time of catalyst solution preparation is not specifically limited, It is preferable to set it as about 20-80 degreeC. By preparing a silver colloid solution while stirring and mixing in this temperature range, the silver colloid particles are refined to improve the adsorptivity and the stability of the catalyst solution.
[0029]
If necessary, a surfactant or the like may be added to the catalyst composition of the present invention as long as it does not adversely affect the properties of the catalyst solution.
[0030]
In addition, after the silver colloid solution is prepared by the above-described method, the stability of the catalyst solution can be improved by reducing the amount of metal ions contained in the silver colloid solution by dialysis. For example, a cellulose membrane is used as a dialysis membrane, and by bringing a silver colloid solution and pure water into contact with each other through the dialysis membrane, metal ions contained in the silver colloid solution move into pure water, The amount of metal ions can be reduced. The dialysis membrane (semipermeable membrane) used for the dialysis treatment is not particularly limited, and for example, a cellulose membrane, a collodion membrane, sulfuric acid paper, cellophane paper, a membrane in which gelatin is immersed in a cloth and solidified can be used. As a dialysis method, an ultrafiltration method, an electrodialysis method, an electric ultrafiltration method combining these, and the like can be appropriately applied in addition to a normal dialysis method.
[0031]
After the silver colloid solution is prepared by the above-described method, the amount of metal ions required to reduce the silver ions is reduced when the silver colloid solution is formed. It is possible to form a silver colloid that is fine and excellent in stability, and after the silver colloid is formed, the amount of unnecessary metal ions is reduced to stabilize the colloidal solution. Can be improved.
[0032]
In the colloidal solution after dialysis, in order to improve the stability of the colloidal solution, the amount of metal ions based on the reducing agent is preferably about 25 times mol or less, and about 20 times mol or less with respect to the silver compound. More preferably. The lower limit of metal ions in the colloidal solution after dialysis is not particularly limited, and dialysis may be performed until the metal ions are completely removed. It is preferable that about 5 times moles or more of metal ions are present in the colloidal solution. Therefore, in order to achieve both stability and adsorptivity of the silver colloid solution, the amount of metal ions after dialysis is preferably about 5 to 25 times mol, and about 5 to 20 times mol for the silver compound. More preferably.
[0033]
The colloidal solution after dialysis tends to increase the pH, and has good stability in the range of about pH 2-9. In particular, the colloidal solution after dialysis can exhibit good stability at a pH of about 4-9.
[0034]
In order to perform electroless plating using the catalyst composition of the present invention, pretreatment such as degreasing and surface adjustment is performed according to a conventional method according to the type of the object to be plated, and then the catalyst solution of the present invention is used. What is necessary is just to perform a electroless plating according to a conventional method after providing a catalyst to a plated product.
[0035]
As a method for imparting a catalyst to an object to be plated, a method usually performed when an electroless plating catalyst is imparted to an object to be plated, for example, a method of immersing in a catalyst composition, an object to be plated with a catalyst composition A method of drying after applying to an object can be applied. In particular, a method of immersing in a catalyst composition is preferable, and according to this method, a catalyst can be uniformly applied to an object to be plated by a simple operation.
[0036]
The conditions for immersing in the catalyst composition are not particularly limited, but the temperature of the catalyst solution is usually about 10 to 80 ° C., preferably about 20 to 50 ° C., and the object to be plated may be immersed therein. .
[0037]
Regarding the immersion time, when the immersion time is up to about 30 minutes, the catalyst adsorption amount increases with the increase of the immersion time, and the deposition property of electroless plating tends to be improved. For this reason, what is necessary is just to set required immersion time suitably according to the kind of electroless-plating liquid to be used. Usually, the immersion time may be in the range of about 2 to 10 minutes.
[0038]
An electroless plating film having a uniform and good appearance can be formed by applying a catalyst to an object to be plated by the above-described method, washing with water, and then performing electroless plating.
[0039]
Any known electrocatalytic electroless plating solution can be used as the electroless plating solution. Examples of such electroless plating solutions include electroless plating solutions of noble metals such as Au, Ag, Pd, and Rh in addition to electroless nickel plating solutions and electroless copper plating solutions.
[0040]
There is no particular limitation on the type of the object to be plated, for example, a metal-nonconductive material composite material such as a printed circuit board, a nonconductive material such as plastic, ceramics, or glass, a fibrous material such as paper or cloth, a metal, A metal oxide or the like can be used.
[0041]
【The invention's effect】
The catalyst composition of the present invention is a relatively inexpensive catalyst solution containing silver as a catalyst metal, and also has excellent catalyst performance and good stability.
[0042]
Therefore, by using the catalyst solution of the present invention, it is possible to form a good electroless plating film at low cost on various objects to be plated.
[0043]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0044]
Example 1
0.3 mol of potassium pyrophosphate was dissolved in 800 ml of pure water, 0.2 mol of tin sulfate was added thereto and stirred to dissolve, and the bath temperature was maintained at 50 ° C. A solution prepared by dissolving 0.01 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and the mixture was heated and stirred for 30 minutes.
[0045]
As soon as the aqueous silver nitrate solution was added, the tin solution showed a black color. Thereafter, the mixture was allowed to cool at room temperature, whereby a black colloid solution having a pH of 4.2 was obtained. This is designated as catalyst solution-1.
[0046]
An epoxy plate (5 × 5 cm) was used as an object to be plated, and electroless plating was performed in the following steps using the catalyst solution-1. The amount of each processing solution was 500 ml. Washing was performed between each treatment.
(Electroless plating process)
1. Degreasing: Using a degreasing agent (Esculin A-220, manufactured by Okuno Pharmaceutical Co., Ltd.), it was immersed in a treatment liquid at 60 ° C. for 5 minutes.
2. Surface adjustment: Using a surface conditioner (AE-B401, manufactured by Okuno Pharmaceutical Co., Ltd.), it was immersed in a treatment liquid at 60 ° C. for 5 minutes.
3. Using catalyst solution-1, the catalyst was applied by dipping in a catalyst solution at 30 ° C. for 5 minutes.
4). The following three types of electroless plating (a) to (c) were performed.
(A) Using an electroless copper plating solution (TSP-810, manufactured by Okuno Pharmaceutical Co., Ltd.), it was immersed in a plating bath having a pH of 12.5 at 45 ° C. for 10 minutes.
[0047]
(B) Using an electroless copper plating solution (build copper, manufactured by Okuno Pharmaceutical Co., Ltd.), it was immersed in a plating bath at pH 12.5 at 45 ° C. for 10 minutes.
(C) Using an electroless copper plating solution (OPC-700MK, manufactured by Okuno Pharmaceutical Co., Ltd.), it was immersed in a plating bath having a pH of 13.0 at 30 ° C. for 10 minutes.
About the obtained three types of electroless plating films, the film coverage and the appearance of the object to be plated were evaluated by the following methods, and the stability of the catalyst solution was further evaluated. The results are shown in Table 1.
(Test method)
1. Film coverage (%): The ratio of the area where the plating film is formed on the object to be plated.
2. Appearance of plated object: The appearance of the plating film was visually observed.
3. Catalyst solution stability: The catalyst solution was allowed to stand at room temperature for 3 months, and the occurrence of precipitation was visually confirmed.
[0048]
Example 2
0.3 mol of potassium citrate was dissolved in 800 ml of pure water, 0.2 mol of iron sulfate was added thereto and stirred to dissolve, and the bath temperature was maintained at 50 ° C. A solution prepared by dissolving 0.02 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and the mixture was heated and stirred for 30 minutes.
[0049]
As soon as the aqueous silver nitrate solution was added, the iron solution showed a black color. Thereafter, the mixture was allowed to cool at room temperature to obtain a black colloid solution having a pH of 4.0. This is designated as catalyst solution-2.
[0050]
Electroless plating was performed in the same manner as in Example 1 except that the catalyst solution-2 was used in place of the catalyst solution-1, and the coating coverage, the appearance of the object to be plated, and the stability of the catalyst solution were evaluated.
[0051]
Example 3
0.2 mol of sodium malate was dissolved in 800 ml of pure water, and 0.1 mol of tin chloride was added thereto and stirred to dissolve. Here, 0.1 g of polyethylene glycol (PEG-6000) was added and dissolved by stirring. A solution prepared by dissolving 0.01 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and then stirring was continued for 30 minutes.
[0052]
Next, as a dialysis membrane, a tubular cellulose membrane having a molecular weight cut off of 10,000, manufactured by Spectrum Co., Ltd. was used. One end of the membrane was closed, the above-described catalyst solution was added, and the membrane was kept in pure water for 48 hours. Thereby, tin complex ions in the catalyst solution were almost completely removed from the catalyst solution. This is designated as catalyst solution-3.
[0053]
Electroless plating was performed in the same manner as in Example 1 except that catalyst solution-3 was used in place of catalyst solution-1, and the coating rate, the appearance of the object to be plated, and the stability of the catalyst solution were evaluated.
[0054]
Example 4
0.3 mol of potassium citrate was dissolved in 800 ml of pure water, 0.2 mol of tin sulfate was added thereto and stirred to dissolve, and the bath temperature was maintained at 50 ° C. A solution prepared by dissolving 0.02 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and the mixture was heated and stirred for 30 minutes.
[0055]
As soon as the aqueous silver nitrate solution was added, the tin solution showed a black color. Thereafter, the mixture was allowed to cool at room temperature to obtain a black colloid solution having a pH of 4.0.
[0056]
The catalyst solution was placed in a cellulose membrane and retained in pure water for 48 hours to elute excess tin component. This is designated catalyst solution-4.
[0057]
Electroless plating was performed in the same manner as in Example 1 except that the catalyst solution-4 was used in place of the catalyst solution-1, and the coating coverage, the appearance of the object to be plated, and the stability of the catalyst solution were evaluated.
[0058]
Comparative Example 1
0.2 mol of EDTA-2Na was dissolved in 800 ml of pure water, 0.05 mol of tin sulfate was added thereto, pH was adjusted to 4.0 with NaOH, and tin sulfate was dissolved. A solution prepared by dissolving 0.01 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and the mixture was stirred for 30 minutes. This is referred to as Comparative Catalyst Solution-1.
[0059]
Electroless plating was performed in the same manner as in Example 1 except that the comparative catalyst solution-1 was used instead of the catalyst solution-1, and the coating coverage, the appearance of the object to be plated, and the stability of the catalyst solution were evaluated.
[0060]
Comparative Example 2
1.0 mol of potassium citrate was dissolved in 800 ml of pure water, 0.5 mol of tin sulfate was added and dissolved by stirring, and the bath temperature was maintained at 50 ° C. A solution prepared by dissolving 0.01 mol of silver nitrate in 200 ml of pure water was added to this solution while stirring, and the mixture was heated and stirred for 30 minutes.
[0061]
As soon as the aqueous silver nitrate solution was added, the tin solution showed a black color. Thereafter, the mixture was allowed to cool at room temperature to obtain a black colloid solution having a pH of 4.0. This is designated as Comparative Catalyst Solution-2.
[0062]
Electroless plating was performed in the same manner as in Example 1 except that the comparative catalyst solution-2 was used in place of the catalyst solution-1, and the coating coverage, the appearance of the object to be plated, and the stability of the catalyst solution were evaluated.
[0063]
[Table 1]
Figure 0004069248

Claims (6)

下記(i)〜(iii)の成分を水に溶解したpH2〜9の溶液からなる無電解めっき用触媒組成物:
(i)1価の銀化合物を0.001〜0.1モル/l、
(ii)銀より卑な酸化還元電位を有し、且つ複数の原子価をとることができ、低原子価の状態にある金属成分を含む化合物を0.01〜3モル/lであって、銀金属量の10〜30倍モル、並びに
(iii)脂肪族モノカルボン酸、脂肪族ジカルボン酸及びこれらの塩からなる群から選ばれた少なくとも一種の化合物を、上記( ii )項の化合物に含まれる金属成分の1〜10倍モル
A catalyst composition for electroless plating comprising a solution of pH 2-9 in which the following components (i) to (iii) are dissolved in water:
(I) 0.001 to 0.1 mol / l of a monovalent silver compound ,
(Ii) 0.01 to 3 mol / l of a compound having a redox potential lower than that of silver and having a plurality of valences and containing a metal component in a low valence state , 10-30 fold molar silver metal content, as well as (iii) an aliphatic monocarboxylic acid, at least one compound selected from aliphatic dicarboxylic San及 beauty group consisting of salts, compounds (ii) section 1 to 10 moles of the metal component .
(ii)項に記載された化合物が、2価のスズを含む化合物、2価の鉄を含む化合物、2価のコバルトを含む化合物、3価のセリウムを含む化合物及び3価のチタンを含む化合物からなる群から選ばれた少なくとも一種の化合物である請求項1に記載の無電解めっき用触媒組成物。The compound described in the item (ii) is a compound containing divalent tin, a compound containing divalent iron, a compound containing divalent cobalt, a compound containing trivalent cerium and a compound containing trivalent titanium. The catalyst composition for electroless plating according to claim 1, which is at least one compound selected from the group consisting of: 請求項1又は2に記載された無電解めっき用触媒組成物の製造方法であって、(ii)項に記載された化合物及び(iii)項に記載された化合物を含むpH2〜9の溶液中に、撹拌下に、1価の銀化合物を添加することを特徴とする触媒組成物の製造方法。It is a manufacturing method of the catalyst composition for electroless plating as described in Claim 1 or 2 , Comprising: In the solution of pH 2-9 containing the compound as described in (ii), and the compound as described in (iii) In addition, a monovalent silver compound is added with stirring to produce a catalyst composition. 請求項1に記載された(i)〜(iii)の成分を水に溶解したpH2〜9の溶液を得た後、透析法によって(ii)項に記載された化合物に基づく金属イオン量を減少させることを特徴とする触媒組成物の製造方法。After obtaining a solution of pH 2-9 in which the components (i) to (iii) described in claim 1 are dissolved in water, the amount of metal ions based on the compound described in (ii) is reduced by dialysis. A process for producing a catalyst composition, characterized by comprising: 請求項の方法によって得られた触媒組成物であって、(ii)項に記載された化合物の量が、銀金属量の25倍モル以下である触媒組成物。A catalyst composition obtained by the method of claim 4 , wherein the amount of the compound described in (ii) is 25 mol or less of the amount of silver metal. 請求項1、2及び5のいずれかに記載の触媒組成物に浸漬した後、無電解めっき液に浸漬することを特徴とする無電解めっき方法。After dipped in a catalyst composition according to any one of claims 1, 2 and 5, an electroless plating method characterized by immersion in an electroless plating solution.
JP2002356773A 2002-12-09 2002-12-09 Catalyst composition for electroless plating Expired - Fee Related JP4069248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356773A JP4069248B2 (en) 2002-12-09 2002-12-09 Catalyst composition for electroless plating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356773A JP4069248B2 (en) 2002-12-09 2002-12-09 Catalyst composition for electroless plating

Publications (2)

Publication Number Publication Date
JP2004190066A JP2004190066A (en) 2004-07-08
JP4069248B2 true JP4069248B2 (en) 2008-04-02

Family

ID=32757016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356773A Expired - Fee Related JP4069248B2 (en) 2002-12-09 2002-12-09 Catalyst composition for electroless plating

Country Status (1)

Country Link
JP (1) JP4069248B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793013B1 (en) * 2005-12-05 2017-07-19 Rohm and Haas Electronic Materials LLC Metallization of dielectrics
US9439293B2 (en) * 2007-11-21 2016-09-06 Xerox Corporation Galvanic process for making printed conductive metal markings for chipless RFID applications
TWI546409B (en) 2011-11-14 2016-08-21 Ishihara Chemical Co Ltd Electroless copper plating solution and electroless copper plating method
US9451707B2 (en) 2012-12-13 2016-09-20 Dow Global Technologies Llc Stabilized silver catalysts and methods
JP6201153B2 (en) * 2014-09-11 2017-09-27 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
CN113151811A (en) * 2021-04-13 2021-07-23 赤壁市聚茂新材料科技有限公司 Non-palladium activated nickel plating solution and nickel plating method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS494633A (en) * 1972-05-06 1974-01-16
IT1107840B (en) * 1978-07-25 1985-12-02 Alfachimici Spa CATALYTIC SOLUTION FOR ANELECTRIC METAL DEPOSITION
JPS59500870A (en) * 1982-05-26 1984-05-17 マツクダ−ミツド インコ−ポレ−テツド Non-conductive substrate activated catalyst solution and electroless plating method
JPS63134669A (en) * 1986-11-25 1988-06-07 Mitsubishi Rayon Co Ltd Electroless copper plating solution
JP3826544B2 (en) * 1998-02-27 2006-09-27 奥野製薬工業株式会社 Catalyst composition for electroless plating
JP4143385B2 (en) * 2002-03-05 2008-09-03 株式会社大和化成研究所 Pretreatment liquid for imparting catalyst for electroless plating, pretreatment method using the liquid, electroless plating film and / or plating coating produced using the method

Also Published As

Publication number Publication date
JP2004190066A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
TWI253481B (en) Method for electroless metal plating
CN106460179B (en) Chemical nickel plating or nickel alloy nickel colloid catalyst liquid and chemical nickel plating or nickel alloy method
US4234628A (en) Two-step preplate system for polymeric surfaces
US3682671A (en) Novel precious metal sensitizing solutions
JP4143385B2 (en) Pretreatment liquid for imparting catalyst for electroless plating, pretreatment method using the liquid, electroless plating film and / or plating coating produced using the method
CN106414801A (en) Copper colloid catalyst solution for electroless copper plating and electroless copper plating method
JP4189532B2 (en) Method for activating catalyst for electroless plating
KR101579191B1 (en) Process for applying a metal coating to a non-conductive substrate
JP4069248B2 (en) Catalyst composition for electroless plating
JPH0613753B2 (en) Method for producing solution containing fine metal body used for electroless plating
EP0317092A1 (en) Catalyst for electroless plating process
JP4000476B2 (en) Composition for pretreatment of electroless plating
US3969554A (en) Precious metal sensitizing solutions
US4187198A (en) Novel precious metal sensitizing solutions
JP3826544B2 (en) Catalyst composition for electroless plating
TW200303372A (en) Method of depositing gold layer on metal, method of manufacturing electronic device, and article
US3960573A (en) Novel precious metal sensitizing solutions
JPH02294415A (en) Production of fine copper powder
JPH08176837A (en) Electroless nickel-phosphorus plating solution
JP5110504B2 (en) Composition for forming black chemical conversion film
GB2109013A (en) Metallic impurity control for electroless copper plating
US4180480A (en) Catalytically active compositions from precious metal complexes
JPH0361380A (en) Electroless tin plating bath
JPH1030188A (en) Catalyst liquid for electroless plating
US20230265563A1 (en) Surface conditioner for electroless deposition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4069248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees