JP4069026B2 - Foam insulation board - Google Patents

Foam insulation board Download PDF

Info

Publication number
JP4069026B2
JP4069026B2 JP2003180781A JP2003180781A JP4069026B2 JP 4069026 B2 JP4069026 B2 JP 4069026B2 JP 2003180781 A JP2003180781 A JP 2003180781A JP 2003180781 A JP2003180781 A JP 2003180781A JP 4069026 B2 JP4069026 B2 JP 4069026B2
Authority
JP
Japan
Prior art keywords
plate
heat insulating
foam
strain
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003180781A
Other languages
Japanese (ja)
Other versions
JP2005016099A (en
Inventor
伸悟 西岡
健二 赤松
Original Assignee
ダウ化工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダウ化工株式会社 filed Critical ダウ化工株式会社
Priority to JP2003180781A priority Critical patent/JP4069026B2/en
Publication of JP2005016099A publication Critical patent/JP2005016099A/en
Application granted granted Critical
Publication of JP4069026B2 publication Critical patent/JP4069026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、施工性に優れ、且つ、所望の断熱性能を確実に保持し得る発泡断熱板に関するものである。
【0002】
【従来の技術】
断熱板を施工する場合、例えば木造建築物の床に配置された根太の間に断熱板を施工する場合には、断熱板が床板に密着するように施工するとより良い断熱効果が得られるとされており、予め根太に取り付けた断熱材受け具を用いたり、脚を設けた断熱板を用いて施工する方法が知られている。
【0003】
例えば特許文献1には、受金具を用いた断熱板の取り付け工法が開示されているが、この方法では所要の間隔で受金具を根太に配置しなければならず、手間がかかるという欠点があった。また、根太と断熱板、断熱板と床板の間には少なくとも受金具の厚み分だけの間隙が形成されるため、断熱効果が良好に維持できない場合もあった。
【0004】
特許文献2には、根太間に圧縮して嵌挿しやすくするために複数の細溝を形成した脚付きの断熱材が開示されているが、細溝を加工する手間がかかり、また、溝を比較的深く形成する必要があるために施工時に破損し易い欠点があった。また、脚が断熱板の両端に配置されているため、際根太の施工のために断熱板の幅を調整するために切断する必要がある場合には、せっかく設けた脚が失われて床板等との密着性が損なわれ、所望の断熱性能が得られないという欠点があった。
【0005】
特許文献3には、厚みの一部を切り欠くとともに、厚み方向に圧縮変形が可能な取り付け片を設けた断熱板を用いた断熱構造が開示されているが、断熱板を加工する手間がかかり、また、床板等を打ち付ける衝撃などによって切り欠き部分が割れてしまうという欠点があった。
【0006】
特許文献4には、厚みの一部が切り欠かれた断熱板を係止させて嵌込んだ断熱構造が開示されているが、この方法では断熱板そのものが厚み方向に圧縮変形を生じるために断熱性能が低下し、所望の断熱性能が得られないという欠点があった。
【0007】
【特許文献1】
特公昭56−19424号公報
【特許文献2】
実開昭62−177807号公報
【特許文献3】
実用新案登録第2567807号公報
【特許文献4】
特開2002−167881号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の欠点を解消し、受金具等を用いることなく容易に施工できると共に、所望の断熱性能を確実に保持し得る断熱板を提供することである。
本発明のさらなる目的は、標準根太間隔及び際根太間隔の両方に施工することができ、なおかつ保管・輸送時の省スペース性にも考慮した断熱板を提供することである。
【0009】
【課題を解決するための手段】
上記の課題を解決する本発明は、押出発泡した合成樹脂の複数の細条を収束させた発泡断熱板であって、断熱板本体の板状部の片面に連続的形状を有する突起部が複数一体形成されており、前記突起部が前記板状部より低密度であるか又は空洞を有していることにより、前記突起部の厚み方向の5%歪での圧縮応力が、前記板状部の厚み方向の5%歪での圧縮応力の80%以下となっていることを特徴とする。
【0010】
本発明の発泡断熱板によれば、例えば突起部を下にして断熱板を敷設した後にこの上に床下地材等を設置する際、大きな力を要せずに突起部が選択的に潰れる(変形する)ため、断熱材として機能する板状部の変形を防止しつつ、板状部を床下地材等に密着した状態で確実に施工することができ、所望の断熱性能を確実に保持することができる。また、複数の細条を収束させた発泡断熱板の表面には微細な凹凸が存在するため、単なる平面形状に比較して、大きな力を要せず先端の細条が潰れて下地材に容易に且つ確実に密着させることができる。
【0011】
本発明の発泡断熱板は、次にようなさらに好ましい態様を有する。
前記突起部の厚み方向の5%歪での圧縮応力が、前記板状部の厚み方向の5%歪での圧縮応力の60%以下であることが好ましく、50%以下であることが特に好ましい。
前記板状部と前記突起部の合計厚みが、施工される部材間の間隔よりも僅かに厚いことが好ましい。
前記板状部の幅方向の両端に位置する突起部のうち少なくとも一方は、前記板状部の幅方向の端部から70mm以上離れた位置に形成されていることが好ましい。
前記突起部は、該突起部の形成面同士を向き合わせて発泡断熱板を積み重ねた際に互いに該突起部同士を嵌合できる位置に形成されていることが好ましい。
前記合成樹脂がオレフィン系樹脂であることが好ましい。
前記突起部は連続気泡の発泡体からなることが好ましい。
前記突起部の密度が、前記板状部の密度よりも低いことが好ましい。
【0012】
【発明の実施の形態】
以下、本発明の実施形態例を説明するが、本発明はかかる形態例に限定されるものではない。
【0013】
本発明の発泡断熱板は、押出発泡した合成樹脂の複数の細条(ストランド)を収束させたものであって、断熱板本体の板状部の片面に連続的形状を有する複数の突起部が一体形成されているものである。ここで言う「連続的形状」とは、散点的なものではなく、例えば断熱板の長さ方向全長にわたって連続した形状、を意味する。
【0014】
発泡断熱板の材料となる合成樹脂としては、熱可塑性樹脂であれば特に限定されるものではないが、オレフィン系樹脂、特にポリエチレン、ポリプロピレンが好適である。これらのオレフィン系樹脂を用いることにより、発泡断熱板に適度な柔軟性を持たせ施工性を高めることができると共に、適度な表面摩擦を付与し、滑りにくく、積載安定性を高めることもできる。
【0015】
本発明の発泡断熱板の形態例を図1(a)〜(d)に模式的に示す。図1において、10は発泡断熱板、11は断熱板本体の板状部、12は突起部、13は細条である。尚、板状部11も突起部12と同様に複数の細条13によって形成されているが、図面には表していない。
【0016】
突起部12は板状部11の片面に一体形成されており、紙面垂直方向に直線状に連続して形成されているものである。例示される細条13は円形の断面を有するが、任意の多角形、楕円形等であってもかまわない。細条13の大きさは、例えば円形の場合には、直径が5mm程度が好適である。
【0017】
押出発泡した合成樹脂の複数の細条を収束させた発泡体は、特許第2620968号公報、米国特許第3573152号明細書に開示されており、発泡可能な熱可塑性材料をマルチオリフィスのダイプレートを通して押し出し、それによりストランドの個々の発泡可能なエレメントが、ダイオリフィスから出たとき形成され、膨張されそして合体されることにより製造される。
【0018】
本発明の発泡断熱板は、前記特許第2620968号公報に記載の方法を用いて製造することができ、例えば図2に示すようなダイプレートを用いて製造される。このダイプレート20は、多数の小さな円形のオリフィス21よりなる。例えば図1(a)に示した発泡断熱板を製造する場合には図3に示すパターンでオリフィス21を閉じ、図1(c)に示した発泡断熱板を製造する場合には図4に示すパターンでオリフィス21を閉じる(黒丸が閉じた部分)。
【0019】
本発明の発泡断熱板では、突起部12の厚み方向の5%歪での圧縮応力が、板状部11の厚み方向の5%歪での圧縮応力の80%以下、好ましくは60%以下、特に好ましくは50%以下となるように、突起部12の密度、断面形状、発泡状態等が適宜設計される。突起部12の厚み方向の5%歪での圧縮応力が、板状部11の厚み方向の5%歪での圧縮応力の80%を超える場合には、例えば発泡断熱板を敷設した後にこの上に床下地材等を設置する際、突起部12のみならず断熱材として機能する板状部11も潰れやすくなり(変形しやすくなり)、断熱性能が損なわれ易い。
【0020】
上記のような特性は、例えば、▲1▼突起部12を板状部11よりも低密度化する、▲2▼突起部12に空洞部を形成する、▲3▼突起部12の発泡体のみを連続気泡化する、等によって実現することができる。
【0021】
▲1▼突起部12を板状部11よりも低密度化する場合には、発泡直後に突起部12のみを加熱し二次発泡させたり、突起部12を構成する細条を板状部11のそれよりも太くしたり、突起部12を形成するオリフィス21の間隔を板状部11のそれよりも広くして突起部12の集束度合いを疎にする、等の方法を用いることができる。
【0022】
▲2▼突起部12に空洞部を形成する場合には、前述のように形成したい空洞部に対応するオリフィス21を閉じることにより容易に実現できる。この空洞部は図1(c)に例示した形態に限らず、例えば一つの突起部12に隔壁で仕切られた複数の空洞部を形成してもよい。
【0023】
▲3▼突起部12の発泡体のみを連続気泡化する場合には、発泡直後に上記低密度化よりもさらに高い温度で突起部12のみを加熱二次発泡させる方法を用いることができる。
【0024】
本発明の発泡断熱板では、板状部11と突起部12の合計厚みが、施工される部材間の間隔よりも僅かに厚いことが好ましい。具体的には、例えば大引き上の根太間に敷設し木造床の断熱板として用いる場合は、上記合計厚みが大引きの上面と床下地材の下面の間隔(即ち、根太の高さ)よりも数mm程度厚くなるようにする。これにより、発泡断熱板を床下地材に確実に密着させることができ、所望の断熱性能を確実に得ることができる。
【0025】
また、板状部11の幅方向の両端に位置する突起部12のうち少なくとも一方は、板状部11の幅方向の端部から70mm以上離れた位置に形成されていることが好ましい。かかる構成によれば、例えば根太間隔が狭い際根太部分の断熱施工のために断熱板の一部を現場で裁断して幅を狭くする必要がある場合にも、突起部12が形成されていない部分を切断して簡単に調整することができ、2個以上の突起部12が必ず残り、床下地材等との密着性を確保することができる。また、1種類の発泡断熱板により標準根太間隔及び際根太間隔の両方に施工することができ、汎用性が増し、低コスト化を図ることもできる。
【0026】
また、突起部12は、突起部12の形成面同士を向き合わせて発泡断熱板を積み重ねた際に互いに突起部12同士を嵌合できる位置に形成されていることが好ましい。図1に例示したものはいずれもこの様な例であり、例えば図1(b)に示した発泡断熱板は図5に示すようにして突起部12同士を嵌合して積み重ねることができ、保管・輸送時の省スペース化を図ることができる。
【0027】
【実施例】
以下に本発明の発泡断熱板を用いて木造住宅の断熱床を施工した実施例を説明するが、本発明の発泡断熱板は床断熱に限らず、壁、屋根等の断熱施工にも好適に用いることができる。
【0028】
[実施例1]
ポリプロピレン樹脂を基材として、断熱板本体の板状部の厚みが25mm、板状部に連続形成された2個の突起(脚)部の厚みが23mmである細条集束断熱板を、図2に示したようなマルチオリフィスのダイプレートを用いた押出発泡法によって製造した。この断熱板の板状部と突起部を切り分けて、各々厚み方向の5%歪での圧縮応力を測定したところ、その比率(板状部に対する突起部の比)は0.3であった。
【0029】
この断熱板を幅258mm×長さ1820mmに精寸仕上げして、図6に示すように大引き61上に303mm間隔で配置された45mm角の根太62間にはめ込み、木造住宅の断熱床を施工した。はめ込み当初は図6(a)に示すように、断熱板10の上面は根太面よりも浮いていたが、通常の方法で床板63を根太62に釘打ちすることにより、図6(b)に示すように突起部12が選択的に潰れて床板63と断熱板10が隙間なく密着した。
【0030】
[実施例2]
実施例1に記載の断熱板を製造する際に、突起部をより密に集束させた細条集束断熱板を得た。この断熱板の板状部と突起部の5%歪での圧縮応力比は0.5であった。
【0031】
この断熱板を実施例1と同じ方法で床にはめ込み施工したところ、突起部だけではなく板状部も僅かに潰れたが、断熱板に歪みが生じるほどではなく、床板と断熱板は隙間なく密着した。
【0032】
[実施例3]
ポリエチレン樹脂を基材として、実施例1と同様の方法で板状部の厚さが40mm、突起部の厚さが7mmの細条集束断熱板を得た。この断熱板の板状部と突起部の5%歪での圧縮応力比は0.4であった。
【0033】
この断熱板を実施例1と同じ方法で床にはめ込み施工したところ、突起部だけではなく板状部も僅かに潰れたが、断熱板に歪みが生じるほどではなく、床板と断熱板は隙間なく密着した。
【0034】
[実施例4]
実施例3に記載の断熱板を製造する際に、ヒーターを組み込んだ集束治具を用いて突起部だけを加熱集束させた。加熱集束させた突起部は板状部よりも連通気泡が多くなり、板状部と突起部の5%歪での圧縮応力比は0.2に低下した。
【0035】
この断熱板を実施例1と同じ方法で床にはめ込み施工したところ、突起部だけが選択的に潰れて、床板と断熱板が隙間なく密着した。
【0036】
[比較例1]
実施例1に記載の断熱板を製造する際に、突起部の集束度合いを実施例2よりも更に密にした細条集束断熱板を得た。この断熱板の板状部と突起部の5%歪での圧縮応力比は0.85であった。
【0037】
この断熱板を実施例1と同じ方法で床にはめ込み施工したところ、突起部と板状部が同程度潰れて断熱板に歪みが生じ、床板との間に隙間が発生していた。
【0038】
[比較例2]
ポリエチレン樹脂を基材とした板状の押出発泡断熱板を熱融着して、板状部の厚さ25mm、突起(脚)部の厚さが25mmである脚付き断熱板を製造した。この断熱板の板状部と突起部の5%歪での圧縮応力比は1.0であった。
【0039】
この断熱板を実施例1と同じ方法で床にはめ込み施工したところ、突起部と板状部が同程度潰れて断熱板に歪みが生じ、床板との間に隙間が発生していた。
【0040】
[比較例3]
ポリスチレン樹脂を基材とした板状の押出発泡断熱板に、厚さ7mmの帯状の発泡ポリスチレンシートを接着して、板状部の厚さ40mm、突起(脚)部の厚さが7mmである脚付き断熱板を製造した。この断熱板の板状部と突起部の5%歪での圧縮応力比は0.7であった。
【0041】
この断熱板を実施例1と同じ方法で床にはめ込み施工しようと試みたが、突起部が充分に潰れないため床板を根太に釘止めすることができなかった。
【0042】
上記の実施例及び比較例における発泡断熱板の構成及び評価結果を纏めて表1に示した。
【0043】
【表1】

Figure 0004069026
【0044】
【発明の効果】
以上説明したように、本発明の発泡断熱板を用いることにより以下の効果を奏する。
【0045】
(1)例えば床断熱の施工においては、大きな力を要せずに突起部が選択的に潰れ、断熱材として機能する板状部の変形を防止しつつ、板状部を床下地材等に密着した状態で確実に施工することができ、所望の断熱性能を確実に保持することができる。また、複数の細条を収束させた発泡断熱板の表面には微細な凹凸が存在するため、単なる平面形状に比較して、大きな力を要せず先端の細条が潰れて下地材に容易に且つ確実に密着させることができる。
【0046】
(2)特に、板状部と突起部の合計厚みが、施工される部材間の間隔よりも僅かに厚い場合には、発泡断熱板を床下地材に容易に且つ確実に密着させることができ、所望の断熱性能を確実に得ることができる。
【0047】
(3)特に、突起部が板状部の幅方向の一端部から70mm以上離れた位置に形成されている場合には、根太間隔が狭い際根太の断熱施工のために断熱板の一部を現場で裁断して幅を小さくする必要がある場合にも、突起部が形成されていない部分を切断して簡単に調整することができ、床下地材等との密着性を確保することができると共に、1種類の発泡断熱板により標準根太間隔及び際根太間隔の両方に施工することができ汎用性が高く、低コスト化を図ることもできる。
【0048】
(4)特に、突起部の形成面同士を向き合わせて発泡断熱板を積み重ねた際に互いの突起部同士が嵌合されるように構成した場合には、輸送・保管等に嵩張らない。
【0049】
(5)特に、断熱板材料の合成樹脂がオレフィン系樹脂である場合には、適度な柔軟性を持つ発泡断熱板とすることができ、施工性を高めることができると共に、適度な表面摩擦を付与することができ、滑りにくく、積載安定性を高めることができる。
【図面の簡単な説明】
【図1】本発明の発泡断熱板を模式的に示す断面図である。
【図2】本発明の発泡断熱板の製造に用いることができるマルチオリフィスのダイプレートの模式図である。
【図3】図1(a)の発泡断熱板を製造する際のオリフィスの開閉パターンを示す図である。
【図4】図1(c)の発泡断熱板を製造する際のオリフィスの開閉パターンを示す図である。
【図5】図1(b)の発泡断熱板の突起部同士を嵌合して積み重ねた状態を示す図である。
【図6】本発明の発泡断熱板を用いて木造住宅の断熱床を施工した例を説明するための図である。
【符号の説明】
10 発泡断熱板
11 断熱板本体の板状部
12 突起部(脚部)
13 細条(ストランド)
20 ダイプレート
21 オリフィス
61 大引き
62 根太
63 床板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a foam insulation board that is excellent in workability and that can reliably maintain desired heat insulation performance.
[0002]
[Prior art]
When installing a heat insulating plate, for example, when installing a heat insulating plate between joists placed on the floor of a wooden building, it is said that a better heat insulating effect can be obtained if the heat insulating plate is closely attached to the floor plate. There are known methods of using a heat insulating material holder attached to joists in advance or using a heat insulating plate provided with legs.
[0003]
For example, Patent Document 1 discloses a method for attaching a heat insulating plate using a metal fitting. However, this method has a drawback in that the metal fitting must be arranged in a joist at a required interval, which is troublesome. It was. In addition, since a gap corresponding to at least the thickness of the metal fitting is formed between the joist and the heat insulating plate, and between the heat insulating plate and the floor plate, the heat insulating effect may not be satisfactorily maintained.
[0004]
Patent Document 2 discloses a heat-insulating material with legs in which a plurality of narrow grooves are formed in order to make it easy to insert and compress between joists, but it takes time and effort to process the narrow grooves, Since it was necessary to form relatively deeply, there was a fault which was easy to break at the time of construction. In addition, since the legs are arranged at both ends of the heat insulating plate, when it is necessary to cut the width of the heat insulating plate for the construction of the joists, the legs provided are lost and the floor plate etc. There is a drawback that the desired heat insulation performance cannot be obtained.
[0005]
Patent Document 3 discloses a heat insulating structure using a heat insulating plate provided with a mounting piece that is notched partially in thickness and capable of compressive deformation in the thickness direction. However, it takes time and effort to process the heat insulating plate. In addition, there is a drawback that the cut-out portion is broken by an impact hitting a floor board or the like.
[0006]
Patent Document 4 discloses a heat insulating structure in which a heat insulating plate with a part of the thickness cut away is engaged and fitted. However, in this method, the heat insulating plate itself causes compressive deformation in the thickness direction. There existed a fault that heat insulation performance fell and desired heat insulation performance was not obtained.
[0007]
[Patent Document 1]
Japanese Patent Publication No.56-19424 [Patent Document 2]
Japanese Utility Model Publication No. 62-177807 [Patent Document 3]
Utility Model Registration No. 2567807 [Patent Document 4]
Japanese Patent Laid-Open No. 2002-167881
[Problems to be solved by the invention]
The objective of this invention is providing the heat insulation board which eliminates the fault of the said prior art, can be easily constructed without using a receiving metal fitting etc., and can hold | maintain desired heat insulation performance reliably.
A further object of the present invention is to provide a heat insulating plate that can be constructed at both a standard joist interval and an extra joist interval, and that also considers space saving during storage and transportation.
[0009]
[Means for Solving the Problems]
The present invention that solves the above problems is a foam heat insulating plate in which a plurality of strips of extruded synthetic resin are converged, and a plurality of protrusions having a continuous shape on one side of the plate-like portion of the heat insulating plate main body. Since the protrusions are formed integrally and have a lower density than the plate-like part or have cavities , the compression stress at 5% strain in the thickness direction of the protrusions is reduced. It is characterized by being 80% or less of the compressive stress at 5% strain in the thickness direction.
[0010]
According to the foam heat insulating plate of the present invention, for example, when a floor base material or the like is installed thereon after laying the heat insulating plate with the protruding portion down, the protruding portion is selectively crushed without requiring a large force ( Therefore, while preventing the deformation of the plate-like portion functioning as a heat insulating material, the plate-like portion can be reliably applied in close contact with the floor base material and the like, and the desired heat insulation performance is reliably maintained. be able to. In addition, since the surface of the foam insulation board that converges multiple strips has fine irregularities, it does not require a large force compared to a simple planar shape, and the strips at the tip can be crushed easily. And can be securely adhered.
[0011]
The foam heat insulating board of the present invention has the following more preferable embodiments.
The compressive stress at 5% strain in the thickness direction of the protrusion is preferably 60% or less, particularly preferably 50% or less of the compressive stress at 5% strain in the thickness direction of the plate-like portion. .
It is preferable that the total thickness of the plate-like portion and the protruding portion is slightly thicker than the interval between the members to be constructed.
It is preferable that at least one of the protrusions located at both ends of the plate-like portion in the width direction is formed at a position separated by 70 mm or more from the end portion of the plate-like portion in the width direction.
It is preferable that the protrusions are formed at positions where the protrusions can be fitted to each other when the foam insulation plates are stacked with the formation surfaces of the protrusions facing each other.
It is preferable that the synthetic resin is an olefin resin.
It is preferable that the protrusion is made of an open cell foam.
It is preferable that the density of the protrusions is lower than the density of the plate-like part.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but the present invention is not limited to such embodiments.
[0013]
The foam heat insulating board of the present invention is obtained by converging a plurality of strips (strands) of an extruded and foamed synthetic resin, and a plurality of protrusions having a continuous shape on one side of the plate-like part of the heat insulating board main body. It is integrally formed. The “continuous shape” referred to here is not a discontinuous point, but means a shape that is continuous over the entire length of the heat insulating plate, for example.
[0014]
The synthetic resin used as the material for the foam heat insulating plate is not particularly limited as long as it is a thermoplastic resin, but olefin resins, particularly polyethylene and polypropylene are suitable. By using these olefin-based resins, it is possible to give the foamed heat insulating board appropriate flexibility and improve workability, to give appropriate surface friction, to prevent slipping, and to improve the loading stability.
[0015]
The form example of the foam heat insulation board of this invention is typically shown to Fig.1 (a)-(d). In FIG. 1, 10 is a foam heat insulation board, 11 is a plate-shaped part of a heat insulation board main body, 12 is a projection part, 13 is a strip. The plate-like portion 11 is also formed by a plurality of strips 13 like the projection portion 12, but is not shown in the drawing.
[0016]
The protrusion 12 is integrally formed on one surface of the plate-like portion 11 and is continuously formed in a straight line in the direction perpendicular to the paper surface. The illustrated strip 13 has a circular cross section, but may be any polygonal shape, elliptical shape, or the like. As for the size of the strip 13, for example, in the case of a circle, a diameter of about 5 mm is suitable.
[0017]
A foam in which a plurality of strips of synthetic resin that has been extruded and foamed is converged is disclosed in Japanese Patent No. 2620968 and US Pat. No. 3,573,152, in which a foamable thermoplastic material is passed through a multi-orifice die plate. Extrusion, whereby individual foamable elements of the strands are produced by forming, expanding and coalescing as they exit the die orifice.
[0018]
The foam heat insulating board of the present invention can be manufactured using the method described in the above-mentioned Japanese Patent No. 2620968, for example, using a die plate as shown in FIG. The die plate 20 is composed of a large number of small circular orifices 21. For example, when the foam insulation board shown in FIG. 1 (a) is manufactured, the orifice 21 is closed with the pattern shown in FIG. 3, and when the foam insulation board shown in FIG. 1 (c) is manufactured, it is shown in FIG. The orifice 21 is closed with a pattern (the part where the black circle is closed).
[0019]
In the foam heat insulating board of the present invention, the compressive stress at 5% strain in the thickness direction of the protruding portion 12 is 80% or less, preferably 60% or less of the compressive stress at 5% strain in the thickness direction of the plate-like portion 11. The density, cross-sectional shape, foaming state, and the like of the protrusions 12 are appropriately designed so that the ratio is particularly preferably 50% or less. When the compressive stress at 5% strain in the thickness direction of the protrusion 12 exceeds 80% of the compressive stress at 5% strain in the thickness direction of the plate-like portion 11, for example, after the foam insulation board is laid, When installing a floor base material or the like, not only the projections 12 but also the plate-like part 11 functioning as a heat insulating material is liable to be crushed (easily deformed), and the heat insulating performance is easily impaired.
[0020]
The characteristics as described above are, for example, (1) lowering the density of the protrusions 12 than the plate-like part 11, (2) forming a cavity in the protrusions 12, and (3) only the foam of the protrusions 12 Can be realized by, for example, forming continuous bubbles.
[0021]
(1) In the case where the density of the projections 12 is lower than that of the plate-like part 11, just after the foaming, only the projections 12 are heated to cause secondary foaming, or the strips constituting the projections 12 are placed on the plate-like part 11. It is possible to use a method such as making the protrusions 12 thicker than that of the plate-shaped part 11 or making the interval between the orifices 21 forming the protrusions 12 wider than that of the plate-like part 11 to reduce the degree of convergence of the protrusions 12.
[0022]
{Circle around (2)} When the hollow portion is formed in the protruding portion 12, it can be easily realized by closing the orifice 21 corresponding to the hollow portion to be formed as described above. The hollow portion is not limited to the form illustrated in FIG. 1C, and for example, a plurality of hollow portions partitioned by a partition wall may be formed on one protrusion 12.
[0023]
(3) In the case where only the foam of the protrusion 12 is made into continuous cells, a method in which only the protrusion 12 is heated and foamed at a higher temperature than the above-mentioned reduction of density immediately after foaming can be used.
[0024]
In the foam heat insulating board of the present invention, it is preferable that the total thickness of the plate-like portion 11 and the protruding portion 12 is slightly thicker than the interval between the members to be constructed. Specifically, for example, when used as a heat insulating plate for a wooden floor laid between the joists on the large pull, the total thickness is based on the distance between the upper surface of the large pull and the lower surface of the floor base material (that is, the height of the joists). Also, the thickness should be about several mm. Thereby, a foam heat insulating board can be reliably stuck to a floor base material, and a desired heat insulation performance can be obtained reliably.
[0025]
Further, it is preferable that at least one of the protrusions 12 positioned at both ends in the width direction of the plate-like portion 11 is formed at a position separated from the end portion in the width direction of the plate-like portion 11 by 70 mm or more. According to such a configuration, for example, when the joist interval is narrow, the protrusion 12 is not formed even when it is necessary to cut a part of the heat insulating plate on site to narrow the width for the heat insulation construction of the joist portion. It can be easily adjusted by cutting the part, and two or more protrusions 12 always remain, and the adhesion to the floor base material or the like can be ensured. In addition, it can be applied to both the standard joist interval and the extra joist interval by one type of foam insulation board, so that versatility can be increased and cost can be reduced.
[0026]
Moreover, it is preferable that the projection part 12 is formed in the position which can mutually fit the projection part 12 when the formation surface of the projection part 12 is faced, and a foaming heat insulation board is piled up. All of the examples illustrated in FIG. 1 are such examples. For example, the foam insulation board shown in FIG. 1B can be stacked by fitting the protrusions 12 as shown in FIG. Space can be saved during storage and transportation.
[0027]
【Example】
Although the Example which constructed the heat insulation floor of the wooden house using the foam heat insulation board of the present invention below is described, the foam heat insulation board of the present invention is suitable not only for floor insulation but also for heat insulation construction of walls, roofs, etc. Can be used.
[0028]
[Example 1]
FIG. 2 shows a strip-shaped heat insulating plate made of polypropylene resin as a base material, in which the thickness of the plate-like portion of the heat-insulating plate main body is 25 mm and the thickness of two protrusions (legs) formed continuously on the plate-like portion is 23 mm. And produced by an extrusion foaming method using a multi-orifice die plate as shown in FIG. When the plate-like portion and the protruding portion of this heat insulating plate were cut out and the compressive stress was measured at 5% strain in the thickness direction, the ratio (ratio of the protruding portion to the plate-like portion) was 0.3.
[0029]
This heat insulation board is precisely finished to 258mm in width x 1820mm in length, and fitted into 45mm square joists 62 arranged at 303mm intervals on the large pull 61 as shown in Fig. 6 to construct a heat insulation floor for a wooden house did. At the beginning of fitting, as shown in FIG. 6A, the upper surface of the heat insulating plate 10 floated more than the joist surface, but by nailing the floor plate 63 to the joist 62 by a normal method, FIG. As shown, the protrusions 12 were selectively crushed and the floor plate 63 and the heat insulating plate 10 were in close contact with each other without a gap.
[0030]
[Example 2]
When the heat insulating plate described in Example 1 was manufactured, a strip-shaped heat insulating plate in which the protrusions were more closely focused was obtained. The compression stress ratio at 5% strain between the plate-like portion and the protruding portion of this heat insulating plate was 0.5.
[0031]
When this heat insulating plate was fitted into the floor in the same manner as in Example 1, not only the protrusions but also the plate-like portion was slightly crushed, but the heat insulating plate was not distorted, and there was no gap between the floor plate and the heat insulating plate. Close contact.
[0032]
[Example 3]
Using a polyethylene resin as a base material, a strip-like heat insulating plate having a plate-like portion thickness of 40 mm and a protruding portion thickness of 7 mm was obtained in the same manner as in Example 1. The compressive stress ratio at 5% strain between the plate-like portion and the protruding portion of this heat insulating plate was 0.4.
[0033]
When this heat insulating plate was fitted into the floor in the same manner as in Example 1, not only the protrusions but also the plate-like portion was slightly crushed, but the heat insulating plate was not distorted, and there was no gap between the floor plate and the heat insulating plate. Close contact.
[0034]
[Example 4]
When manufacturing the heat insulating plate described in Example 3, only the projections were heated and focused using a focusing jig incorporating a heater. The heat-converged protrusions had more communication bubbles than the plate-like parts, and the compression stress ratio at 5% strain between the plate-like parts and the protrusions was reduced to 0.2.
[0035]
When this heat insulating plate was fitted into the floor in the same manner as in Example 1, only the protrusions were selectively crushed, and the floor plate and the heat insulating plate were in close contact with each other without any gap.
[0036]
[Comparative Example 1]
When the heat insulating plate described in Example 1 was manufactured, a strip-shaped heat insulating plate in which the degree of convergence of the protrusions was made denser than in Example 2 was obtained. The compression stress ratio at 5% strain between the plate-like portion and the protruding portion of this heat insulating plate was 0.85.
[0037]
When this heat insulating plate was fitted into the floor in the same manner as in Example 1, the protrusion and the plate-like portion were crushed to the same extent, the heat insulating plate was distorted, and a gap was generated between the heat insulating plate and the floor plate.
[0038]
[Comparative Example 2]
A plate-like extruded foam heat insulating plate made of polyethylene resin as a base material was heat-sealed to produce a heat insulating plate with legs having a plate-like portion thickness of 25 mm and a protrusion (leg) portion thickness of 25 mm. The compression stress ratio at 5% strain between the plate-like portion and the protruding portion of this heat insulating plate was 1.0.
[0039]
When this heat insulating plate was fitted into the floor in the same manner as in Example 1, the protrusion and the plate-like portion were crushed to the same extent, the heat insulating plate was distorted, and a gap was generated between the heat insulating plate and the floor plate.
[0040]
[Comparative Example 3]
A strip-shaped foamed polystyrene sheet having a thickness of 7 mm is bonded to a plate-shaped extruded foam heat insulating plate made of polystyrene resin as a base material, and the thickness of the plate-shaped portion is 40 mm and the thickness of the protrusion (leg) portion is 7 mm. A legged insulation board was produced. The compressive stress ratio at 5% strain between the plate-like portion and the protruding portion of this heat insulating plate was 0.7.
[0041]
An attempt was made to fit this heat insulating plate into the floor in the same manner as in Example 1, but the floor plate could not be nailed to the joists because the protrusions were not sufficiently crushed.
[0042]
The configurations and evaluation results of the foam heat insulating plates in the above Examples and Comparative Examples are summarized in Table 1.
[0043]
[Table 1]
Figure 0004069026
[0044]
【The invention's effect】
As described above, the following effects can be achieved by using the foam heat insulating plate of the present invention.
[0045]
(1) For example, in the construction of floor insulation, the projection is selectively crushed without requiring a large force, and the plate-like part is used as a floor base material while preventing deformation of the plate-like part that functions as a heat-insulating material. Construction can be performed reliably in close contact, and desired heat insulation performance can be reliably maintained. In addition, since the surface of the foam insulation board that converges multiple strips has fine irregularities, it does not require a large force compared to a simple planar shape, and the strips at the tip can be crushed easily. And can be securely adhered.
[0046]
(2) In particular, when the total thickness of the plate-like portion and the protruding portion is slightly thicker than the interval between the members to be constructed, the foam insulation board can be easily and reliably adhered to the floor base material. Thus, the desired heat insulation performance can be obtained with certainty.
[0047]
(3) In particular, when the protrusion is formed at a position 70 mm or more away from one end in the width direction of the plate-like portion, a part of the heat insulating plate is used for heat insulation of the joist when the joist interval is narrow. Even when it is necessary to cut the width by cutting at the site, it is possible to easily adjust by cutting the portion where the protruding portion is not formed, and it is possible to ensure adhesion with the floor base material etc. At the same time, it can be applied to both a standard joist interval and an interval joist interval with one type of foam heat insulating plate, so that the versatility is high and the cost can be reduced.
[0048]
(4) In particular, when the foam heat insulating plates are stacked with the formation surfaces of the protrusions facing each other, the protrusions are not bulky for transportation and storage.
[0049]
(5) In particular, when the synthetic resin of the heat insulating plate material is an olefin resin, it can be made into a foam heat insulating plate having an appropriate flexibility, and the workability can be improved and an appropriate surface friction can be achieved. It can be applied, is not slippery, and can enhance the loading stability.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing a foam insulation board according to the present invention.
FIG. 2 is a schematic view of a multi-orifice die plate that can be used in the production of the foam insulation board of the present invention.
FIG. 3 is a view showing an opening / closing pattern of an orifice when the foam heat insulating board of FIG. 1 (a) is manufactured.
FIG. 4 is a diagram showing an opening / closing pattern of an orifice when the foam heat insulating plate of FIG. 1 (c) is manufactured.
FIG. 5 is a view showing a state in which protrusions of the foam heat insulating plate of FIG. 1B are fitted and stacked.
FIG. 6 is a view for explaining an example in which a heat insulating floor of a wooden house is constructed using the foam heat insulating plate of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Foam insulation board 11 Plate-like part 12 of a heat insulation board main body Protrusion part (leg part)
13 Strip
20 Die plate 21 Orifice 61 Large pull 62 joist 63 Floor board

Claims (7)

押出発泡した合成樹脂の複数の細条を収束させた発泡断熱板であって、断熱板本体の板状部の片面に連続的形状を有する突起部が複数一体形成されており、前記突起部が前記板状部より低密度であるか又は空洞を有していることにより、前記突起部の厚み方向の5%歪での圧縮応力が、前記板状部の厚み方向の5%歪での圧縮応力の80%以下となっていることを特徴とする発泡断熱板。A foamed heat insulating plate that converges a plurality of strips of extruded synthetic resin, wherein a plurality of protrusions having a continuous shape are integrally formed on one side of the plate-like portion of the heat insulating plate body, and the protrusions are By having a lower density or having a cavity than the plate-like portion , the compressive stress at 5% strain in the thickness direction of the protrusion is compressed at 5% strain in the thickness direction of the plate-like portion. A foam insulation board characterized by being 80% or less of the stress. 前記突起部の厚み方向の5%歪での圧縮応力が、前記板状部の厚み方向の5%歪での圧縮応力の60%以下であることを特徴とする請求項1に記載の発泡断熱板。2. The foam insulation according to claim 1, wherein the compressive stress at 5% strain in the thickness direction of the protrusion is 60% or less of the compressive stress at 5% strain in the thickness direction of the plate-like portion. Board. 前記突起部の厚み方向の5%歪での圧縮応力が、前記板状部の厚み方向の5%歪での圧縮応力の50%以下であることを特徴とする請求項1に記載の発泡断熱板。2. The foam insulation according to claim 1, wherein a compressive stress at a 5% strain in the thickness direction of the protrusion is 50% or less of a compressive stress at a 5% strain in the thickness direction of the plate-like portion. Board. 前記板状部と前記突起部の合計厚みが、施工される部材間の間隔よりも僅かに厚いことを特徴とする請求項1乃至3のいずれか一項に記載の発泡断熱板。The total thickness of the said plate-shaped part and the said projection part is a little thicker than the space | interval between the members to be constructed, The foam heat insulation board as described in any one of Claims 1 thru | or 3 characterized by the above-mentioned. 前記板状部の幅方向の両端に位置する突起部のうち少なくとも一方は、前記板状部の幅方向の端部から70mm以上離れた位置に形成されていることを特徴とする請求項1乃至4のいずれか一項に記載の発泡断熱板。At least one of the protrusions located at both ends of the plate-like portion in the width direction is formed at a position separated by 70 mm or more from an end portion of the plate-like portion in the width direction. The foam insulation board as described in any one of 4. 前記突起部は、該突起部の形成面同士を向き合わせて発泡断熱板を積み重ねた際に互いに該突起部同士を嵌合できる位置に形成されていることを特徴とする請求項1乃至5のいずれか一項に記載の発泡断熱板。6. The projections according to claim 1, wherein the projections are formed at positions where the projections can be fitted to each other when the foam insulation plates are stacked with the formation surfaces of the projections facing each other. The foam insulation board as described in any one of Claims. 前記合成樹脂がオレフィン系樹脂であることを特徴とする請求項1乃至6のいずれか一項に記載の発泡断熱板。The foam insulation board according to any one of claims 1 to 6, wherein the synthetic resin is an olefin resin.
JP2003180781A 2003-06-25 2003-06-25 Foam insulation board Expired - Fee Related JP4069026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003180781A JP4069026B2 (en) 2003-06-25 2003-06-25 Foam insulation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180781A JP4069026B2 (en) 2003-06-25 2003-06-25 Foam insulation board

Publications (2)

Publication Number Publication Date
JP2005016099A JP2005016099A (en) 2005-01-20
JP4069026B2 true JP4069026B2 (en) 2008-03-26

Family

ID=34181666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180781A Expired - Fee Related JP4069026B2 (en) 2003-06-25 2003-06-25 Foam insulation board

Country Status (1)

Country Link
JP (1) JP4069026B2 (en)

Also Published As

Publication number Publication date
JP2005016099A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US7654052B2 (en) Bridging member for concrete form walls
JP4069026B2 (en) Foam insulation board
US20060277855A1 (en) Method and apparatus for insulating a concrete wall
EP0750706B1 (en) Concrete wall monolithic building unit
JP2007217880A (en) Heat insulation material bearer and floor heat insulation structure using the same
JPH06999B2 (en) Thermoplastic foam for heat insulation
JP3628455B2 (en) Thermal insulation for building
JP5813332B2 (en) Thermal insulation board for construction, thermal insulation method, thermal insulation structure and building
JPH11140877A (en) Foam-resin block and wall structure
JP5758285B2 (en) Wall insulation
JP2000027330A (en) Thermal insulating material and thermal insulating structure for building
JP4286213B2 (en) Formwork concrete block construction
JP3862998B2 (en) Inter-member insulation
JP2883863B2 (en) Insulated wall structure
JP2001049758A (en) Heat insulating material
JP3174946B2 (en) Architectural insulation, floor and roof structures
JP3058551B2 (en) Insulation for floors of wooden buildings
JP2006177134A (en) Ridge type heat insulator and heat insulation structure using the same
JPH0557900B2 (en)
JPH10280592A (en) Structure of form for concrete
JP4357307B2 (en) Method for manufacturing insulated residual formwork panel
JP3103001B2 (en) Residential heat insulating material and method of fixing to structural material
JPH069149Y2 (en) Insulation structure
JP3058552B2 (en) Insulation material used for wooden framed wall construction
JPH0557899B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees