JP4069199B2 - Plasma ion implantation / deposition method and apparatus - Google Patents

Plasma ion implantation / deposition method and apparatus Download PDF

Info

Publication number
JP4069199B2
JP4069199B2 JP2002010944A JP2002010944A JP4069199B2 JP 4069199 B2 JP4069199 B2 JP 4069199B2 JP 2002010944 A JP2002010944 A JP 2002010944A JP 2002010944 A JP2002010944 A JP 2002010944A JP 4069199 B2 JP4069199 B2 JP 4069199B2
Authority
JP
Japan
Prior art keywords
plasma
melt
ion implantation
processed
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002010944A
Other languages
Japanese (ja)
Other versions
JP2003213412A (en
Inventor
昭義 茶谷原
由明 杢野
淳 木野村
信輝 坪内
裕治 堀野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002010944A priority Critical patent/JP4069199B2/en
Publication of JP2003213412A publication Critical patent/JP2003213412A/en
Application granted granted Critical
Publication of JP4069199B2 publication Critical patent/JP4069199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、イオン注入方法、成膜方法、並びにイオン注入及び/又は成膜装置に関する。
【0002】
【従来の技術】
新規なイオン注入及び成膜技術としてプラズマイオン注入の開発が進んでいる。プラズマイオン注入とはプラズマ中に置かれた被処理物に負の高電圧パルスを印加してプラズマ中のイオンを被処理物表面に注入する技術の総称である。従来のイオンビームを用いたイオン注入法を用いると、半導体ウェハーの代表される平面形状物へのイオン注入は容易であるが、立体形状物の場合はそれを回転させるなどして注入しており、形状によっては注入できない部分があった。プラズマイオン注入を用いると一度に立体形状物の全周に注入でき、適用範囲の拡大や処理コストの低減が可能となるので注目されている。
【0003】
プラズマイオン注入技術において、金属など室温で固体の元素をイオンとして注入する場合は、その元素のプラズマを発生させる必要がある。塩化物や有機金属化合物ガスを用いて放電によってプラズマを発生させると、目的のイオンの他に塩素、炭素、水素などが同時に注入されてしまう。目的のイオンのみ注入を行いたい場合は、専ら真空アーク放電を用いて固体原料から直接プラズマを発生させる方法が用いられている。
【0004】
本発明と形態が類似した成膜技術に、例えば「特開平11-36073 イオンプレーティング装置」がある。基板へパルスバイアス(正:50乃至120V、負:-200乃至-2000V)を印加しているが、パルスバイアスを用いる目的は、絶縁基板または絶縁材料を蒸着するときに起こるチャージアップを防止するためであり、本発明での負の高電圧パルスを印加するプラズマイオン注入法とは区別される。
【0005】
【発明が解決しようとする課題】
プラズマイオン注入に用いるプラズマを発生させるため上述のように真空アーク放電が利用されているが、固体原料を用いた真空アーク放電に伴って「液滴(ドロップレット)」と呼ばれる粗大粒子が発生し、これが被処理物表面に付着する。この現象は、平坦な処理表面が望まれる場合に大きな問題となっており、真空アーク放電に伴って発生する液滴を減少させる技術や液滴がなるべく被処理物に到達しないような工夫がなされているが、完全に液滴を取り除くことは困難である。
【0006】
【課題を解決するための手段】
本発明は、以下の項1〜項11のイオン注入及び成膜を行う方法およびその装置に関する。
項1. プラズマ中の被処理物に負の高電圧パルスを印加して、被処理物にイオン注入及び/又は成膜を行なう方法であって、プラズマ発生に用いる材料蒸発源として固体原料の融液又は昇華物を用いることを特徴とする方法。
項2. 固体原料が元素単体若しくはその合金又は真空蒸着可能な化合物である項1に記載の方法。
項3. 真空蒸着可能な化合物が元素単体の半導体、有機半導体又は高分子半導体である項2に記載の方法。
項4. プラズマ発生に用いる材料蒸発源が固体原料の融液である項1に記載の方法。
項5. 固体原料が炭素である項1に記載の方法。
項6. プラズマの発生を窒素ガス及び/又は酸素ガス及び/又は炭化水素ガスの存在下で行なう項1〜5のいずれか1つに記載の方法。
項7. 被処理物と融液又は昇華物の間に遮蔽板を存在させてイオン注入又は成膜を行なう項1の方法。
項8. 高電圧パルス電源及び被処理物の支持装置を有する被処理物に高電圧パルスを印加する装置;陽極、固体原料融液又は炭素を保持できる陰極体及び放電用電源からなる放電装置;陰極体上の固体原料又は炭素を溶融ないし昇華させるための装置;真空槽を備えたイオン注入及び/又は成膜装置。
項9. 窒素ガス及び/又は酸素ガス及び/又は炭化水素ガスの導入管をさらに備えた項8に記載の装置。
項10. 被処理物と材料発生源の間に遮蔽板を設けてなる項8の装置。
項11. 処理表面に液滴がなく、イオン注入物が材料蒸発源のみであるプラズマイオン注入・成膜処理物。
【0007】
【発明の実施の形態】
以下図面に示す実施態様を参照しつつ、本発明をさらに詳細に説明する。
【0009】
図1に示す様に、真空排気した真空槽の中で電子ビーム加熱等によって、元素単体又は化合物などの固体原料を溶融する。固体原料が元素単体、単体の半導体、有機半導体、高分子半導体などの場合には、固体原料を加熱溶融して、融液とするのが好ましい。具体的には、内部が水冷されている銅製ルツボに固体原料を入れ、電子ビームを照射して固体原料を加熱溶融させて融液を得る。必要に応じて銅製ルツボにハースライナーと呼ばれる容器を入れ、その中で元素単体又は化合物などの固体原料を加熱溶融させる。上記銅製ルツボの代わりにアルミナ、マグネシア、窒化アルミニウム、黒鉛、窒化ホウ素コンポジットなどでできたルツボも用いることができる。アルミナ、マグネシア、窒化アルミニウムについては、絶縁体なので導電性の付与が必要である。また、これらを使用した場合、融液が電極とならず、そのまわりの銅などの金属部分が電極として働き、放電すると予想される。
【0010】
溶融の方法としては、電子ビーム加熱のほか、抵抗加熱やアーク放電などがあり、その方法を問わない。固体原料全体を完全に溶融させても表面のみ溶融させても良いが、以下の放電が起こる程度に、電子ビーム加熱の場合は電子ビーム電流を大きくし、蒸気が十分になるようにする。該融液を陰極とし、その上部に配置した陽極との間で放電を起こす。ここで、該陽極は放電用直流電源に接続されている。上記放電用直流電源の代わりに交流電源を用いることもできる。この放電によって融液の蒸気がイオン化してプラズマが発生する。
【0011】
本発明における固体原料は、真空蒸着可能なものであれば特に限定されないが、例えば、元素単体、その合金又は化合物を含む。元素単体として、チタン、シリコン、ホウ素、マグネシウム、アルミニウム、バナジウム、クロム、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ニオブ、モリブデン、パラジウム、銀、インジウム、スズ、タンタル、タングステン、レニウム、イリジウム、白金、金、水銀、鉛、ビスマス、タリウム、ゲルマニウムを含み、合金として、ニッケル-クロム、鉄-クロム、鉄-ニッケル-クロム、白金-イリジウムを含み、化合物としてGaAs, CdSのような化合物半導体と、ポリアセン系化合物などの多環芳香族化合物やメロシアニンのような有機半導体、ポリアセチレンなどの共役二重結合を持つ高分子半導体などを含む。合金又は化合物を原料として用いる場合、合金又は化合物中のいずれかの元素が選択的に蒸発してしまったり、分解したりして制御性が悪いことが予想される。合金又は化合物を薄膜形成または注入したい場合、通常の真空蒸着のように複数の蒸発源を同時に使うほうが実用的である。
【0013】
本発明における融液とは、上記固体原料が融解したもので、陰極体と陽極との間で放電を起こすために十分な蒸気を供給するに足る融液温度が必要である。融液の量及び流動性は問わない。
【0014】
陰極体は、融液とそれを保持する任意形状のルツボからなる。
【0015】
本発明における被処理物について、大きさは真空槽に入るもので、真空槽を大型化すれば制限はない。被処理物の形状は、板状、立体形状など任意である。板状のほうが均一性などにおいて処理しやすいが、本発明は立体形状物へイオン注入できることが特徴の1つである。被処理物の素材は、金属、半導体など導電性のものである。被処理物が絶縁性の場合、例えば、被処理物が板状の時は、板の裏面に金属を接しておき、絶縁性の被処理物が立体形状の時は、立体内部に導体を入れ、それらを高電圧パルス電源に接続する必要がある。
【0016】
被処理物の表面の状態は、通常の真空蒸着を行う程度の洗浄等をおこなって清浄にしておく。
【0017】
本発明の好ましい1つの実施形態において、発生したプラズマ中に置かれた被処理物に、高電圧パルス電源を用いて、負の高電圧パルス(0〜−100kV)を印加することによって、プラズマ中の正イオンを被処理物表面に注入及び/又は成膜する。この時、電子ビームは加速電圧0.1 kV〜20 kVおよび電流10 mA〜1000 mA、放電電流は0〜1000 A、高電圧パルスのパルス幅は0 μs〜300 μs、高電圧パルスの繰返し周波数は0〜500kHzである。それぞれの条件は現実的な参考値であり、それに限定されない。
【0018】
イオン注入量は、電子ビーム電流、放電電流、高電圧パルスのパルス幅およびパルス数によって制御され、注入量はそれらの増加ととも増える。蒸着粒子に対する遮蔽板がある場合、成膜量にも同じことがあてはまる。遮蔽板がない場合は、イオンによる成膜と蒸気(中性原子)による成膜が同時に起こるので、成膜量は蒸気による成膜量にも依存する。
【0019】
一般に固体元素のイオン照射を行なった場合、負バイアスが約−2〜−100 kVの場合、主としてイオン注入が行われ、約−2〜0 kVではイオン注入及び成膜が行なわれる。ただし、イオン注入から成膜へは連続的に移行するので、負バイアスの境界は明確はものではなく、元素によっても変化する。
【0020】
イオン注入を続けると表面は、注入元素の組成が100%に近づき、成膜を行なっていることになる。この場合、注入と同時にスパッタが起こり、成膜した一部は削られることになるので効率が悪い。それで成膜のみを行なうときは、負バイアスの大きさを小さく、場合によっては0 Vにして行なう。
【0021】
必要に応じて図1の装置にガス導入配管から窒素ガス及び/又は酸素ガス及び/又は炭化水素ガス等を導入することによって、窒化物または酸化物成膜等の化合物薄膜形成を行うこともできる。
【0022】
図1の構成だとイオン注入と単なる真空蒸着が同時に起こることになるが、イオン注入のみ行いたい場合は、被処理物と陽極の間に適当な大きさの遮蔽板を挿入し、直進する中性の蒸着元素が被処理物に到達しないようにし、プラズマ中のイオンのみを被処理物に誘引する(図2)。
【0023】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明確にする。
【0024】
実施例1
図1に示す装置において、真空排気後、10 kV、130 mAの電子ビームによって固体原料のチタンを溶融させた。放電用直流電源を用いて陽極に100 V印加して、放電によってプラズマを起こし、その後、アーク電流が約10 Aになるように保った。この状態で被処理物のステンレス板(SUS304板、100×100×0.5 mm厚)にパルス電圧-10 kV、パルス幅10 μsのパルス状バイアスを、高電圧パルス電源を用いて印加することによって、プラズマ中のイオンを被処理物表面に誘引し注入を行った。図1の高電圧プローブ、電流モニターおよびオシロを用いて、-10 kV印加した場合の印加電圧および(保持用部品を含む)被処理物に流れた注入電流の波形測定の結果を図2に示す。
【0025】
また処理表面には、光学顕微鏡観察により液滴は全くみられなかった。
【0026】
【発明の効果】
本発明によれば、アーク放電に用いる原料を溶融させ、この融液を陰極として放電を起こすと、目的元素以外の元素や液滴が全く混入しないプラズマイオン注入が可能となる。
【0027】
本発明において、真空アーク放電が起こりにくいシリコンやホウ素を原料としてプラズマを生成できるので、シリコンやホウ素をはじめとして、ほとんどの固体元素のプラズマイオン注入が可能となる。
【0028】
本発明の成膜法により、処理表面に光学顕微鏡によりミクロン以上の液滴が全く見られない、均質な成膜が可能である。
【0029】
本発明によるイオン注入は、半導体の伝導型(pn)制御を行うための不純物添加、基材との化合物形成および成膜の前処理として密着性および耐衝撃性向上のため傾斜組成層を基材と皮膜の間に形成するために行なう。
【0030】
本発明による成膜は、半導体素子、光学素子の作製、機械部品、工具等に耐摩耗性、耐食性、装飾性などを付与するために行なう。
【0031】
従来の固体陰極表面では、真空アーク放電に伴い大きさ数ミクロンの粗大粒子(液滴)が発生し、真空中へ飛散し、一部が被処理物に付着して表面の平滑性を損ねていた。一方で、融液を陰極とした本発明においては液滴が発生しないので、以上の問題は起こらない。
【図面の簡単な説明】
【図1】 図1は、融液を陰極とした放電を用いたプラズマイオン注入装置を示す。
【図2】 図2は、融液を陰極とした放電を用いたプラズマイオン注入装置を示す。
【図3】 図3は、実施例1における被処理物に流れる注入イオン電流と印加電圧の関係を表す。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ion implantation method, a film forming method, and an ion implantation and / or film forming apparatus.
[0002]
[Prior art]
Development of plasma ion implantation is progressing as a new ion implantation and film formation technique. Plasma ion implantation is a general term for techniques for injecting ions in plasma to the surface of the object to be processed by applying a negative high-voltage pulse to the object to be processed in the plasma. If the conventional ion implantation method using an ion beam is used, it is easy to implant ions into a planar object represented by a semiconductor wafer, but in the case of a three-dimensional object, it is implanted by rotating it. Some parts could not be injected depending on the shape. When plasma ion implantation is used, it can be implanted all around the three-dimensional object at one time, and it is possible to expand the application range and reduce the processing cost.
[0003]
In the plasma ion implantation technique, when a solid element such as a metal is implanted as ions at room temperature, it is necessary to generate plasma of the element. When plasma is generated by discharge using a chloride or an organometallic compound gas, chlorine, carbon, hydrogen and the like are simultaneously injected in addition to the target ions. When it is desired to implant only target ions, a method of generating plasma directly from a solid material using vacuum arc discharge is used.
[0004]
As a film forming technique similar in form to the present invention, there is, for example, “JP-A-11-36073 ion plating apparatus”. A pulse bias (positive: 50 to 120 V, negative: -200 to -2000 V) is applied to the substrate, but the purpose of using the pulse bias is to prevent charge-up that occurs when depositing an insulating substrate or insulating material. Therefore, it is distinguished from the plasma ion implantation method in which a negative high voltage pulse is applied in the present invention.
[0005]
[Problems to be solved by the invention]
As described above, vacuum arc discharge is used to generate plasma used for plasma ion implantation, but coarse particles called “droplets” are generated with vacuum arc discharge using a solid material. This adheres to the surface of the workpiece. This phenomenon is a major problem when a flat processing surface is desired. Techniques to reduce the droplets generated by vacuum arc discharge and measures to prevent the droplets from reaching the workpiece as much as possible are made. However, it is difficult to completely remove the droplets.
[0006]
[Means for Solving the Problems]
The present invention relates to a method and an apparatus for performing ion implantation and film formation of items 1 to 11 below.
Item 1. A method of applying a negative high voltage pulse to an object to be processed in plasma to perform ion implantation and / or film formation on the object to be processed, wherein a solid raw material melt or sublimation is used as a material evaporation source for plasma generation A method characterized by using an object.
Item 2. Item 2. The method according to Item 1, wherein the solid raw material is a single element or an alloy thereof or a compound capable of being vacuum deposited.
Item 3. Item 3. The method according to Item 2, wherein the compound capable of being vacuum-deposited is an elemental semiconductor, an organic semiconductor, or a polymer semiconductor.
Item 4. Item 2. The method according to Item 1, wherein the material evaporation source used for plasma generation is a solid raw material melt.
Item 5. Item 2. The method according to Item 1, wherein the solid raw material is carbon.
Item 6. Item 6. The method according to any one of Items 1 to 5, wherein the plasma is generated in the presence of nitrogen gas and / or oxygen gas and / or hydrocarbon gas.
Item 7. Item 2. The method according to Item 1, wherein ion implantation or film formation is performed with a shielding plate between the workpiece and the melt or sublimate.
Item 8. A device for applying a high voltage pulse to a workpiece having a high voltage pulse power source and a support device for the workpiece; a discharge device comprising an anode, a cathode body capable of holding a solid raw material melt or carbon, and a discharge power source; on the cathode body An apparatus for melting or sublimating a solid raw material or carbon; an ion implantation and / or film forming apparatus provided with a vacuum chamber.
Item 9. Item 9. The apparatus according to Item 8, further comprising an introduction pipe for nitrogen gas and / or oxygen gas and / or hydrocarbon gas.
Item 10. Item 9. The apparatus according to Item 8, wherein a shielding plate is provided between the workpiece and the material generation source.
Item 11. Plasma ion-implanted / film-formed product in which there are no droplets on the processing surface and the ion implantation material is only the material evaporation source.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.
[0009]
As shown in FIG. 1, a solid material such as a simple element or a compound is melted by electron beam heating or the like in a vacuum chamber evacuated. When the solid raw material is a single element, a single semiconductor, an organic semiconductor, a polymer semiconductor, or the like, it is preferable to heat and melt the solid raw material to obtain a melt. Specifically, a solid raw material is put into a copper crucible whose inside is water-cooled, and an electron beam is irradiated to heat and melt the solid raw material to obtain a melt. If necessary, a container called a hearth liner is placed in a copper crucible, and a solid material such as a simple element or a compound is heated and melted therein. Instead of the copper crucible, a crucible made of alumina, magnesia, aluminum nitride, graphite, boron nitride composite or the like can also be used. Since alumina, magnesia, and aluminum nitride are insulators, it is necessary to impart conductivity. Moreover, when these are used, it is expected that the melt does not serve as an electrode, and a metal portion such as copper around the melt functions as an electrode and discharges.
[0010]
Melting methods include resistance heating and arc discharge in addition to electron beam heating, and any method can be used. The entire solid raw material may be completely melted or only the surface may be melted, but in the case of electron beam heating, the electron beam current is increased so that the vapor is sufficient to the extent that the following discharge occurs. The melt is used as a cathode, and an electric discharge is generated between the melt and an anode disposed on the cathode. Here, the anode is connected to a DC power supply for discharge. An AC power supply may be used instead of the discharging DC power supply. This discharge ionizes the melt vapor to generate plasma.
[0011]
Although the solid raw material in this invention will not be specifically limited if it can be vacuum-deposited, For example, an element simple substance, its alloy, or a compound is included. As element simple substance, titanium, silicon, boron, magnesium, aluminum, vanadium, chromium, iron, cobalt, nickel, copper, zinc, gallium, germanium, niobium, molybdenum, palladium, silver, indium, tin, tantalum, tungsten, rhenium, Contains iridium, platinum, gold, mercury, lead, bismuth, thallium, germanium, alloys include nickel-chromium, iron-chromium, iron-nickel-chromium, platinum-iridium, and compounds such as GaAs and CdS Examples include semiconductors, polycyclic aromatic compounds such as polyacene compounds, organic semiconductors such as merocyanine, and polymer semiconductors having conjugated double bonds such as polyacetylene. When an alloy or a compound is used as a raw material, it is expected that any element in the alloy or compound is selectively evaporated or decomposed, resulting in poor controllability. When it is desired to form or inject an alloy or compound into a thin film, it is more practical to use a plurality of evaporation sources at the same time as in ordinary vacuum deposition.
[0013]
The melt in the present invention is a melt of the solid raw material, and requires a melt temperature sufficient to supply sufficient vapor to cause discharge between the cathode body and the anode. The amount and fluidity of the melt are not questioned.
[0014]
The cathode body is composed of a melt and a crucible having an arbitrary shape for holding the melt.
[0015]
About the to-be-processed object in this invention, a magnitude | size will enter a vacuum tank, and if a vacuum tank is enlarged, there will be no restriction | limiting. The shape of the object to be processed is arbitrary such as a plate shape or a three-dimensional shape. Although the plate shape is easier to process in terms of uniformity and the like, the present invention is characterized in that ions can be implanted into a three-dimensional object. The material of the object to be processed is a conductive material such as metal or semiconductor. When the workpiece is insulative, for example, when the workpiece is plate-shaped, keep the metal in contact with the back of the plate, and when the insulating workpiece is solid, insert a conductor inside the cube. They need to be connected to a high voltage pulse power supply.
[0016]
The state of the surface of the object to be processed is cleaned by cleaning to the extent that ordinary vacuum deposition is performed.
[0017]
In one preferred embodiment of the present invention, a negative high voltage pulse (0 to −100 kV) is applied to a workpiece placed in the generated plasma by using a high voltage pulse power source to generate a plasma. Are implanted and / or formed into a film on the surface of the workpiece. At this time, the electron beam has an acceleration voltage of 0.1 kV to 20 kV and a current of 10 mA to 1000 mA, a discharge current of 0 to 1000 A, a pulse width of the high voltage pulse is 0 μs to 300 μs, and the repetition frequency of the high voltage pulse is 0. ~ 500kHz. Each condition is a realistic reference value and is not limited thereto.
[0018]
The ion implantation amount is controlled by the electron beam current, the discharge current, the pulse width and the number of pulses of the high-voltage pulse, and the implantation amount increases as they increase. When there is a shielding plate for the vapor deposition particles, the same applies to the amount of film formation. When there is no shielding plate, film formation by ions and film formation by vapor (neutral atoms) occur simultaneously, so the film formation amount also depends on the film formation amount by vapor.
[0019]
In general, when ion irradiation of a solid element is performed, when a negative bias is about −2 to −100 kV, ion implantation is mainly performed, and at about −2 to 0 kV, ion implantation and film formation are performed. However, since the transition from ion implantation to film formation is continuous, the boundary of the negative bias is not clear and changes depending on the element.
[0020]
When ion implantation is continued, the composition of the implanted element approaches 100% on the surface, and film formation is performed. In this case, sputtering occurs at the same time as the implantation, and a part of the deposited film is cut away, so that the efficiency is low. Therefore, when only film formation is performed, the negative bias is set small, and in some cases, 0 V.
[0021]
A compound thin film such as a nitride or oxide film can be formed by introducing nitrogen gas and / or oxygen gas and / or hydrocarbon gas or the like into the apparatus of FIG. .
[0022]
In the configuration of FIG. 1, ion implantation and simple vacuum deposition occur simultaneously, but when only ion implantation is desired, a shield plate of an appropriate size is inserted between the object to be processed and the anode, The vapor deposition element is prevented from reaching the object to be processed, and only ions in the plasma are attracted to the object to be processed (FIG. 2).
[0023]
【Example】
Examples are shown below to further clarify the features of the present invention.
[0024]
Example 1
In the apparatus shown in FIG. 1, after evacuation, titanium as a solid material was melted by an electron beam of 10 kV and 130 mA. 100 V was applied to the anode using a DC power source for discharge, plasma was generated by discharge, and then the arc current was maintained at about 10 A. In this state, by applying a pulsed bias with a pulse voltage of -10 kV and a pulse width of 10 μs to a stainless steel plate (SUS304 plate, 100 × 100 × 0.5 mm thickness) using a high voltage pulse power supply, Ions were implanted by attracting ions in the plasma to the surface of the workpiece. FIG. 2 shows the results of waveform measurement of the applied voltage when -10 kV is applied and the injected current flowing through the workpiece (including holding parts) using the high voltage probe, current monitor and oscilloscope of FIG. .
[0025]
Further, no droplets were observed on the treated surface by optical microscope observation.
[0026]
【The invention's effect】
According to the present invention, when a raw material used for arc discharge is melted and discharge is caused by using this melt as a cathode, plasma ion implantation can be performed in which no elements other than the target element and droplets are not mixed at all.
[0027]
In the present invention, plasma can be generated using silicon or boron, which is less susceptible to vacuum arc discharge, so that plasma ion implantation of most solid elements including silicon and boron is possible.
[0028]
By the film forming method of the present invention, it is possible to form a uniform film with no micron or larger droplets observed on the treated surface by an optical microscope.
[0029]
In the ion implantation according to the present invention, a gradient composition layer is used as a base material for improving adhesion and impact resistance as a pretreatment for impurity addition, compound formation with a base material, and film formation for semiconductor conductivity type (pn) control. And to form between the film.
[0030]
The film formation according to the present invention is performed in order to provide semiconductor elements, optical elements, mechanical parts, tools, etc. with wear resistance, corrosion resistance, decorativeness, and the like.
[0031]
On the surface of a conventional solid cathode, coarse particles (droplets) of several microns in size are generated due to vacuum arc discharge and scattered into the vacuum, and some of them adhere to the workpiece and impair the smoothness of the surface. It was. On the other hand, in the present invention in which the melt is used as a cathode, no droplets are generated, so the above problem does not occur.
[Brief description of the drawings]
FIG. 1 shows a plasma ion implantation apparatus using discharge using a melt as a cathode.
FIG. 2 shows a plasma ion implantation apparatus using discharge using a melt as a cathode.
FIG. 3 shows a relationship between an implanted ion current flowing in a workpiece and an applied voltage in Example 1.

Claims (8)

プラズマ中の被処理物に負の高電圧パルスを印加して、被処理物にイオン注入及び/又は成膜を行なう方法であって、プラズマ発生に用いる材料蒸発源として固体原料の融液を用い、該融液とそれを保持するルツボからなる陰極体と陽極との間の放電によってプラズマを発生させ、プラズマ中の正イオンを被処理物表面に誘引することを特徴とする方法。A method in which a negative high voltage pulse is applied to an object to be processed in plasma to perform ion implantation and / or film formation on the object to be processed, using a solid raw material melt as a material evaporation source used for plasma generation A method of generating plasma by discharge between a cathode body composed of the melt and a crucible holding the melt and an anode, and attracting positive ions in the plasma to the surface of the object to be processed. 固体原料が元素単体若しくはその合金又は真空蒸着可能な化合物である請求項1に記載の方法。The method according to claim 1, wherein the solid raw material is a single element or an alloy thereof or a compound capable of being vacuum deposited. 真空蒸着可能な化合物が元素単体の半導体、有機半導体又は高分子半導体である請求項2に記載の方法。The method according to claim 2, wherein the vacuum depositable compound is an elemental semiconductor, an organic semiconductor, or a polymer semiconductor. プラズマの発生を窒素ガス及び/又は酸素ガス及び/又は炭化水素ガスの存在下で行なう請求項1〜3のいずれか1つに記載の方法。The method according to any one of claims 1 to 3, wherein the plasma is generated in the presence of nitrogen gas and / or oxygen gas and / or hydrocarbon gas. 被処理物と融液の間に遮蔽板を存在させてイオン注入又は成膜を行なう請求項1の方法。2. The method according to claim 1, wherein ion implantation or film formation is performed with a shielding plate present between the workpiece and the melt. 高電圧パルス電源及び被処理物の支持装置を有する被処理物に高電圧パルスを印加する装置;陽極、固体原料融液を保持できる陰極体及び放電用電源からなる放電装置;陰極体上の固体原料を溶融させるための装置;真空槽を備えたイオン注入及び/又は成膜装置。A device for applying a high voltage pulse to a workpiece having a high voltage pulse power source and a support device for the workpiece; a discharge device comprising an anode, a cathode body capable of holding a solid raw material melt, and a discharge power source; a solid on the cathode body An apparatus for melting raw materials; an ion implantation and / or film forming apparatus provided with a vacuum chamber. 窒素ガス及び/又は酸素ガス及び/又は炭化水素ガスの導入管をさらに備えた請求項6に記載の装置。The apparatus according to claim 6, further comprising an introduction pipe for nitrogen gas and / or oxygen gas and / or hydrocarbon gas. 被処理物と材料発生源の間に遮蔽板を設けてなる請求項6の装置。7. The apparatus according to claim 6, wherein a shielding plate is provided between the object to be processed and the material generation source.
JP2002010944A 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus Expired - Lifetime JP4069199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002010944A JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002010944A JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Publications (2)

Publication Number Publication Date
JP2003213412A JP2003213412A (en) 2003-07-30
JP4069199B2 true JP4069199B2 (en) 2008-04-02

Family

ID=27648539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002010944A Expired - Lifetime JP4069199B2 (en) 2002-01-21 2002-01-21 Plasma ion implantation / deposition method and apparatus

Country Status (1)

Country Link
JP (1) JP4069199B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6104126B2 (en) * 2013-10-22 2017-03-29 三井造船株式会社 Film forming apparatus and film forming method
JP6143007B2 (en) * 2014-03-25 2017-06-07 三井造船株式会社 Film forming apparatus and film forming method

Also Published As

Publication number Publication date
JP2003213412A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
Wu et al. Cu films prepared by bipolar pulsed high power impulse magnetron sputtering
Rawat et al. Room temperature deposition of titanium carbide thin films using dense plasma focus device
JP3060876B2 (en) Metal ion implanter
JPH0633451B2 (en) Surface treatment method of work piece
JPS63230866A (en) Vacuum vapor deposition method and apparatus by arc discharge between anode and cathode
US5192578A (en) Method of producing coating using negative dc pulses with specified duty factor
JP2005305632A (en) Abrasive for precision surface treatment and its manufacturing method
EP0558061A1 (en) Improvements in physical vapour deposition processes
WO2004055233A1 (en) Transparent conductive film and film forming method therefor
JP2005248322A (en) Process for depositing composite coating on surface
JP4240471B2 (en) Method for forming transparent conductive film
US20070144901A1 (en) Pulsed cathodic arc plasma
RU2415966C1 (en) Procedure for coating items out of hard alloys
JP4069199B2 (en) Plasma ion implantation / deposition method and apparatus
Borisov et al. Effective processes for arc-plasma treatment in large vacuum chambers of technological facilities
RU2342468C1 (en) Formation technique of ultrahard alloyed carbonic coating on silicon in vacuum
Yukimura et al. Deposition of amorphous carbon using a shunting arc discharge
Grenadyorov et al. Investigation of parameters of plasma generated by high-power impulse magnetron sputtering (HiPIMS) of graphite
Krishnasamy et al. Influence of process parameters on the substrate heating in direct current plasma magnetron sputtering deposition process
JP3950709B2 (en) Ion implantation method using sputtering method and apparatus therefor
JP6569900B2 (en) Sputtering apparatus and film forming method
JPH0480376A (en) Method of alloying metal surface
JPH1068069A (en) Formation of metallic boride coating film
Xia et al. Low-temperature Silicon films deposition by pulsed cathodic arc process for microsystem technologies
Borisenko Dynamics of the ion energy distribution and plasma parameters in flows of the non-self-sustained arc discharge in molybdenum vapors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

R150 Certificate of patent or registration of utility model

Ref document number: 4069199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term