JP4066848B2 - Manufacturing method of multilayer printed wiring board - Google Patents

Manufacturing method of multilayer printed wiring board Download PDF

Info

Publication number
JP4066848B2
JP4066848B2 JP2003052445A JP2003052445A JP4066848B2 JP 4066848 B2 JP4066848 B2 JP 4066848B2 JP 2003052445 A JP2003052445 A JP 2003052445A JP 2003052445 A JP2003052445 A JP 2003052445A JP 4066848 B2 JP4066848 B2 JP 4066848B2
Authority
JP
Japan
Prior art keywords
layer
plating
insulating resin
resist pattern
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003052445A
Other languages
Japanese (ja)
Other versions
JP2004265967A (en
Inventor
利秀 伊藤
Original Assignee
株式会社トッパンNecサーキットソリューションズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トッパンNecサーキットソリューションズ filed Critical 株式会社トッパンNecサーキットソリューションズ
Priority to JP2003052445A priority Critical patent/JP4066848B2/en
Publication of JP2004265967A publication Critical patent/JP2004265967A/en
Application granted granted Critical
Publication of JP4066848B2 publication Critical patent/JP4066848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第1配線層の両面に絶縁層を介して複数の配線層が形成された多層プリント配線板及びその製造方法並びに半導体装置に関する。
【0002】
【従来の技術】
近年、半導体実装技術の発展により半導体装置を実装する実装するプリント配線板においては、高密度、高精度の配線層を有する多層プリント配線板が要求されている。高密度、高精度の配線層を形成するために、プリント配線板は多層化され、配線層の線幅も小さくなり、配線層間の接続に用いられるビアホールはより小さい穴径とすることが求められている。そして、ビアホール用孔の孔加工も、位置ずれを極力小さくするように高い精度の加工が求められている。そのような、要求を満足するために、配線層と絶縁層を交互に形成して多層配線層を形成して多層プリント配線板を作製する、所謂ビルドアップ法が実用化されている。
【0003】
ビルドアップ法にて多層プリント配線板を作製する従来技術(例えば、特許文献1参照)の一例を図7(a)〜(f)に示す。
以下、図7(a)〜(f)を参照して、ビルドアップ法による多層プリント配線板の製造方法について説明する。
まず、絶縁基材111の両面に銅箔121及び122を積層した両面銅張り積層板710を準備する(図7(a)参照)。
次に、両面銅張り積層板710の銅箔122をエッチング法にてパターニング処理を行って第1配線層122aを形成し、絶縁基材111の所定位置をレーザー加工等により孔明け加工し、ビア用孔141を形成する(図7(b)参照)。
【0004】
次に、両面に感光性ドライフィルムをラミネートして感光層を形成し、第1配線層122a側の感光層をパターン露光、現像等の一連のパターニング処理を、銅箔121側の感光層は全面露光を行って、めっきレジストパターン151及び保護マスク層152を形成する。さらに、めっきレジストパターン151側の絶縁基材111及びビア用孔141表面のデスミア、触媒核付与処理及び無電解銅めっきを行って、めっき下地導電層を形成し、該めっき下地導電層をカソードにして電解銅めっきを行い、コンフォーマルビア131を形成する(図7(c)参照)。
【0005】
次に、両面に感光性ドライフィルムをラミネートして感光層を形成し、銅箔121側の感光層をパターン露光、現像等の一連のパターニング処理を、第1配線層122a側の感光層は全面露光を行って、レジストパターン153及び保護マスク層154を形成する。さらに、レジストパターン153をマスクにして銅箔121をエッチング処理する(図7(d)参照)。
【0006】
次に、レジストパターン153及び保護マスク層154を剥離処理し、絶縁基材111の一方の面に配線層121a、他方の面に配線層122aを形成してコア基板720を作製する(図7(e)参照)。
さらに、コア基板720の両面にビルドアップ層730及び740を形成し、4層プリント配線板700を得る(図7(f)参照)。
【0007】
また、ビルドアップ法にて多層プリント配線板を作製する従来技術(例えば、特許文献2参照)の別の一例を図8(a)〜(d)に示す。
以下、図8(a)〜(d)を参照して、ビルドアップ法による多層プリント配線板の製造方法について説明する。
まず、絶縁基材114の両面に銅箔125及び126を積層した両面銅張り積層板810を準備する(図8(a)参照)。
次に、両面銅張り積層板610の銅箔126側の所定位置をレーザー加工等により孔明け加工し、ビア用孔142を形成する(図8(b)参照)。
【0008】
次に、銅箔125及び銅箔126をサブトラクティブ法にてパターニング処理して配線層125a及び配線層126a形成する。さらに、セミアディテブ法にて配線層126a上に配線層127を、ビア用孔142にビアホール134を形成してコア基板820を作製する(図8(c)参照)。
【0009】
次に、コア基板820の配線層127側に絶縁層115を介して、サブトラクティブ法にて配線層128を形成する。さらに、セミアディテブ法にて配線層129及びビアホール135を形成してビルドアップ層830を形成し、コア基板820及びビルドアップ層830からなる3層プリント配線板600を得る(図8(d)参照)。
【0010】
【特許文献1】
特開2001−94252号公報
【特許文献2】
特開平09−46042号公報
【0011】
【発明が解決しようとする課題】
上記従来技術を用いたビルドアップ法による多層プリント配線板の製造法では、サブトラクティブ法を用いているので、微細配線層の形成が難しい。
また、特許文献1の技術を用いて作製した多層プリント配線板は、絶縁基材に対して非対称構造になっているので反りを生じ易いと言う問題を有する。
【0012】
本発明は上記問題点に鑑み考案されたもので、微細配線層の形成が可能な多層プリント配線板の製造方法及び反りを生じ難い多層プリント配線板並びに半導体装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
本発明に於いて上記課題を達成するために、以下の工程を少なくとも備えることを特徴とする、第1配線層の両面に絶縁樹脂層を介して複数の配線層が形成されている多層プリント配線板の製造方法としたものである。
(a)絶縁樹脂層及び銅箔からなる片面銅箔付樹脂シートを準備する工程。
(b)前記片面銅箔付樹脂シート前記絶縁樹脂層の所定位置にビア用孔を形成し無電解銅めっきによりめっき下地導電層を形成する工程。
(c)前記銅箔上に支持体シートを貼着した後前記めっき下地導電層上にめっきレジストパターンを形成する工程。
(d)前記めっき下地導電層をカソードにして電解銅めっきを行って所定厚の導体層及びフィルドビアを形成する工程。
(e)前記めっきレジストパターンを剥離処理し、前記めっきレジストパターン下部にあった前記めっき下地導電層をフラッシュエッチングにて除去し、第2配線層及前記フィルドビアを形成し、次に、前記支持体シートを除去する工程。
(f)前記第2配線層側に第2の支持体シートを貼着した後、前記銅箔に第2のレジストパターンを形成する工程。
(g)前記第2のレジストパターンをマスクにして前記銅箔をエッチング処理し、前記第2のレジストパターンを剥離処理して、第1配線層を形成する工程。
(h)前記第1配線層側に所定厚の第2の絶縁樹脂層を形成し、前記第2の絶縁樹脂層の所定位置に第2のビア用孔を形成し無電解銅めっきにより第2のめっき下地導電層を形成する工程。
(i)前記第2の絶縁樹脂層側に第2のめっきレジストパターンを形成する工程。
(j)前記第2のめっき下地導電層をカソードにして電解銅めっきを行い、所定厚の第2の導体層及び第2のビアを形成する工程。
(k)前記第2のレジストパターンを剥離処理し、前記第2のめっきレジストパターン下部にあった前記第2のめっき下地導電層をフラッシュエッチングにて除去し、外側配線層及び前記第2のビアを形成する工程。
(l)前記第2の支持体シートを前記工程(g)の後から前記工程(k)の間に除去する工程。
(m)前記第2の絶縁樹脂層、前記外側配線層及び前記第2のビア形成工程を必要回数繰り返す工程。
【0018】
前記第2の支持体シートを前記工程(g)の後に除去し、前記工程(h)において、前記第1配線層及び前記第2配線層側にそれぞれ所定厚の第2の絶縁樹脂層及び第3の絶縁樹脂層を形成し、前記第2の絶縁樹脂層及び前記第3の絶縁樹脂層の所定位置にそれぞれ第2のビア用孔及び第3のビア用孔を形成し無電解銅めっきにより第2のめっき下地導電層および第3のめっき下地導電層をそれぞれ形成し、前記工程(i)において、前記第2の絶縁樹脂層側に第2のめっきレジストパターンを形成し、前記第3の絶縁樹脂層側に第3のめっきレジストパターンを形成し、前記工程(j)において、前記第2のめっき下地導電層および前記第3のめっき下地導電層をカソードにして電解銅めっきを行い、前記第2の絶縁樹脂層側に所定厚の第2の導体層と第2のビアを形成し、前記第3の絶縁樹脂層側に所定厚の第3の導体層と第3のビアを形成し、前記工程(k)において、前記第2のレジストパターン及び前記第3のめっきレジストパターンを剥離処理し、前記第2のめっきレジストパターン及び前記第3のめっきレジストパターンの下部にあった前記第2のめっき下地導電層及び前記第3のめっき下地導電層をフラッシュエッチングにて除去し、両面に前記外側配線層及び前記第2のビアと前記第3のビアを形成することを特徴とする上記の多層プリント配線板の製造方法としたものである。
【0019】
前記支持体シートがポリエステルフィルム、ポリイミドフィルム、アミドフィルム、ポリプロピレンフィルムのいずれかで形成されていることを特徴とする上記の多層プリント配線板の製造方法としたものである。
【0020】
【発明の実施の形態】
以下本発明の実施の形態につき説明する。
本発明の多層プリント配線板の一実施例を図1(a)、(b)及び(c)に示す。また、本発明の多層プリント配線板に半導体を搭載した半導体装置の一実施例を図2(a)〜(d)に示す。
本発明の多層プリント配線板100は、図1(a)に示すように、第1配線層21aの一方の面に絶縁樹脂層11を介して第2配線層22a及びフィルドビア31が形成されたビルドアップ層20と、他方の面に第3配線層23a及びコンフォーマルビア32が形成されたビルドアップ層30とで構成されており、第1配線層21aと第2配線層22aとはフィルドビア31で、また第1配線層21aと第3配線層23aとはコンフォーマルビア32で、それぞれ電気的に接続されている。第1配線層21aに対してビルドアップ層20及びビルドアップ層30が対称に形成された対称構造の3層プリント配線板構造になっている。
【0021】
本発明の多層プリント配線板100aは、図1(b)に示すように、第1配線層21aの一方の面に絶縁樹脂層11を介して第2配線層22a、コンフォーマルビアランド22b及びコンフォーマルビア31aが形成されたビルドアップ層20aと、他方の面に第3配線層23a及びコンフォーマルビア32が形成されたビルドアップ層30とで構成されており、第1配線層21aと第2配線層22aとはコンフォーマルビア31aで、また第1配線層21aと第3配線層23aとはコンフォーマルビア32で、それぞれ電気的に接続されている。さらに、第1配線層21aに対してビルドアップ層20a及びビルドアップ層30が対称に形成された対称構造の3層プリント配線板構造になっている。
【0022】
また、本発明の多層プリント配線板200は、図1(c)に示すように、絶縁樹脂層11の両面に第1配線層21a、第2配線層22a及びフィルドビア31が形成された両面配線板40と、両面配線板40の一方の面に絶縁樹脂層13を介して第3配線層24a及びコンフォーマルビア33が形成されたビルドアップ層50と、他方の面に絶縁層14を介して第4配線層25a、ランド25b及びフィルドビア34が形成されたビルドアップ層60とで構成されており、第1配線層21aと第2配線層22aとはフィルドビア31で、第1配線層21aと第3配線層24aとはコンフォーマルビア33で、第2配線層22aと第4配線層25aとはフィルドビア34で、それぞれ電気的に接続されている。さらに、絶縁樹脂層11に対してビルドアップ層50及びビルドアップ層60が対称に形成された対称構造の4層プリント配線板構造になっている。
【0023】
上記本発明の多層プリント配線板100、100a及び200は、コア基板のないビルドアップ多層プリント配線板の構造とすることで、コア基板のBVH(ブラインドビアホール)による配線制約を取り除くことができるとともに、高密度化と薄型化が図れる。
具体的には、配線層のパターン設計自由度が増すとともに、配線層の収容性が向上し、薄型化及び微細配線層の形成が可能になり、高密度化が図れる。
また、対称構造のビルドアップ多層プリント配線板となっているため、薄型化しても配線板の反りが生じ難い。
【0024】
以下、本発明の半導体装置について説明する。
本発明の半導体装置300は、図2(a)に示すように、本発明の多層プリント配線板100上のフィルドビアと半導体80のパッド71が接合されて半導体80が搭載されており、半導体80と多層プリント配線板100の絶縁樹脂層との間にはアンダーフィル81樹脂を流し込んだ構造としている。
また、本発明の半導体装置400は、図2(b)に示すように、本発明の多層プリント配線板100a上のコンフォーマルビアランドと半導体80のパッド71が接合されて半導体80が搭載されており、半導体80と多層プリント配線板100aの絶縁樹脂層との間にはアンダーフィル81樹脂を流し込んだ構造としている。
【0025】
本発明の半導体装置500は、図2(c)に示すように、本発明の多層プリント配線板200上のフィルドビアまたランドと半導体80のパッド71が半田91を介して接合されて半導体80が搭載されており、半導体80と多層プリント配線板200の絶縁樹脂層との間にはアンダーフィル81樹脂を流し込んだ構造としている。
また、本発明の半導体装置600は、図2(d)に示すように、本発明の多層プリント配線板200上のフィルドビア34またはランド25bと半導体80のパッド71がバンプ92を介して接合されて半導体80が搭載されており、半導体80と多層プリント配線板200の絶縁樹脂層との間にはアンダーフィル81樹脂を流し込んだ構造としている。
【0026】
以下本発明多層プリント配線板の製造方法について説明する
図3(a)〜(f)及び図4(g)〜(k)は、本発明の多層プリント配線板の製造方法の第1の実施例を工程順に示す模式構成断面図である。
まず、銅箔21上に、樹脂溶液を塗布するか、プリプレーグを積層して半硬化状態の絶縁樹脂層11を形成した片面銅箔付樹脂シート10を準備する(図3(a)参照)。
ここで、銅箔21は、12〜18μm厚のものが、絶縁層樹脂層11は、50〜100μm厚のものが、それぞれ使用される。さらに、片面銅箔付樹脂シート10に硫酸80〜160g/Lと35wt%過酸化水素90〜150g/Lを組成とする酸化性液を15〜60秒間スプレーすることにより、銅箔21をマクロエッチングして、5〜10μm厚の銅箔にする。これは、エッチング法で微細配線層を形成するための銅箔薄型化の一処方例である。
【0027】
次に、片面銅箔付樹脂シート10の絶縁樹脂層11の所定位置をレーザ加工してビア用孔41を形成し、デスミア、めっき触媒付与及び無電解銅めっきを行って、めっき下地層(特に、図示せず)を形成する(図3(b)参照)。
ここで、レーザ加工のレーザーとしては、炭酸ガスレーザ、エキシマレーザ、YAGレーザ等が利用でき、例えば、炭酸ガスレーザを使用した場合スポット径(直径)0.125mmのレーザビームを5〜20mJで1〜3パルス照射するのが好適である。
デスミア処方としては、例えば、MLB211:シプレイ・ファーイースト(株)製を20vol%、キューポジットZが10vol%からなる膨潤浴に60〜85℃で1〜5分間浸漬した後、MLB213A(シプレイ・ファーイースト(株)製)が10vol%とMLB213B(シプレイ・ファーイースト(株)製)が15vol%とからなるエッチング浴に55〜75℃で2〜10分間浸漬処理し、MLB216−2(シプレイ・ファーイースト(株)製)が20vol%からなる中和浴に35〜55℃で2〜10分間浸漬することにより、絶縁樹脂層11表面及びビア用孔41のデスミア処理を行う。
【0028】
また、めっき触媒付与及びめっき下地導電層の形成処方としては、例えば、上記基板をプレディップCP−3023(シプレイ・ファーイースト(株)製)浴に25℃で60秒間浸漬後、同社製キャタリスト同CP−3316浴に25℃で180秒間、同社製アクセラレーター(NR−2AとNR−2Bを各々10vol%と3vol%で混合した水溶液)に25℃で300秒間順次浸漬して、絶縁樹脂層11表面及びビア用孔41にパラジウム触媒を付与した後無電解銅めっきを行ってめっき下地導電層(特に、図示せず)を形成する。
【0029】
次に、銅箔21上に支持体シート61を貼着した後、感光性ドライフィルムを80〜120℃の熱ロールで絶縁樹脂層11上に貼着し、離型シートを剥離して絶縁樹脂層11上に感光層を形成し、超高圧水銀ランプで50〜200mJ/cm2の紫外線を照射してパターン露光した後、0.5〜2wt%炭酸ナトリウム水溶液をスプレー現像し、乾燥硬化してめっきレジストパターン51を形成する(図3(c)参照)。
ここで、支持体シート61は上記処理基板の補強及び処理工程での銅箔21の保護を行うためのもので、ポリエステルフィルム、ポリイミドフィルム、アミドフィルム、ポリプロピレンフィルム、ポリサルホンフィルム、ポリフェニルサルホンフィルム、ポリエーテルサルホンフィルム、ポフェニレンサルファイドフィルム、ポフェニレンエーテルフィルム、ポリエーテルエーテルケトンフィルム、ポフェニレンテレフタルアミドフィルムの中から工程処理条件等に合わせて適宜選択して使用する。
【0030】
次に、めっきレジストパターン51が形成された配線基板を硫酸銅めっき浴中に浸漬し、めっき下地導電層をカソードにして電解銅めっきを行い、絶縁樹脂層11上に10〜15μm厚の導体層22及びビア用孔41にフィルドビア31を形成する(図3(d)参照)。
ここで、電解銅めっき条件としては、例えば、硫酸銅70〜100g/L、硫酸150〜250g/L、塩酸50〜100ppmの組成から成る硫酸銅めっき浴を用いて、電流密度1.5〜2.5A/dm2の条件で20〜50分電解銅めっきを行って上記10〜15μm厚の銅からなる導体層を形成する。
また、ビア用孔41にはフィルドビアを形成したが特に限定されるものではなく、フィルドビア、コンフォーマルビアを適宜選択して用いれば良い。
【0031】
次に、0.5〜2wt%水酸化ナトリウム水溶液をスプレーして、めっきレジストパターン51を剥離処理し、めっきレジストパターン51下部にあっためっき下地導電層をフラッシュエッチングで除去し、支持体シート61を除去して第2配線層22aを形成し、銅箔21上に絶縁樹脂層11を介して第2配線層22a及びフィルドビア31が形成されたビルドアップ層20を形成する(図3(e)参照)。
【0032】
次に、第2配線層22a側に支持体シート62を貼着した後感光性のドライフィルムを80〜120℃の熱ロールで絶縁樹脂層11上に貼着し、離型シートを剥離して、絶縁樹脂層11上に感光層を形成し、超高圧水銀ランプで50〜200mJ/cm2の紫外線を照射してパターン露光した後、0.5〜2wt%炭酸ナトリウム水溶液をスプレー現像し、乾燥硬化してレジストパターン52を形成する(図3(f)参照)。
ここで、支持体シート62は上記処理基板の補強及び処理工程での銅箔21の保護を行うためのもので、ポリエステルフィルム、ポリイミドフィルム、アミドフィルム、ポリプロピレンフィルム、ポリサルホンフィルム、ポリフェニルサルホンフィルム、ポリエーテルサルホンフィルム、ポフェニレンサルファイドフィルム、ポフェニレンエーテルフィルム、ポリエーテルエーテルケトンフィルム、ポフェニレンテレフタルアミドフィルムの中から工程処理条件等に合わせて適宜選択して使用する。
【0033】
次に、レジストパターン52をマスクにして塩化第二銅200〜400g/l、塩酸100〜150g/lからなるエッチング液をスプレーして銅箔21をエッチング除去し、レジストパターン52を0.5〜2.0wt%の水酸化ナトリウム水溶液で剥離除去して、第1配線層21aを形成する(図4(g)参照)。
【0034】
次に、第1配線層21a上に樹脂溶液を塗布するか、もしくはプリプレーグシート等を貼着するかの方法で、絶縁樹脂層12を形成し、絶縁樹脂層12の所定の位置にレーザー加工等によりビア用孔42を形成し、上記図3(b)と同じ処方で、デスミア、めっき触媒付与及び無電解銅めっきを行ってめっき下地導電層(特に、図示せず)形成する(図4(h)参照)。
【0035】
次に、感光性のドライフィルムを80〜120℃の熱ロールで絶縁樹脂層12上に貼着し、離型シートを剥離して絶縁樹脂層12上に感光層を形成し、超高圧水銀ランプで50〜200mJ/cm2の紫外線を照射してパターン露光した後、0.5〜2wt%炭酸ナトリウム水溶液をスプレー現像し、乾燥硬化してめっきレジストパターン53を形成する(図4(i)参照)。
【0036】
次に、めっきレジストパターン53が形成された配線基板を硫酸銅めっき浴中に浸漬し、めっき下地導電層をカソードにして電解銅めっきを行い、絶縁樹脂層11上に10〜15μm厚の導体層23及びビア用孔42にコンフォーマルビア32を形成する(図4(j)参照)。
ここで、電解銅めっき条件としては、上記図3(d)の工程に用いた条件と同じ処方で良い。
また、ビア用孔42にはコンフォーマルビアを形成したが特に限定されるものではなく、コンフォーマルビア、フィルドビアを適宜選択して用いれば良い。
【0037】
次に、めっきレジストパターン53を0.5〜2.0wt%水酸化ナトリウム水溶液で剥離除去し、めっきレジストパターン53下部にあっためっき下地導電層をフラッシュエッチングで除去して第3配線層23aを形成し、支持体シート62を除去して、第1配線層21aの一方の面に絶縁樹脂層11を介して第2配線層22a及びフィルドビア31が形成されたビルドアップ層20、他方の面に絶縁樹脂層12を介して第3配線層23a及びコンフォーマルビア32が形成されたビルドアップ層30からなる3層プリント配線板100を得る(図4(k)参照)。
さらに、必要に応じて上記絶縁樹脂層、配線層及びコンフォーマルビアもしくはフィルドビア形成工程を必要回数繰り返すことにより、所望の多層プリント配線板を得ることができる。
【0038】
図5(a)〜(f)及び図6(g)〜(k)は、本発明の多層プリント配線板の製造方法の第2の実施例を工程順に示す模式構成断面図である。
まず、図5(a)〜(f)の工程は、上記図3(a)〜(f)と同様の工程で処理し、第1配線層21a、第2配線層22a、ランド22c及びフィルドビア32を形成し、絶縁樹脂層11の両面に第1配線層21aと第2配線層22aランド22b及びフィルドビア32が形成された両面配線板40を得る(図6(g)参照)。
【0039】
次に、両面配線板40の両面にプリプレーグシートを積層して絶縁樹脂層13及び絶縁樹脂層14を形成し、絶縁樹脂層13及び絶縁樹脂層14の所定の位置にレーザー加工等によりビア用孔43及びビア用孔44を形成し、デスミア、めっき触媒付与及び無電解銅めっきを行ってめっき下地導電層(特に、図示せず)形成する(図6(h)参照)。
ここで、デスミア、めっき触媒付与及び無電解銅めっき条件としては、上記図3(b)の工程に用いた条件と同じ処方で良い。
【0040】
次に、感光性ドライフィルムを80〜120℃の熱ロールで絶縁樹脂層13及び絶縁樹脂層14上に貼着し、離型シートを剥離して絶縁樹脂層13及び絶縁樹脂層14上に感光層を形成し、超高圧水銀ランプで50〜200mJ/cm2の紫外線を両面照射してパターン露光した後、0.5〜2wt%炭酸ナトリウム水溶液をスプレー現像し、乾燥硬化してめっきレジストパターン54及びめっきレジストパターン55をそれぞれ形成する(図6(i)参照)。
【0041】
次に、めっきレジストパターン54及びめっきレジストパターン55が形成された配線基板を硫酸銅めっき浴中に浸漬し、めっき下地導電層をカソードにして電解銅めっきを行い、絶縁樹脂層13上に10〜15μm厚の導体層24及びビア用孔43にコンフォーマルビア33を、絶縁樹脂層14上に10〜15μm厚の導体層25及びビア用孔44にフィルドビア34をそれぞれ形成する(図6(j)参照)。
ここで、電解銅めっき条件としては、上記図3(d)の工程に用いた条件と同じ処方で良い。
【0042】
次に、めっきレジストパターン54及びめっきレジストパターン55を0.5〜2.0wt%水酸化ナトリウム水溶液で剥離除去し、めっきレジストパターン54及びめっきレジストパターン55下部にあっためっき下地導電層をフラッシュエッチングで除去して、第3配線層24a、第4配線層25a及びランド25bを形成し、両面配線板40の一方の面に絶縁樹脂層13を介して第3配線層24a及びコンフォーマルビア33が形成されたビルドアップ層50、他方の面に絶縁樹脂層13を介して第4配線層25a及びフィルドビア34が形成されたビルドアップ層50をそれぞれ形成し、4層プリント配線板200を得る(図6(k)参照)。
さらに、必要に応じて上記絶縁樹脂層、配線層及びコンフォーマルビアもしくはフィルドビア形成工程を必要回数繰り返すことにより、所望の多層プリント配線板を得ることができる。
【0043】
【発明の効果】
上記したように、本発明の多層プリント配線板は、コア基板のないビルドアップ多層プリント配線板の構造とすることで、配線層のパターン設計自由度が増すとともに、配線層の収容性が向上し、薄型化及び微細配線層の形成が可能になり、高密度化が図れる。
また、対称構造のビルドアップ多層プリント配線板となっているため、薄型化しても配線板の反りが生じ難い。
また、本発明の多層プリント配線板の製造方法では、セミアディティブ法を用いて配線層を形成しているので、微細パターンの配線層を容易に得ることができる。
また、支持体シートを用いているので、多層プリント配線板の製造工程中での保護層を兼ねた処理基板の補強を容易に実施でき、特に、薄型化した配線板を製造する場合には変形防止効果が発揮される。
【図面の簡単な説明】
【図1】(a)〜(c)は、本発明の多層プリント配線板の実施例を示す模式構成断面図である。
【図2】(a)〜(d)は、本発明の半導体装置の一実施例を示す模式構成断面図である。
【図3】(a)及び(f)は、本発明の多層プリント配線板の製造方法の第1の実施例における工程の一部を模式的に示す断面図である。
【図4】(g)及び(k)は、本発明の多層プリント配線板の製造方法の第1の実施例における工程の一部を模式的に示す断面図である。
【図5】(a)及び(f)は、本発明の多層プリント配線板の製造方法の第2の実施例における工程の一部を模式的に示す断面図である。
【図6】(g)及び(k)は、本発明の多層プリント配線板の製造方法の第2の実施例における工程の一部を模式的に示す断面図である。
【図7】(a)及び(f)は、従来の多層プリント配線板の製造法の工程一例を模式的に示す断面図である。
【図8】(a)及び(d)は、従来の多層プリント配線板の製造法の工程一例を模式的に示す断面図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer printed wiring board in which a plurality of wiring layers are formed on both surfaces of a first wiring layer via insulating layers, a manufacturing method thereof, and a semiconductor device.
[0002]
[Prior art]
In recent years, multilayer printed wiring boards having high-density and high-precision wiring layers have been required for printed wiring boards for mounting semiconductor devices due to the development of semiconductor mounting technology. In order to form a high-density, high-precision wiring layer, the printed wiring board is multilayered, the line width of the wiring layer is reduced, and the via hole used for connection between the wiring layers is required to have a smaller hole diameter. ing. In addition, high-precision processing is also required for hole processing of the via-holes so as to minimize misalignment. In order to satisfy such requirements, a so-called build-up method in which a multilayer printed wiring board is manufactured by forming a multilayer wiring layer by alternately forming wiring layers and insulating layers has been put into practical use.
[0003]
An example of a conventional technique (see, for example, Patent Document 1) for producing a multilayer printed wiring board by a build-up method is shown in FIGS.
Hereinafter, a method for manufacturing a multilayer printed wiring board by the build-up method will be described with reference to FIGS.
First, a double-sided copper-clad laminate 710 in which copper foils 121 and 122 are laminated on both sides of an insulating base 111 is prepared (see FIG. 7A).
Next, the copper foil 122 of the double-sided copper-clad laminate 710 is subjected to a patterning process by an etching method to form a first wiring layer 122a, and a predetermined position of the insulating substrate 111 is drilled by laser processing or the like, and vias are formed. A working hole 141 is formed (see FIG. 7B).
[0004]
Next, a photosensitive dry film is laminated on both sides to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed on the photosensitive layer on the first wiring layer 122a side. Exposure is performed to form a plating resist pattern 151 and a protective mask layer 152. Furthermore, the plating base pattern conductive layer is formed by performing desmearing on the surface of the insulating substrate 111 and the via hole 141 on the side of the plating resist pattern 151, the catalyst nucleus applying treatment, and electroless copper plating, and the plating base conductive layer is used as a cathode. Then, electrolytic copper plating is performed to form the conformal via 131 (see FIG. 7C).
[0005]
Next, a photosensitive dry film is laminated on both surfaces to form a photosensitive layer, and a series of patterning processes such as pattern exposure and development are performed on the photosensitive layer on the copper foil 121 side, and the photosensitive layer on the first wiring layer 122a side is the entire surface. Exposure is performed to form a resist pattern 153 and a protective mask layer 154. Further, the copper foil 121 is etched using the resist pattern 153 as a mask (see FIG. 7D).
[0006]
Next, the resist pattern 153 and the protective mask layer 154 are peeled off, and the wiring layer 121a is formed on one surface of the insulating base 111 and the wiring layer 122a is formed on the other surface, so that the core substrate 720 is manufactured (FIG. 7 ( e)).
Further, build-up layers 730 and 740 are formed on both surfaces of the core substrate 720 to obtain a four-layer printed wiring board 700 (see FIG. 7F).
[0007]
Moreover, another example of the prior art (for example, refer patent document 2) which produces a multilayer printed wiring board by a buildup method is shown to Fig.8 (a)-(d).
Hereinafter, a method for manufacturing a multilayer printed wiring board by the build-up method will be described with reference to FIGS.
First, a double-sided copper-clad laminate 810 in which copper foils 125 and 126 are laminated on both sides of an insulating base 114 is prepared (see FIG. 8A).
Next, a predetermined position on the copper foil 126 side of the double-sided copper-clad laminate 610 is drilled by laser processing or the like to form a via hole 142 (see FIG. 8B).
[0008]
Next, the copper foil 125 and the copper foil 126 are patterned by a subtractive method to form the wiring layer 125a and the wiring layer 126a. Further, the core substrate 820 is manufactured by forming the wiring layer 127 on the wiring layer 126a and the via hole 134 in the via hole 142 by the semi-additive method (see FIG. 8C).
[0009]
Next, the wiring layer 128 is formed on the wiring layer 127 side of the core substrate 820 through the insulating layer 115 by a subtractive method. Further, the wiring layer 129 and the via hole 135 are formed by the semi-additive method to form the buildup layer 830, and the three-layer printed wiring board 600 including the core substrate 820 and the buildup layer 830 is obtained (see FIG. 8D). .
[0010]
[Patent Document 1]
JP 2001-94252 A [Patent Document 2]
Japanese Patent Laid-Open No. 09-46042
[Problems to be solved by the invention]
In the manufacturing method of the multilayer printed wiring board by the build-up method using the above-mentioned conventional technique, since the subtractive method is used, it is difficult to form a fine wiring layer.
Moreover, since the multilayer printed wiring board produced using the technique of patent document 1 has an asymmetric structure with respect to an insulating base material, it has the problem of being easy to produce a curvature.
[0012]
The present invention has been devised in view of the above problems, and an object of the present invention is to provide a method for manufacturing a multilayer printed wiring board capable of forming a fine wiring layer, a multilayer printed wiring board that hardly causes warpage, and a semiconductor device.
[0017]
[Means for Solving the Problems]
In order to achieve the above object in the present invention, a multilayer printed wiring having a plurality of wiring layers formed on both surfaces of a first wiring layer via an insulating resin layer, comprising at least the following steps: This is a method for manufacturing a plate.
(A) an insulating resin So及 beauty copper foil or Ranaru step of preparing a single-sided copper foil with a resin sheet.
(B) A step of forming a via hole at a predetermined position of the insulating resin layer of the resin sheet with a single-sided copper foil and forming a plating base conductive layer by electroless copper plating.
(C) forming the plating underlying conductive layer TLR Kki resist pattern after adhering a support sheet on the copper foil.
; (D) plating underlying conductive layer to the cathode and subjected to electrolytic copper plating to form a conductor So及 beauty Firudobi A predetermined thickness step.
(E) a said plating resist pattern is removed process, the plating resist pattern the plating underlying conductive layer that has been in the lower removed by flash etching, to form the second wiring So及 beauty the filled vias, then the support Removing the body sheet .
(F) The process of forming a 2nd resist pattern on the said copper foil , after sticking a 2nd support body sheet to the said 2nd wiring layer side.
(G) the said copper foil as a mask the second resist pattern was etched, the second resist pattern is peeled off process, the step of forming the first wiring layer.
(H) A second insulating resin layer having a predetermined thickness is formed on the first wiring layer side, a second via hole is formed at a predetermined position of the second insulating resin layer , and the second is formed by electroless copper plating . forming a plating underlying conductive layer.
(I) A step of forming a second plating resist pattern on the second insulating resin layer side.
(J) A step of performing electrolytic copper plating using the second plating base conductive layer as a cathode to form a second conductor layer and a second via having a predetermined thickness.
(K) The second resist pattern is stripped, and the second plating base conductive layer under the second plating resist pattern is removed by flash etching, and the outer wiring layer and the second via are removed. forming a.
(L) A step of removing the second support sheet during the step (k) after the step (g).
(M) A step of repeating the second insulating resin layer, the outer wiring layer, and the second via formation step as many times as necessary.
[0018]
The second support sheet is removed after the step (g). In the step (h), a second insulating resin layer having a predetermined thickness and a second thickness on the first wiring layer side and the second wiring layer side, respectively. 3 and a second via hole and a third via hole at predetermined positions of the second insulating resin layer and the third insulating resin layer, respectively, by electroless copper plating. A second plating base conductive layer and a third plating base conductive layer are respectively formed, and in the step (i), a second plating resist pattern is formed on the second insulating resin layer side, and the third plating base conductive layer is formed. A third plating resist pattern is formed on the insulating resin layer side, and in the step (j), electrolytic copper plating is performed using the second plating base conductive layer and the third plating base conductive layer as a cathode, The second insulation resin layer side has a predetermined thickness A conductor layer and a second via are formed, a third conductor layer and a third via having a predetermined thickness are formed on the third insulating resin layer side, and in the step (k), the second resist is formed. The pattern and the third plating resist pattern are peeled off, and the second plating base conductive layer and the third plating base conductive located under the second plating resist pattern and the third plating resist pattern are removed. The layer is removed by flash etching, and the outer printed wiring layer, the second via and the third via are formed on both surfaces.
[0019]
The above- mentioned method for producing a multilayer printed wiring board is characterized in that the support sheet is formed of any one of a polyester film, a polyimide film, an amide film, and a polypropylene film.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
An embodiment of the multilayer printed wiring board of the present invention is shown in FIGS. 1 (a), (b) and (c). An embodiment of a semiconductor device in which a semiconductor is mounted on the multilayer printed wiring board of the present invention is shown in FIGS.
As shown in FIG. 1A, the multilayer printed wiring board 100 of the present invention has a build in which a second wiring layer 22a and a filled via 31 are formed on one surface of a first wiring layer 21a with an insulating resin layer 11 interposed therebetween. The up-layer 20 is composed of a build-up layer 30 having a third wiring layer 23a and a conformal via 32 formed on the other surface. The first wiring layer 21a and the second wiring layer 22a are filled vias 31. The first wiring layer 21a and the third wiring layer 23a are electrically connected by conformal vias 32, respectively. The three-layer printed wiring board structure has a symmetrical structure in which the build-up layer 20 and the build-up layer 30 are formed symmetrically with respect to the first wiring layer 21a.
[0021]
As shown in FIG. 1B, the multilayer printed wiring board 100a of the present invention has a second wiring layer 22a, a conformal via land 22b, and a conformal via on one surface of the first wiring layer 21a with an insulating resin layer 11 interposed therebetween. The build-up layer 20a in which the formal via 31a is formed, and the build-up layer 30 in which the third wiring layer 23a and the conformal via 32 are formed on the other surface, are constituted by the first wiring layer 21a and the second wiring layer 21a. The wiring layer 22a is electrically connected by a conformal via 31a, and the first wiring layer 21a and the third wiring layer 23a are electrically connected by a conformal via 32, respectively. Furthermore, it has a three-layer printed wiring board structure having a symmetrical structure in which the build-up layer 20a and the build-up layer 30 are formed symmetrically with respect to the first wiring layer 21a.
[0022]
Moreover, the multilayer printed wiring board 200 of the present invention is a double-sided wiring board in which a first wiring layer 21a, a second wiring layer 22a, and a filled via 31 are formed on both surfaces of an insulating resin layer 11, as shown in FIG. 40, a build-up layer 50 in which the third wiring layer 24a and the conformal via 33 are formed on one surface of the double-sided wiring board 40 via the insulating resin layer 13, and the second surface via the insulating layer 14 on the other surface. 4 wiring layers 25a, lands 25b, and a build-up layer 60 in which filled vias 34 are formed. The first wiring layer 21a and the second wiring layer 22a are filled vias 31, and the first wiring layer 21a and the third wiring layer 22a. The wiring layer 24a is electrically connected by a conformal via 33, and the second wiring layer 22a and the fourth wiring layer 25a are electrically connected by a filled via 34, respectively. Furthermore, a four-layer printed wiring board structure having a symmetrical structure in which the buildup layer 50 and the buildup layer 60 are formed symmetrically with respect to the insulating resin layer 11 is formed.
[0023]
The multilayer printed wiring boards 100, 100a and 200 of the present invention have a structure of a build-up multilayer printed wiring board without a core substrate, thereby removing wiring restrictions due to BVH (blind via holes) of the core substrate, High density and thinning can be achieved.
Specifically, the degree of freedom in designing the pattern of the wiring layer is increased, the capacity of the wiring layer is improved, the thickness can be reduced and the fine wiring layer can be formed, and the density can be increased.
In addition, since the build-up multilayer printed wiring board has a symmetric structure, the wiring board is hardly warped even if it is thinned.
[0024]
Hereinafter, the semiconductor device of the present invention will be described.
As shown in FIG. 2A, the semiconductor device 300 of the present invention has the filled via on the multilayer printed wiring board 100 of the present invention and the pad 71 of the semiconductor 80 bonded to each other, and the semiconductor 80 is mounted. Underfill 81 resin is poured between the insulating resin layers of the multilayer printed wiring board 100.
Further, as shown in FIG. 2B, the semiconductor device 400 of the present invention has the conformal via land on the multilayer printed wiring board 100a of the present invention and the pad 71 of the semiconductor 80 bonded to each other, and the semiconductor 80 is mounted. The underfill 81 resin is poured between the semiconductor 80 and the insulating resin layer of the multilayer printed wiring board 100a.
[0025]
In the semiconductor device 500 of the present invention, as shown in FIG. 2C, the filled via or land on the multilayer printed wiring board 200 of the present invention and the pad 71 of the semiconductor 80 are joined via the solder 91, and the semiconductor 80 is mounted. The underfill 81 resin is poured between the semiconductor 80 and the insulating resin layer of the multilayer printed wiring board 200.
In addition, as shown in FIG. 2D, the semiconductor device 600 of the present invention has the filled via 34 or land 25b on the multilayer printed wiring board 200 of the present invention and the pad 71 of the semiconductor 80 bonded via bumps 92. A semiconductor 80 is mounted, and an underfill 81 resin is poured between the semiconductor 80 and the insulating resin layer of the multilayer printed wiring board 200.
[0026]
Figure 3 below for a method for manufacturing a multilayer printed wiring board of the present invention (a) ~ (f) and FIG. 4 (g) ~ (k) is the first embodiment of a method for manufacturing a multilayer printed wiring board of the present invention It is a schematic structure sectional view showing an example in order of processes.
First, the resin sheet 10 with a single-sided copper foil in which a semi-cured insulating resin layer 11 is formed by applying a resin solution or laminating prepreg on the copper foil 21 is prepared (see FIG. 3A).
Here, the copper foil 21 has a thickness of 12 to 18 μm, and the insulating layer resin layer 11 has a thickness of 50 to 100 μm. Furthermore, the copper foil 21 is macro-etched by spraying an oxidizing solution having a composition of 80 to 160 g / L of sulfuric acid and 90 to 150 g / L of 35 wt% hydrogen peroxide on the resin sheet 10 with a single-sided copper foil for 15 to 60 seconds. Thus, a copper foil having a thickness of 5 to 10 μm is formed. This is a prescription example of thinning a copper foil for forming a fine wiring layer by an etching method.
[0027]
Next, a predetermined position of the insulating resin layer 11 of the single-sided copper foil-attached resin sheet 10 is laser processed to form via holes 41, desmearing, plating catalyst application and electroless copper plating are performed, and a plating underlayer (particularly, , Not shown) (see FIG. 3B).
Here, a carbon dioxide laser, an excimer laser, a YAG laser, or the like can be used as a laser for laser processing. For example, when a carbon dioxide laser is used, a laser beam having a spot diameter (diameter) of 0.125 mm is 1 to 3 at 5 to 20 mJ. It is preferable to perform pulse irradiation.
As a desmear prescription, for example, MLB211: manufactured by Shipley Far East Co., Ltd. is immersed in a swelling bath consisting of 20 vol% and Cueposit Z consisting of 10 vol% at 60 to 85 ° C. for 1 to 5 minutes, and then MLB213A (Shipley Fur Yeast Co., Ltd.) is immersed in an etching bath consisting of 10 vol% and MLB213B (Chipley Far East Co., Ltd.) is 15 vol% at 55 to 75 ° C. for 2 to 10 minutes, and MLB 216-2 (Shipley Fur) Yeast Co., Ltd.) is immersed in a neutralization bath consisting of 20 vol% at 35 to 55 ° C. for 2 to 10 minutes to perform desmear treatment of the surface of the insulating resin layer 11 and the via holes 41.
[0028]
In addition, as a prescription for forming a plating catalyst and forming a plating base conductive layer, for example, the above-mentioned substrate is immersed in a pre-dip CP-3023 (manufactured by Shipley Far East Co., Ltd.) bath at 25 ° C. for 60 seconds, and then a catalyst manufactured by the same company. Insulate the resin layer in the same CP-3316 bath for 180 seconds at 25 ° C and then in the same accelerator (NR-2A and NR-2B mixed in 10vol% and 3vol% respectively) at 25 ° C for 300 seconds. 11 After applying a palladium catalyst to the surface and via hole 41, electroless copper plating is performed to form a plating base conductive layer (not shown in particular).
[0029]
Next, after sticking the support body sheet 61 on the copper foil 21, the photosensitive dry film is stuck on the insulating resin layer 11 with a hot roll of 80 to 120 ° C., and the release sheet is peeled off to insulate the insulating resin. A photosensitive layer is formed on the layer 11, and after pattern exposure is performed by irradiating 50 to 200 mJ / cm 2 of ultraviolet light with an ultrahigh pressure mercury lamp, 0.5 to 2 wt% sodium carbonate aqueous solution is spray-developed, dried and cured. A plating resist pattern 51 is formed (see FIG. 3C).
Here, the support sheet 61 is for reinforcing the processing substrate and protecting the copper foil 21 in the processing step, and is a polyester film, polyimide film, amide film, polypropylene film, polysulfone film, polyphenylsulfone film. A polyether sulfone film, a polyphenylene sulfide film, a polyphenylene ether film, a polyether ether ketone film, and a polyphenylene terephthalamide film are appropriately selected according to process conditions and the like.
[0030]
Next, the wiring substrate on which the plating resist pattern 51 is formed is dipped in a copper sulfate plating bath, electrolytic copper plating is performed using the plating base conductive layer as a cathode, and a conductive layer having a thickness of 10 to 15 μm is formed on the insulating resin layer 11. A filled via 31 is formed in the via 22 and the via hole 41 (see FIG. 3D).
Here, as electrolytic copper plating conditions, for example, using a copper sulfate plating bath having a composition of copper sulfate 70 to 100 g / L, sulfuric acid 150 to 250 g / L, and hydrochloric acid 50 to 100 ppm, a current density of 1.5 to 2 is used. Electrolytic copper plating is performed for 20 to 50 minutes under the condition of 5 A / dm 2 to form a conductor layer made of copper having a thickness of 10 to 15 μm.
Further, although filled vias are formed in the via holes 41, the vias are not particularly limited, and filled vias and conformal vias may be appropriately selected and used.
[0031]
Next, a 0.5 to 2 wt% sodium hydroxide aqueous solution is sprayed to remove the plating resist pattern 51, and the plating base conductive layer under the plating resist pattern 51 is removed by flash etching. Is removed to form the second wiring layer 22a, and the build-up layer 20 in which the second wiring layer 22a and the filled via 31 are formed is formed on the copper foil 21 via the insulating resin layer 11 (FIG. 3E). reference).
[0032]
Next, after sticking the support sheet 62 on the second wiring layer 22a side, the photosensitive dry film is stuck on the insulating resin layer 11 with a hot roll of 80 to 120 ° C., and the release sheet is peeled off. Then, after forming a photosensitive layer on the insulating resin layer 11, pattern exposure is performed by irradiating 50 to 200 mJ / cm 2 of ultraviolet light with an ultra-high pressure mercury lamp, 0.5 to 2 wt% sodium carbonate aqueous solution is spray developed and dried and cured. Thus, a resist pattern 52 is formed (see FIG. 3F).
Here, the support sheet 62 is for reinforcing the processing substrate and protecting the copper foil 21 in the processing step, and is a polyester film, polyimide film, amide film, polypropylene film, polysulfone film, polyphenylsulfone film. A polyether sulfone film, a polyphenylene sulfide film, a polyphenylene ether film, a polyether ether ketone film, and a polyphenylene terephthalamide film are appropriately selected according to process conditions and the like.
[0033]
Next, using the resist pattern 52 as a mask, an etching solution comprising cupric chloride 200 to 400 g / l and hydrochloric acid 100 to 150 g / l is sprayed to remove the copper foil 21 by etching, and the resist pattern 52 is changed to 0.5 to 0.5. The first wiring layer 21a is formed by peeling off with a 2.0 wt% sodium hydroxide aqueous solution (see FIG. 4G).
[0034]
Next, an insulating resin layer 12 is formed by applying a resin solution on the first wiring layer 21a or a prepreg sheet or the like, and laser processing is performed at a predetermined position of the insulating resin layer 12 A via hole 42 is formed by, for example, desmear, plating catalyst application, and electroless copper plating in the same formulation as in FIG. 3B to form a plating base conductive layer (not shown in particular) (FIG. 4). (See (h)).
[0035]
Next, a photosensitive dry film is stuck on the insulating resin layer 12 with a hot roll of 80 to 120 ° C., the release sheet is peeled off to form a photosensitive layer on the insulating resin layer 12, and an ultra-high pressure mercury lamp After pattern exposure by irradiating 50 to 200 mJ / cm @ 2 with UV, 0.5 to 2 wt% aqueous sodium carbonate solution is spray developed and dried and cured to form a plating resist pattern 53 (see FIG. 4 (i)). .
[0036]
Next, the wiring substrate on which the plating resist pattern 53 is formed is immersed in a copper sulfate plating bath, and electrolytic copper plating is performed using the plating base conductive layer as a cathode, and a conductive layer having a thickness of 10 to 15 μm is formed on the insulating resin layer 11. The conformal via 32 is formed in the hole 23 and the via hole 42 (see FIG. 4J).
Here, the electrolytic copper plating conditions may be the same as the conditions used in the step of FIG.
In addition, although a conformal via is formed in the via hole 42, it is not particularly limited, and a conformal via and a filled via may be appropriately selected and used.
[0037]
Next, the plating resist pattern 53 is peeled and removed with a 0.5 to 2.0 wt% sodium hydroxide aqueous solution, and the plating base conductive layer located under the plating resist pattern 53 is removed by flash etching to form the third wiring layer 23a. Formed, the support sheet 62 is removed, the build-up layer 20 in which the second wiring layer 22a and the filled via 31 are formed on one surface of the first wiring layer 21a via the insulating resin layer 11, and on the other surface A three-layer printed wiring board 100 including the build-up layer 30 in which the third wiring layer 23a and the conformal via 32 are formed is obtained through the insulating resin layer 12 (see FIG. 4 (k)).
Furthermore, a desired multilayer printed wiring board can be obtained by repeating the insulating resin layer, the wiring layer, and the conformal via or filled via forming process as many times as necessary.
[0038]
FIGS. 5A to 5F and FIGS. 6G to 6K are schematic configuration sectional views showing a second embodiment of the method for manufacturing a multilayer printed wiring board according to the present invention in the order of steps.
First, the steps of FIGS. 5A to 5F are processed in the same manner as in FIGS. 3A to 3F, and the first wiring layer 21a, the second wiring layer 22a, the land 22c, and the filled via 32 are processed. And a double-sided wiring board 40 in which the first wiring layer 21a, the second wiring layer 22a land 22b, and the filled via 32 are formed on both surfaces of the insulating resin layer 11 is obtained (see FIG. 6G).
[0039]
Next, a prepreg sheet is laminated on both sides of the double-sided wiring board 40 to form the insulating resin layer 13 and the insulating resin layer 14, and for vias at predetermined positions of the insulating resin layer 13 and the insulating resin layer 14 by laser processing or the like. A hole 43 and a via hole 44 are formed, and desmear, plating catalyst application, and electroless copper plating are performed to form a plating base conductive layer (not shown) (see FIG. 6H).
Here, the desmear, plating catalyst application, and electroless copper plating conditions may be the same as the conditions used in the step of FIG.
[0040]
Next, the photosensitive dry film is stuck on the insulating resin layer 13 and the insulating resin layer 14 with a heat roll of 80 to 120 ° C., the release sheet is peeled off, and the photosensitive dry film is exposed on the insulating resin layer 13 and the insulating resin layer 14. After forming a layer, pattern exposure is performed by irradiating 50 to 200 mJ / cm 2 of ultraviolet rays with an ultrahigh pressure mercury lamp on both sides, 0.5 to 2 wt% aqueous sodium carbonate solution is spray developed, dried and cured, and then a plating resist pattern 54 is formed. Then, a plating resist pattern 55 is formed (see FIG. 6I).
[0041]
Next, the plating resist pattern 54 and the wiring substrate on which the plating resist pattern 55 is formed are immersed in a copper sulfate plating bath, and electrolytic copper plating is performed using the plating base conductive layer as a cathode. A conformal via 33 is formed in the conductor layer 24 and via hole 43 having a thickness of 15 μm, and a filled via 34 is formed in the conductor layer 25 and via hole 44 having a thickness of 10 to 15 μm on the insulating resin layer 14 (FIG. 6J). reference).
Here, the electrolytic copper plating conditions may be the same as the conditions used in the step of FIG.
[0042]
Next, the plating resist pattern 54 and the plating resist pattern 55 are stripped and removed with a 0.5 to 2.0 wt% sodium hydroxide aqueous solution, and the plating base conductive layer under the plating resist pattern 54 and the plating resist pattern 55 is flash etched. The third wiring layer 24a, the fourth wiring layer 25a, and the land 25b are formed, and the third wiring layer 24a and the conformal via 33 are formed on one surface of the double-sided wiring board 40 via the insulating resin layer 13. The formed buildup layer 50 and the buildup layer 50 having the fourth wiring layer 25a and the filled via 34 formed on the other surface via the insulating resin layer 13 are formed, respectively, to obtain the four-layer printed wiring board 200 (FIG. 6 (k)).
Furthermore, a desired multilayer printed wiring board can be obtained by repeating the insulating resin layer, the wiring layer, and the conformal via or filled via forming process as many times as necessary.
[0043]
【The invention's effect】
As described above, the multilayer printed wiring board according to the present invention has a build-up multilayer printed wiring board structure without a core substrate, thereby increasing the degree of freedom in pattern design of the wiring layer and improving the capacity of the wiring layer. Therefore, it is possible to reduce the thickness and form a fine wiring layer, and to increase the density.
In addition, since the build-up multilayer printed wiring board has a symmetric structure, the wiring board is hardly warped even if it is thinned.
Moreover, in the method for producing a multilayer printed wiring board according to the present invention, since the wiring layer is formed using a semi-additive method, a wiring layer having a fine pattern can be easily obtained.
In addition, since a support sheet is used, it is possible to easily reinforce the processing substrate that also serves as a protective layer during the manufacturing process of the multilayer printed wiring board, and in particular, when manufacturing a thin wiring board, Preventive effect is exhibited.
[Brief description of the drawings]
FIGS. 1A to 1C are schematic sectional views showing an embodiment of a multilayer printed wiring board according to the present invention.
FIGS. 2A to 2D are schematic cross-sectional views showing an embodiment of a semiconductor device of the present invention.
3 (a) and (f) are cross-sectional views schematically showing a part of the steps in the first example of the method for manufacturing a multi-layer printed wiring board of the present invention.
[4] (g) and (k) is a cross-sectional view schematically showing a part of the process in the first example of the method for manufacturing a multi-layer printed wiring board of the present invention.
5 (a) and (f) are cross-sectional views schematically showing a part of the process in the second embodiment of the method of manufacturing the multi-layer printed wiring board of the present invention.
6 (g) and (k) is a cross-sectional view schematically showing a part of the process in the second embodiment of the method of manufacturing the multi-layer printed wiring board of the present invention.
FIGS. 7A and 7F are cross-sectional views schematically showing an example of a process for manufacturing a conventional multilayer printed wiring board.
FIGS. 8A and 8D are cross-sectional views schematically showing an example of a process for manufacturing a conventional multilayer printed wiring board.

Claims (3)

以下の工程を少なくとも備えることを特徴とする、第1配線層の両面に絶縁樹脂層を介して複数の配線層が形成されている多層プリント配線板の製造方法。
(a)絶縁樹脂層及び銅箔からなる片面銅箔付樹脂シートを準備する工程。
(b)前記片面銅箔付樹脂シート前記絶縁樹脂層の所定位置にビア用孔を形成し無電解銅めっきによりめっき下地導電層を形成する工程。
(c)前記銅箔上に支持体シートを貼着した後前記めっき下地導電層上にめっきレジストパターンを形成する工程。
(d)前記めっき下地導電層をカソードにして電解銅めっきを行って所定厚の導体層及びフィルドビアを形成する工程。
(e)前記めっきレジストパターンを剥離処理し、前記めっきレジストパターン下部にあった前記めっき下地導電層をフラッシュエッチングにて除去し、第2配線層及前記フィルドビアを形成し、次に、前記支持体シートを除去する工程。
(f)前記第2配線層側に第2の支持体シートを貼着した後、前記銅箔に第2のレジストパターンを形成する工程。
(g)前記第2のレジストパターンをマスクにして前記銅箔をエッチング処理し、前記第2のレジストパターンを剥離処理して、第1配線層を形成する工程。
(h)前記第1配線層側に所定厚の第2の絶縁樹脂層を形成し、前記第2の絶縁樹脂層の所定位置に第2のビア用孔を形成し無電解銅めっきにより第2のめっき下地導電層を形成する工程。
(i)前記第2の絶縁樹脂層側に第2のめっきレジストパターンを形成する工程。
(j)前記第2のめっき下地導電層をカソードにして電解銅めっきを行い、所定厚の第2の導体層及び第2のビアを形成する工程。
(k)前記第2のレジストパターンを剥離処理し、前記第2のめっきレジストパターン下部にあった前記第2のめっき下地導電層をフラッシュエッチングにて除去し、外側配線層及び前記第2のビアを形成する工程。
(l)前記第2の支持体シートを前記工程(g)の後から前記工程(k)の間に除去する
工程。
(m)前記第2の絶縁樹脂層、前記外側配線層及び前記第2のビア形成工程を必要回数繰り返す工程。
The manufacturing method of the multilayer printed wiring board by which the several process layer is formed in the both surfaces of the 1st wiring layer via the insulating resin layer characterized by including the following processes at least.
(A) an insulating resin So及 beauty copper foil or Ranaru step of preparing a single-sided copper foil with a resin sheet.
(B) A step of forming a via hole at a predetermined position of the insulating resin layer of the resin sheet with a single-sided copper foil and forming a plating base conductive layer by electroless copper plating.
(C) forming the plating underlying conductive layer TLR Kki resist pattern after adhering a support sheet on the copper foil.
; (D) plating underlying conductive layer to the cathode and subjected to electrolytic copper plating to form a conductor So及 beauty Firudobi A predetermined thickness step.
(E) a said plating resist pattern is removed process, the plating resist pattern the plating underlying conductive layer that has been in the lower removed by flash etching, to form the second wiring So及 beauty the filled vias, then the support Removing the body sheet .
(F) The process of forming a 2nd resist pattern on the said copper foil , after sticking a 2nd support body sheet to the said 2nd wiring layer side.
(G) the said copper foil as a mask the second resist pattern was etched, the second resist pattern is peeled off process, the step of forming the first wiring layer.
(H) A second insulating resin layer having a predetermined thickness is formed on the first wiring layer side, a second via hole is formed at a predetermined position of the second insulating resin layer , and the second is formed by electroless copper plating . forming a plating underlying conductive layer.
(I) A step of forming a second plating resist pattern on the second insulating resin layer side.
(J) A step of performing electrolytic copper plating using the second plating base conductive layer as a cathode to form a second conductor layer and a second via having a predetermined thickness.
(K) The second resist pattern is stripped, and the second plating base conductive layer under the second plating resist pattern is removed by flash etching, and the outer wiring layer and the second via are removed. forming a.
(L) The second support sheet is removed during the step (k) after the step (g).
Process.
(M) A step of repeating the second insulating resin layer, the outer wiring layer, and the second via formation step as many times as necessary.
前記第2の支持体シートを前記工程(g)の後に除去し、前記工程(h)において、前記第1配線層及び前記第2配線層側にそれぞれ所定厚の第2の絶縁樹脂層及び第3の絶縁樹脂層を形成し、前記第2の絶縁樹脂層及び前記第3の絶縁樹脂層の所定位置にそれぞれ第2のビア用孔及び第3のビア用孔を形成し無電解銅めっきにより第2のめっき下地導電層および第3のめっき下地導電層をそれぞれ形成し、前記工程(i)において、前記第2の絶縁樹脂層側に第2のめっきレジストパターンを形成し、前記第3の絶縁樹脂層側に第3のめっきレジストパターンを形成し、前記工程(j)において、前記第2のめっき下地導電層および前記第3のめっき下地導電層をカソードにして電解銅めっきを行い、前記第2の絶縁樹脂層側に所定厚の第2の導体層と第2のビアを形成し、前記第3の絶縁樹脂層側に所定厚の第3の導体層と第3のビアを形成し、前記工程(k)において、前記第2のレジストパターン及び前記第3のめっきレジストパターンを剥離処理し、前記第2のめっきレジストパターン及び前記第3のめっきレジストパターンの下部にあった前記第2のめっき下地導電層及び前記第3のめっき下地導電層をフラッシュエッチングにて除去し、両面に前記外側配線層及び前記第2のビアと前記第3のビアを形成することを特徴とする請求項1記載の多層プリント配線板の製造方法。The second support sheet is removed after the step (g). In the step (h), a second insulating resin layer having a predetermined thickness and a second thickness on the first wiring layer side and the second wiring layer side, respectively. 3 and a second via hole and a third via hole at predetermined positions of the second insulating resin layer and the third insulating resin layer, respectively, by electroless copper plating. A second plating base conductive layer and a third plating base conductive layer are respectively formed, and in the step (i), a second plating resist pattern is formed on the second insulating resin layer side, and the third plating base conductive layer is formed. A third plating resist pattern is formed on the insulating resin layer side, and in the step (j), electrolytic copper plating is performed using the second plating base conductive layer and the third plating base conductive layer as a cathode, The second insulation resin layer side has a predetermined thickness A conductor layer and a second via are formed, a third conductor layer and a third via having a predetermined thickness are formed on the third insulating resin layer side, and in the step (k), the second resist is formed. The pattern and the third plating resist pattern are peeled off, and the second plating base conductive layer and the third plating base conductive located under the second plating resist pattern and the third plating resist pattern are removed. 2. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the layer is removed by flash etching, and the outer wiring layer, the second via, and the third via are formed on both sides. 前記支持体シートがポリエステルフィルム、ポリイミドフィルム、アミドフィルム、ポリプロピレンフィルムのいずれかで形成されていることを特徴とする請求項1又は2に記載の多層プリント配線板の製造方法。The method for producing a multilayer printed wiring board according to claim 1 or 2 , wherein the support sheet is formed of any one of a polyester film, a polyimide film, an amide film, and a polypropylene film.
JP2003052445A 2003-02-28 2003-02-28 Manufacturing method of multilayer printed wiring board Expired - Fee Related JP4066848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003052445A JP4066848B2 (en) 2003-02-28 2003-02-28 Manufacturing method of multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003052445A JP4066848B2 (en) 2003-02-28 2003-02-28 Manufacturing method of multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2004265967A JP2004265967A (en) 2004-09-24
JP4066848B2 true JP4066848B2 (en) 2008-03-26

Family

ID=33117317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003052445A Expired - Fee Related JP4066848B2 (en) 2003-02-28 2003-02-28 Manufacturing method of multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP4066848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287742B1 (en) * 2011-11-23 2013-07-18 삼성전기주식회사 Printed circuit board and manufacturing method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4620495B2 (en) * 2005-03-01 2011-01-26 大日本印刷株式会社 Flexures and methods of manufacturing flexures
JP4790297B2 (en) 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
JP4787559B2 (en) 2005-07-26 2011-10-05 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN101124861B (en) 2005-11-02 2011-03-30 揖斐电株式会社 Multilayer printed wiring board for semiconductor device and process for producing the same
JP4955259B2 (en) * 2005-11-24 2012-06-20 新光電気工業株式会社 WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
JP2008091639A (en) * 2006-10-02 2008-04-17 Nec Electronics Corp Electronic equipment, and manufacturing method thereof
KR100951449B1 (en) 2008-01-03 2010-04-07 삼성전기주식회사 PCB and manufacturing method thereof
JP2010118635A (en) 2008-11-12 2010-05-27 Ibiden Co Ltd Multilayer printed wiring board
JP5357239B2 (en) * 2011-12-05 2013-12-04 新光電気工業株式会社 WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
JP2016134395A (en) * 2015-01-15 2016-07-25 イビデン株式会社 Manufacturing method of printed wiring board
KR20230088480A (en) * 2020-11-27 2023-06-19 교세라 가부시키가이샤 Printed wiring board and manufacturing method of printed wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287742B1 (en) * 2011-11-23 2013-07-18 삼성전기주식회사 Printed circuit board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004265967A (en) 2004-09-24

Similar Documents

Publication Publication Date Title
KR100688743B1 (en) Manufacturing method of PCB having multilayer embedded passive-chips
KR100701353B1 (en) Multi-layer printed circuit board and manufacturing method thereof
JP2002232135A (en) Double-sided circuit board for lamination and its manufacturing method, and multilayer printed circuit board using the same
KR20120067968A (en) Multilayer wiring substrate and method of manufacturing the same
JP4187352B2 (en) Build-up multilayer printed wiring board and manufacturing method of build-up multilayer printed wiring board
JP4066848B2 (en) Manufacturing method of multilayer printed wiring board
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
US20090289030A1 (en) Method of fabricating printed wiring board
JP4489899B2 (en) Method for manufacturing double-sided circuit board for multilayer printed wiring board
JP2008311612A (en) Multilayer printed circuit board, and method of manufacturing the same
KR101811940B1 (en) Manufacture method of a multilayer circuit board formed with a fine via
JPH1075069A (en) Manufacture of build-up multi-layer printed circuit board using yag laser
JP3596374B2 (en) Manufacturing method of multilayer printed wiring board
JP2001015913A (en) One-sided circuit board and its production, and production of multilayered wiring board
JP2003124637A (en) Multilayer wiring board
US6555016B2 (en) Method of making multilayer substrate
JP2000269647A (en) Single-side circuit board, multilayer printed wiring board and manufacture thereof
JP4153328B2 (en) Manufacturing method of multilayer printed wiring board
JP2001015919A (en) Multilayer printed wiring board, circuit-board therefor and its manufacture
JP2004071749A (en) Method of manufacturing multilayer circuit wiring board
JP2004152935A (en) Printed wiring board
JP2002134918A (en) Method for manufacturing multilayer printed wiring board
KR101715941B1 (en) The method for manufacturing the printed circuit board
JP2015222805A (en) Printed-circuit board and manufacturing method thereof
JP2005251894A (en) Method of manufacturing printed circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees