JP4065351B2 - Method for producing an insulating protective barrier film based on Ti-Si-N and Ti-BN with low defect density - Google Patents

Method for producing an insulating protective barrier film based on Ti-Si-N and Ti-BN with low defect density Download PDF

Info

Publication number
JP4065351B2
JP4065351B2 JP30117997A JP30117997A JP4065351B2 JP 4065351 B2 JP4065351 B2 JP 4065351B2 JP 30117997 A JP30117997 A JP 30117997A JP 30117997 A JP30117997 A JP 30117997A JP 4065351 B2 JP4065351 B2 JP 4065351B2
Authority
JP
Japan
Prior art keywords
film
layer
silicon
atmosphere
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30117997A
Other languages
Japanese (ja)
Other versions
JPH10189491A (en
Inventor
− ピン ル ジオン
Original Assignee
テキサス インスツルメンツ インコーポレイテツド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/784,657 external-priority patent/US6017818A/en
Application filed by テキサス インスツルメンツ インコーポレイテツド filed Critical テキサス インスツルメンツ インコーポレイテツド
Publication of JPH10189491A publication Critical patent/JPH10189491A/en
Application granted granted Critical
Publication of JP4065351B2 publication Critical patent/JP4065351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76856After-treatment introducing at least one additional element into the layer by treatment in plasmas or gaseous environments, e.g. nitriding a refractory metal liner

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は集積回路構造体と製法に関する。
【0002】
【従来の技術】
窒化チタン(TiN)はコンタクト、バイアス(vias)、トレンチ及び相互接続積層での拡散障壁とし通常用いられている。また、窒化チタンは化学的蒸着(CVD)タングステン用の接着層として、CVDタングステン、CVDアルミニウムの核生成層としての役目を果すこともできる。良好な障壁層は、段部被覆法が良くて、無空隙プラグ形成を達成し、コンタクト/バイアス/トレンチの底部で充分な障壁厚を達成すること、拡散障壁性が良くてタングステン蒸着中の金属拡散を防止し、下層の金属又は珪素のWF6 攻撃を防止すること。熱サイクル中隣接材料に不活性であり、低反応性であること、電気的性質が許容できること。例えばコンタクト/バイアスの抵抗が低いこと、接合漏れが低いことが必要である。更に、障壁層は出来るだけ薄くして相互接続積層の厚みを低下させることが必要である。
【0003】
反応性スパッターTixとチタンの急速熱窒化で形成するTiNは拡散障壁として伝統的に用いられてきた。最近はPVDTiNをCVDTiNに換えて0.35μm以下のコンタクト、トレンチ及びバイアスに対する段部被覆性の要求を満たす傾向にある。CVDTiNは金属の信頼性の問題と、PVDTiNが関係する接合漏れの問題とを克服するもので、CVDTiNは接触抵抗と漏れを低く維持しながら、550℃での熱応力に耐えることが出来る。更に、CVDTiNは平行化PVDTiNよりも潜在的にクリーンな方法である。
【0004】
TiC4 とNH3 の反応で付着させるCVDTiNはこれまで利用されてきたが、幾つかの問題がある。問題のうちの幾つかは付着温度が高いこと、TiNlのように塩素が取込まれること、気相中にNH4 Cl粒子が生成することである。塩素汚染は低減できるが、このような方法では皆無とすることはできない。膜は400℃よりも低い温度で付着させるときは、TiC4 /NH3 法は利用できないが、金属−有機前駆物質を用いることができる。通常用いられる2種の金属−有機前駆物質はテトラキスメチルアミノチタン(TDMAT)とテトラキスジエチルアミノチタン(TDEAT)である。TDMATの熱分解に基づくCVDTiNの付着では段部被覆性がよく、粒子の計数が少ない層が形成するが、抵抗率の高い不安定な膜となる。抵抗率は金属−有機前駆物質とアンモニアを反応させて改善できるが、TDMATとNH3 の反応では段部被覆性の劣る膜ができ、気相反応の関係する潜在的な問題、例えば粒子生成がある。
【0005】
アンモニアを用いずにTDMAT又はTDEATを用いてTiNを付着させる可能性が文献で論じられているが、以下のことは教示されていない。即ち、アンモニアを用いずにTDEAT又はTDMATから付着させた膜は性質が極めて劣ると言われている。例えばスン(Sun )とツァイ(Tsai):「金属有機源からの低圧化学蒸着窒化チタンの特色」〔(ESSDERC’94会報、第291−4頁)。この文献は言及することにより本明細書に取り入れる〕参照のこと。
【0006】
Ti−Si−N化合物はTiNよりも更に良好な拡散障壁を提供するので、最新のメタライゼイションの応用にとって魅力がある。現在、Ti−Si−N膜の製造上2つの主要な方法が研究中であり、両方とも顕著な制限がある。(N2 雰囲気でのTi−Siターゲットの反応性スパッターはカリフォルニヤ工科大学(Cal Tech)での広範囲の研究で代表されるようにもっとも確立された方法であるが、スパッター法の方向性により、付着膜の段部被覆性は、高アスペクト比のコンタクト、バイアス及びトレンチには極めて劣る。
【0007】
シラン、アンモニア、TDEATの混合物を用いる化学的蒸着法はサンディア国立研究所で研究中である、この方法は段部被覆性のより良い膜を提供できるが、TDEATとNH3 との気相反応では粒子が形成し、生成膜の欠陥密度は高い。
【0008】
【発明が解決しようとする課題】
本発明の目的は前述の2つの方法での問題を解決する欠陥密度の低い絶縁保護性のTi−Si−N膜の革新的製法を提供することにある。
【0009】
【課題を解決するための手段】
上記の目的は本発明の方法ではまずチタンと窒素を含有する多孔性障壁層を付着し、次いで付着後の処理を行って多孔性層の少なくとも最上面中に珪素を導入して、珪素濃度の高い表面を提供することにより達成される。(別の態様では付着後の処理は珪素の代わりに又は珪素に加えて硼素を導入する)。多孔性障壁層はまた好ましくは炭素をかなりの割合で含み、必要あれば付着後の処理前に珪素をかなりの割合で含む。
【0010】
本発明の方法と構造体の長所としては、Ti−Si−N膜表面はSiに富むため(又はTi−B−N膜表面はBに富むため)、膜中への酸素吸収が極小になり形成膜が安定化する。また、表面がSiに富むこと又はBに富むことはAlのぬれとCuへの吸着向上に役立つため、最新のメタライゼイションの適用に有用である。スパッター法に較べて、本発明は段部被覆性が極めて良く、Si/Ti比の制御が容易な膜の付着法が提供される。TDEAT+NH3 +SiH4 法に較べて、本発明はTi源とNH3 間の気相反応を皆無にする本発明の方法は欠陥密度の低い絶縁保護性の膜を提供できる。本発明の方法は表面組成を含む化学組成の制御に融通性がある。本発明の方法は市販のCVD反応器で実施でき、実施が容易である。
【0011】
【発明の実施の形態】
本発明を添付図に基づき説明する、添付図は本発明の重要な代表的な実施態様を示すもので、言及することで本明細書に組み入れる。
【0012】
本発明の数多くの革新的な特徴を特に現在の好ましい態様に基づいて説明するが、ここに示すこれらの実施態様は革新的な特徴のもつ多くの有用な用途のうちの幾つかを示す実施例に過ぎないものである。一般に、本明細書の開示は請求項に記載の各種の発明のいずれの範囲を必ずしも限定するものではない。更に、幾つかの開示は本発明の幾つかの特徴についてのものであって、その他の特徴についてのものでない。
【0013】
図1は本発明の1実施態様の工程の流れを示す流れ図である。本発明を用いるデバイスの製造出発点は多くのデバイスの加工と同じである。事実、標準的加工が中間レベルの誘電体の形成、バイアス/コンタクト用のトレンチ又は孔の形成に至る全部の工程に適用される。更に、標準的加工はTiN系層の形成後でも、本発明の発明的焼鈍工程の後でも追加的に利用できる。本発明の方法は、金属−有機化学的蒸着(MOCVD)を行って窒化チタン膜を形成することが出発点である(工程104)。この膜は中間レベルの誘電体上、トレンチ又は孔の側壁上、トレンチ又は孔の底面、従来のTiNが用いられてきた他の箇所に形成される。好ましくは、工程104はTDMAT、[(CH3 2 N]4 Tiの熱分解により行う。TDMATは液体であり、好ましくは例えばHe又はN2 のような担体ガスを用いて反応器中に導入する。この分解は好ましくは温度が300°〜500℃の範囲、圧力が0.1〜50torrの範囲で行う。分解時間は目的の膜厚で変わる。別の実施態様では、C2 5 をCH3 の代りに用いて前駆物質を[(C2 5 2 N]4 Tiとすることができる。更に別の実施態様では前駆物質は好ましくは[(CH3 )(C2 5 )N]4 Tiである。
【0014】
更に工程104では、前駆物質に露出させながらウェーハを加熱して前駆物質を熱分解させてウェーハ上に膜として付着させる。形成膜はTi−N−Cから構成され、多孔性材料であって、容易にO2 を吸収する。O2 の吸収によりこの膜は抵抗が高くなり、極めて不安定になる。特に、この膜の抵抗率は膜を酸素含有空気に露出するにつれて大きく増加する(図2の曲線202参照のこと)。
【0015】
次いで、加熱工程を行う(工程106)。この工程は好ましくは純シラン雰囲気又は稀釈シラン雰囲気、ジシラン雰囲気、B2 6 雰囲気、又は膜中に珪素又は硼素を形成できる任意の他の雰囲気中で行う。好ましくは、この工程は約350°〜500℃の温度、0.1〜50torrの圧力下で約15〜240秒間行う。焼鈍工程106は付着工程104と同じ反応器内で行ってもよく、または同様の別の反応器で行ってもよい。若し、同一の反応器で行うときは、MOCVD工程104と焼鈍工程106の両方で用いる温度は好ましくはほぼ同一である。若し、両工程を別々の同様の反応器で行うときは、工程104で形成した膜は工程102の前に酸素にさらしてはならない。工程106が完了したあとの膜は下記の構成をとる:Si含有ガス使用時はTi−N−C−Si、B含有ガス使用時はTi−N−C−B。膜内へのSiの取込みは図3bの曲線302から判る。
【0016】
工程106を行った後、ウェーハを更に加工するか、又は酸素雰囲気にさらし(工程108)、次いで更に加工する。工程108を行うと、酸素は膜中に吸収されて膜は下記の構成をとる:Si含有ガス使用時はTi−N−C−Si−O、B含有ガス使用時はTi−N−C−B−O。しかし、ウェーハを酸素雰囲気に露出しないと、酸素の吸収は行われない。
【0017】
上記は特にチタンベース障壁膜の形成に関するが、他の遷移金属をチタンの代りに使用してもよい。本発明の障壁層の形成に特に、タングステン、タンタル又はモリブデンをチタンの代りに用いることができる。
【0018】
図2は2種の異なる膜のシート抵抗RS を示す。図2のX軸は膜の空気露出時間量(分)を表わし、Y軸は膜のシート抵抗(オーム/□)を表わす。工程106を行わない膜はシート抵抗が高い。これは図2の曲線202で示される。更に、曲線202から判るように、工程106を行わないときの膜のシート抵抗は膜を酸素に露出した後でかなり増加するが、工程106を行った後では、シート抵抗は(曲線202と較べて)大きさが小さく、空気中での安定性が極めて良い。これは曲線204で示される。
【0019】
更に、実験データとして20nm膜のシート抵抗の比較を表1に示す。これら3種の試験での変数はシラン処理時間、急速熱焼鈍(RTA)の有無、各種の実施温度である。
【0020】
【表1】

Figure 0004065351
【0021】
図3a、図3bは炭素、酸素、窒素、チタン、珪素の種々の深さでの濃度を示すXPS深さ方向グラフである。各図のX軸はそれぞれの深さに対応する。スパッター時間の長さは深度距離を表わしている。これら両図のY軸は全合計基準原子濃度(A.C.%)を表わす。図3bの曲線302から工程106処理の膜は珪素を含有しているが、工程106非処理の膜は珪素を含有していないことが判る(図3aの曲線301では膜の最上面は0秒で、底部は約16分で表示されている)。珪素取込みは空気中からの酸素の取込み量の低下にとって重要であり、これにより抵抗率は低下し、安定性は増す。珪素又は硼素の取込みはこの後Cu又はAlのメタライゼイションを行うときに有利となる。
【0022】
図3bの曲線304は工程106と108処理後の膜中へ酸素吸収が限定されることを示す。
【0023】
図4は透過型電子回折(TEM)パターンである。図4は工程106(0及び108)処理膜は非晶質であることを示している。非晶質膜は障壁としての用途では好ましい(多結晶膜とは反対である)。これは多結晶構造では粒子境界中で金属拡散が速く進むからである。
【0024】
図5は本発明の方法の第2の実施態様の流れ図である。この方法は、シラン・ガスをMOCVD工程で添加する以外は図1の方法と同じである。これにより珪素は層内により多く取込まれ、Si/Ti比のより良い調整を容易にする。
【0025】
図8はTi−Si−N付着膜のシート抵抗と、付着後のシラン焼鈍時間の関係を示すグラフである。
抵抗は2日間空気中に露出した後測定した。シート抵抗はシラン中で約30秒焼鈍すると急激に低下することを明示している。
【0026】
図9はTi−Si−N付着膜のシート抵抗と、Ti−Si−N付着中のシラン流量の関係を示すグラフであり、測定は2日間空気漏出後に行った。これから判るように、シラン流量が増加すると膜のシート抵抗は増加し、従って珪素の取込みによる障壁層としての増加値は珪素による高抵抗値と均合わせる必要がある。
【0027】
図10は本発明の層の断面構造を示す電子顕微鏡写真であり、本方法は層の絶縁保護性が保持されていることを示している。
【0028】
別の代表的付着法の実施態様
本実施態様は第1工程でTDMATを窒素の存在下熱分解してTiN層を形成する。付着後直ちにこの層をシラン雰囲気に露出して、シランとこの層を反応させて珪素をこの層内に取込ませて珪素に富む表面層を形成させる。珪素の存在により層劣化を招く酸素吸収を抑制する。
【0029】
また、前駆物質としてTDMATを使用すると炭素を層内に高い百分率で取込むことができ、意外にも層内の炭素は別に問題にはならないと考えられ、むしろ層内の応力を低下させ、回路寿命には影響を与えないと考えられる。
【0030】
【表2】
Figure 0004065351
【0031】
付着法の実施態様2
本態様は第1工程でSiH4 、TDMAT、N2 (稀釈剤を組合せて障壁層を形成する、深さが充分となったところで、TDMATとN2 の流れを停止させるが、SiH4 は測定時間中連続して流す。記載の本実施態様は現在の好ましい実施態様である。
【0032】
【表3】
Figure 0004065351
【0033】
付着法の実施態様3
SiH4 を他のSi源化合物、例えばSi2 6 に代替することができる。本実施態様は、第1工程でSi2 6 とTDMATを不活性N2 と一緒に流し、第2工程でTDMATとN2 の流れを停止させ、Si2 6 を流して、層表面中に珪素を余分に取込ませる。
【0034】
付着法の実施態様4
TDMATをTMEAT、即ちTi(NCH3 2 5 4 に代替させる、本実施例は、第1工程でシラン、TMEAT、N2 を一緒に流す。第2工程では純シランを流して表面層中に珪素を追加的に取込ませる。
【0035】
付着法の実施態様5
TDMATをTDEAT、即ち、Ti(N(C2 5 2 4 に代替させる。この場合、TDEAT、シランをN2 又はその他の不活性稀釈剤と一緒に流してSi−N−Ti層を付着させ、次の工程でシランだけを用いて上表面中の珪素濃度を増加させる。
【0036】
付着法の実施態様6
本実施態様では、硼素源を用いてTix y N膜を形成する。従って、硼素源成分(例えば、B2 6 )をSi源成分の代りに多孔性TiN膜の付着際に用いる。本実施例はTDEATとジボランをN2 又はその他の稀釈剤と一緒に流してTi−B−N層を付着させ、次の工程でジボランのみを用いて上表面中の硼素濃度を増加させる。
【0037】
代表的メタライゼイションの実施態様
本明細書に記載の本方法はメタライゼイションの適用、特に銅(Cu)のメタライゼイションで使用できる。例えば、図6に示す適用では、下部中間レベル誘電体515で包囲された導電層510(典型例としてアルミニウム合金)の下にあるトランジスター(図示せず)を含む半製品構造体を準備する。次いで、上部の中間レベル誘電体520(例えば、TEOS付着SiO2 上のBPSG)を付着させ、従来法(例えば、化学−機械的研磨又はCMP)で平坦化する。次いで、(ダマセン(damascene )型式の方法で)中間レベルの誘電体520をパターン化とエッチング処理してメタライゼイションラインが所望されるスロット530を形成し、またバイアスが所望される(即ち、下部電導層への電気的接触が所望される)より深い孔540を形成する。次いで、上記の方法のうちの1つを用いて拡散障壁層530を付着させる。導電性の高い金属550(例えば銅)を従来法で全体に付着させ、(例えばCMPを用いて)全体をエッチングして中間レベルの誘電体520の平坦表面を金属550が存在しない箇所で露出させる。
【0038】
本実施態様では、本発明の障壁層は中間レベルの誘電体520の露出部上全部に形成される。即ち、金属550が中間レベルの誘電体520と直接接触する箇所は全然存在しない。これにより銅原子(又は寿命短縮剤、例えば金)が中間レベルの誘電体を介して半導体基板中に拡散する可能性が低減する。
【0039】
代表的メタライゼイションの実施態様2
図7に示す別のメタライゼイションの実施態様はソース/ドレン拡散562方向に配列してポリサイド(ポリシリコン/シリサイド)ゲート560を有するトランジスターの形成を含む、次に、第1の中間レベルの誘電体層564を形成する(必要あれば、このあと図示しないが対応する複数の追加中間レベルの誘電体層を有する複数の追加層を多重に付着、パターン化処理することもよく行われる)。本明細書に開示の本発明の方法を用いて障壁層570を付着させる前にコンタクト箇所566をパターン化、エッチング処理する。次いで、金属層580を付着させ、パターン化処理する。本代表的実施態様では、金属層580はアルミニウム合金であり、これは(この好ましい実施態様ではフォースフィルTM(Force FillTM)法で)高圧下、コンタクトホール中に強制注入する。
【0040】
開示される革新的実施態様は、(a)半導体材料の少なくとも1つの実質的にモノリシックな物体を含む基板を準備する工程と、(b)チタンと窒素含有雰囲気中でCVDで絶縁保護性層を付着させる工程と、(c)上記絶縁保護性層を付着させたあとで、上記絶縁保護性層を珪素又は硼素含有雰囲気に露出させる工程とを含む薄膜形成法であって、前記工程(c)により上記絶縁保護性層上に珪素又は硼素に富む表面を形成させる薄膜形成法を提供される。
【0041】
開示される他の革新的実施態様は、チタンと窒素とを含有する薄い障壁層の膜から成る集積回路であって、上記薄膜は珪素又は硼素の組成が段階的に変化し、その第1表面では珪素又は硼素濃度が他に較べて高い集積回路を提供される。
【0042】
改変と変更
当業者が認識するように、本明細書に記載の革新的概念は広範囲の用途にわたり改変と変更が可能であり、従って、本発明の主題の範囲は本明細書の特定の実施例の教示に限定されない。
【0043】
CVDとメタライゼイションの一般的背景は下記刊行物に記載されており、これら刊行物はその改変と実施に就いて当業者の知識を示す一助となる:メタライゼイションと金属−半導体の界面(バトラ編1989);VLSIメタライゼイション:物理と技術(シエナイ編1991);ムラルカ,「VLSIとULSI用のメタライゼイション理論と実際(1993)」;集積回路用マルチレベル・メタライゼイションハンドブック(ウィルソン等編1993);ラオ,「マルチレベル・インターコネクト技術(1993)」;化学蒸着(エム・エル・ヒッチマン編1993);プラズマ加工に関する電気化学会の半年次学会会報;(これら全ての刊行物は言及することにより本明細書に組み入れる)。
【0044】
以上の説明に関して更に以下の項を開示する。
(1)(a)半導体材料の少なくとも1つの実質的にモノリシックな物体を含む基板を準備する工程と、(b)チタンと窒素を含む雰囲気中でCVDで絶縁保護性層を付着させる工程と、(c)上記絶縁保護性層を付着させたあとで、上記絶縁保護性層を珪素又は硼素を含有する雰囲気に露出させる工程とを含む薄膜形成法であって、前記工程(c)により上記絶縁保護性層上に珪素又は硼素に富む表面を形成させる薄膜形成法。
(2)工程(c)は、中間工程を介在させずに工程(b)の後直ちに行う、第1項記載の形成法。
(3)工程(b)は珪素又は硼素を含む雰囲気を用いる、第1項記載の形成法。
(4)工程(b)はSiHを含む雰囲気を用いる、第3項記載の形成法。
(5)工程(b)はTDMAT、TMEAT、TDEATから成る群から選ばれたチタン源成分を含有する雰囲気を用いる、第1項記載の形成法。
(6)急速熱焼鈍を次工程として更に含む、第1項記載の形成法。
(7)チタンと窒素とを含有する薄い障壁層の膜から成る集積回路であって、上記薄膜は珪素又は硼素の組成が段階的に変化し、その第1の表面では珪素又は硼素濃度が他に較べて高い集積回路。
(8)薄膜は炭素を少なくとも10%含有する、第7項記載の集積回路。
(9)薄膜は非晶質SiNとTiNとから成る、第7項記載の集積回路。 (10)薄膜はTiNと硼素との非晶質の組合せである、第7項記載の集積回路。
(11)珪素又は硼素に富むと上記薄膜中への酸素の吸収が低下する、第7項記載の集積回路。
(12)基板上に障壁層を形成して、コンタクト/バイアスを接合させる方法において、下部構造体を準備する工程と、上記基板上に誘電体層を形成する工程と、上記基板中に開孔を形成して上記下部構造の少なくとも1部を露出させる工程(上記開口は側壁を有する)と、金属−有機前駆物質を用いて膜を形成する工程(上記膜は上記誘電体層上、上記開口側壁上、及び上記下部構造体の上記露出部上に形成する)と、活性ガス雰囲気中で加熱工程を行い、珪素又は硼素を上記膜中に取込む工程とを含む方法。
(13)金属−有機前駆物が[(CHN]Ti、[(CN]Ti、[(CH)(C)N]Tiから成る群から選ばれた材料から成る、第12項記載の方法。
(14)活性ガスが上記金属−有機膜中に珪素又は硼素を取込ませる任意のガスから成る、第12項記載の方法。
(15)活性ガスがシラン、ジシラン、ジボラン又はこれらの任意の組合から成る群から選ばれる、第12項に記載の方法。
(16)下部構造体の基板である、第12項記載の方法。
(17)下部構造体は電導層である、第12項記載の方法。
(18)Ti−Si−N又はTi−B−N用CVD法であって、単一供給ガス(好ましくはTDMAT)がチタンと窒素源の役割を果し、もう1つの供給ガスを珪素又は硼素源として用いる。これにより気相粒子核生成が回避され、一方、良好な絶縁保護性が得られる。所定の層厚が付着されたとき、チタン/窒素又はチタン/硼素源の流れを停止したのち、珪素又は硼素供給ガスをある期間連続して流す。これにより、欠陥密度の低く、Si又はBに富む、絶縁保護性のTi−N膜が形成される。第2の実施態様では、単一供給ガス、例えばTDMATを熱分解してTi−N層を形成させる。付着後の焼鈍を珪素又は硼素を供給するガス中で行い、これらの物質を層中に取込ませる。この層中への珪素又は硼素の取込みは膜中への酸素吸収を最小にし、従って形成膜を安定化させる。Si又はBに富む表面もAlのぬれとCuへの接着を向上させるのに役立ち、従って最新のメタライゼイションの適用に有用である。スパッター法に較べて、本発明は段部被覆性が極めて良好で、Si/Ti比の制御が容易な膜の付着法を提供する。TDEAT+NH+SiH法に較べて、本発明はTi源とNHとの気相反応を皆無にする。
【図面の簡単な説明】
【図1】本発明の1実施態様を示す流れ図である。
【図2】先行技術の膜形成法を用いて形成した膜と本発明の1実施態様を用いて形成した膜の(空気露出時の関数としての)シート抵抗を示すグラフである。
【図3】a及びbはそれぞれ、X線光電子分光法(XPS)深さ方向断面解析から得たデータを示すグラフであり、aは先行技術の方法を用いて形成した膜内の炭素、酸素、窒素、チタン、珪素の原子濃度を示し、bは本発明の方法を用いて形成した膜内の炭素、酸素、窒素、チタン、珪素の原子濃度を示す。
【図4】本発明の方法を用いて形成した膜の透過形電子回折図である。
【図5】本発明の第2の実施態様を示す流れ図である。
【図6】本発明の革新的方法で付着させた障壁膜層上でのメタライゼイションの例を示す。
【図7】本発明の革新的方法で付着させた障壁膜層上でのメタライゼイションの例を示す。
【図8】付着済みTi−Si−Nのシート抵抗と付着後のシラン焼鈍時間との関係を示すグラフである。
【図9】付着済みTi−Si−Nのシート抵抗と、Ti−Si−Nの付着中のシラン流量との関係を示すグラフである。
【図10】本発明の革新的な層の断面構造を示す顕微鏡写真(本発明の方法が層の絶縁保護性を保持していることを示す)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an integrated circuit structure and a manufacturing method.
[0002]
[Prior art]
Titanium nitride (TiN) is commonly used as a diffusion barrier in contacts, biases, trenches and interconnect stacks. Titanium nitride can also serve as a nucleation layer for CVD tungsten and CVD aluminum as an adhesion layer for chemical vapor deposition (CVD) tungsten. A good barrier layer has good step coverage, achieves void-free plug formation, achieves a sufficient barrier thickness at the bottom of the contact / bias / trench, has good diffusion barrier properties, and metal during tungsten deposition Prevent diffusion and prevent WF 6 attack of underlying metal or silicon. Inactive to adjacent materials during thermal cycling, low reactivity and acceptable electrical properties. For example, low contact / bias resistance and low junction leakage are required. Furthermore, it is necessary to make the barrier layer as thin as possible to reduce the thickness of the interconnect stack.
[0003]
TiN, formed by reactive thermal nitridation of Tix and Titanium, has traditionally been used as a diffusion barrier. Recently, PVDTinN has been replaced with CVDTiN and tends to satisfy the step coverage requirements for contacts, trenches and biases of 0.35 μm or less. CVDTiN overcomes the metal reliability problem and the joint leakage problem associated with PVDTinN, and CVDTiN can withstand thermal stresses at 550 ° C. while maintaining low contact resistance and leakage. Furthermore, CVDTiN is a potentially cleaner method than collimated PVDTin.
[0004]
CVDTiN deposited by the reaction of TiC 4 and NH 3 has been used so far, but has several problems. Some of the problems are high deposition temperatures, the incorporation of chlorine like TiNl, and the formation of NH 4 Cl particles in the gas phase. Although chlorine contamination can be reduced, such a method cannot be eliminated at all. When the film is deposited at temperatures below 400 ° C., the TiC 4 / NH 3 method cannot be used, but metal-organic precursors can be used. Two commonly used metal-organic precursors are tetrakismethylaminotitanium (TDMAT) and tetrakisdiethylaminotitanium (TDEAT). The deposition of CVDTiN based on the thermal decomposition of TDMAT results in good step coverage and forms a layer with a low particle count, but an unstable film with high resistivity. Resistivity can be improved by reacting metal-organic precursors with ammonia, but the reaction of TDMAT and NH 3 results in a film with poor step coverage and potential problems associated with gas phase reactions such as particle formation. is there.
[0005]
The possibility of depositing TiN using TDMAT or TDEAT without ammonia is discussed in the literature, but the following is not taught. That is, it is said that a film deposited from TDEAT or TDMAT without using ammonia has extremely poor properties. For example, Sun and Tsai: “Characteristics of Low Pressure Chemical Vapor Deposition Titanium Nitride from Metal Organic Sources” [(ESSDERC '94 Bulletin, pages 291-4). This document is incorporated herein by reference.]
[0006]
Ti-Si-N compounds provide an even better diffusion barrier than TiN and are attractive for modern metallization applications. Currently, two main methods for the production of Ti-Si-N films are under investigation, both of which have significant limitations. (Reactive sputtering of Ti-Si target in N 2 atmosphere is the most established method as represented by extensive research at California Institute of Technology (Cal Tech), but due to the direction of sputtering method, The step coverage of the deposited film is very poor for high aspect ratio contacts, biases and trenches.
[0007]
A chemical vapor deposition method using a mixture of silane, ammonia and TDEAT is under study at Sandia National Laboratories, which can provide a film with better step coverage, but in the gas phase reaction of TDEAT and NH 3 Particles are formed and the defect density of the resulting film is high.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an innovative method of manufacturing an insulating protective Ti—Si—N film having a low defect density, which solves the problems in the above two methods.
[0009]
[Means for Solving the Problems]
In the method of the present invention, the porous barrier layer containing titanium and nitrogen is first deposited, and then the post-deposition treatment is performed to introduce silicon into at least the uppermost surface of the porous layer. This is achieved by providing a high surface. (In another embodiment, the post-deposition treatment introduces boron instead of or in addition to silicon). The porous barrier layer also preferably contains a significant percentage of carbon and, if necessary, a significant percentage of silicon prior to post-treatment.
[0010]
As an advantage of the method and structure of the present invention, the surface of the Ti—Si—N film is rich in Si (or the surface of the Ti—B—N film is rich in B), so that oxygen absorption into the film is minimized. The formed film is stabilized. Further, the fact that the surface is rich in Si or rich in B is useful for the application of the latest metallization because it helps to improve the wetting of Al and the adsorption to Cu. Compared to the sputter method, the present invention provides a film deposition method that has a very good step coverage and an easy control of the Si / Ti ratio. Compared to the TDEAT + NH 3 + SiH 4 method, the present invention eliminates the gas phase reaction between the Ti source and NH 3 and can provide an insulating protective film having a low defect density. The method of the present invention is flexible in controlling chemical composition, including surface composition. The method of the present invention can be carried out in a commercially available CVD reactor and is easy to carry out.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The invention will be described with reference to the accompanying drawings, which show important exemplary embodiments of the invention and are incorporated herein by reference.
[0012]
While the numerous innovative features of the present invention will be described with particular reference to presently preferred embodiments, these embodiments are examples that illustrate some of the many useful applications of the innovative features. It is only a thing. In general, the disclosure herein does not necessarily limit the scope of the various claimed inventions. Further, some disclosures are about some features of the invention, not others.
[0013]
FIG. 1 is a flowchart showing a process flow of one embodiment of the present invention. The starting point for manufacturing devices using the present invention is the same as the processing of many devices. In fact, standard processing applies to all processes leading to the formation of intermediate level dielectrics, bias / contact trenches or holes. Furthermore, standard processing can additionally be used both after the formation of the TiN-based layer and after the inventive annealing step of the present invention. The method of the present invention starts with a metal-organic chemical vapor deposition (MOCVD) to form a titanium nitride film (step 104). This film is formed on the intermediate level dielectric, on the sidewalls of the trench or hole, on the bottom of the trench or hole, and elsewhere where conventional TiN has been used. Preferably, step 104 is performed by thermal decomposition of TDMAT, [(CH 3 ) 2 N] 4 Ti. TDMAT is a liquid and is preferably introduced into the reactor using a carrier gas such as He or N 2 . This decomposition is preferably carried out at a temperature of 300 ° to 500 ° C. and a pressure of 0.1 to 50 torr. Decomposition time varies with the desired film thickness. In another embodiment, C 2 H 5 can be used in place of CH 3 and the precursor can be [(C 2 H 5 ) 2 N] 4 Ti. In yet another embodiment, the precursor is preferably [(CH 3 ) (C 2 H 5 ) N] 4 Ti.
[0014]
Further, in step 104, the wafer is heated while being exposed to the precursor to thermally decompose the precursor and adhere to the wafer as a film. The formed film is made of Ti—N—C, is a porous material, and easily absorbs O 2 . The absorption of O 2 makes this film highly resistive and extremely unstable. In particular, the resistivity of this membrane increases significantly as the membrane is exposed to oxygen-containing air (see curve 202 in FIG. 2).
[0015]
Next, a heating process is performed (process 106). This step is preferably performed in a pure or diluted silane atmosphere, a disilane atmosphere, a B 2 H 6 atmosphere, or any other atmosphere that can form silicon or boron in the film. Preferably, this step is performed at a temperature of about 350 ° to 500 ° C. and a pressure of 0.1 to 50 torr for about 15 to 240 seconds. The annealing step 106 may be performed in the same reactor as the deposition step 104 or may be performed in another similar reactor. If performed in the same reactor, the temperatures used in both MOCVD step 104 and annealing step 106 are preferably about the same. If both steps are performed in separate similar reactors, the film formed in step 104 should not be exposed to oxygen prior to step 102. The film after step 106 has the following structure: Ti—N—C—Si when using Si-containing gas, and Ti—N—C—B when using B-containing gas. The uptake of Si into the film can be seen from the curve 302 in FIG. 3b.
[0016]
After performing step 106, the wafer is further processed or exposed to an oxygen atmosphere (step 108) and then further processed. When step 108 is performed, oxygen is absorbed into the film and the film has the following structure: Ti—N—C—Si—O when using a Si-containing gas, and Ti—N—C— when using a B-containing gas. B-O. However, oxygen absorption is not performed unless the wafer is exposed to an oxygen atmosphere.
[0017]
While the above specifically relates to the formation of a titanium-based barrier film, other transition metals may be used in place of titanium. In particular, tungsten, tantalum or molybdenum can be used in place of titanium in the formation of the barrier layer of the present invention.
[0018]
FIG. 2 shows the sheet resistance R S of two different films. The X axis in FIG. 2 represents the amount of air exposure time (minutes) of the membrane, and the Y axis represents the sheet resistance (ohms / square) of the membrane. A film not subjected to step 106 has a high sheet resistance. This is shown by curve 202 in FIG. Furthermore, as can be seen from curve 202, the sheet resistance of the film without step 106 increases significantly after exposing the film to oxygen, but after step 106, the sheet resistance (compared to curve 202). B) Small size and very good stability in air. This is indicated by curve 204.
[0019]
Further, Table 1 shows a comparison of the sheet resistance of the 20 nm film as experimental data. The variables in these three tests are the silane treatment time, the presence or absence of rapid thermal annealing (RTA), and various implementation temperatures.
[0020]
[Table 1]
Figure 0004065351
[0021]
3a and 3b are XPS depth direction graphs showing concentrations of carbon, oxygen, nitrogen, titanium, and silicon at various depths. The X axis in each figure corresponds to the respective depth. The length of the sputter time represents the depth distance. The Y-axis in both figures represents the total total atomic concentration (AC%). It can be seen from the curve 302 in FIG. 3b that the film treated with step 106 contains silicon, but the film not treated with step 106 does not contain silicon (the curve 301 in FIG. And the bottom is displayed in about 16 minutes). Silicon uptake is important for reducing oxygen uptake from the air, which reduces resistivity and increases stability. Incorporation of silicon or boron is advantageous in subsequent Cu or Al metallization.
[0022]
Curve 304 in FIG. 3b shows that oxygen absorption is limited into the film after treatment of steps 106 and 108.
[0023]
FIG. 4 is a transmission electron diffraction (TEM) pattern. FIG. 4 shows that the processed film in step 106 (0 and 108) is amorphous. Amorphous films are preferred for use as barriers (as opposed to polycrystalline films). This is because in a polycrystalline structure, metal diffusion proceeds rapidly in the grain boundary.
[0024]
FIG. 5 is a flow diagram of a second embodiment of the method of the present invention. This method is the same as the method of FIG. 1 except that silane gas is added in the MOCVD process. This allows more silicon to be incorporated into the layer, facilitating better adjustment of the Si / Ti ratio.
[0025]
FIG. 8 is a graph showing the relationship between the sheet resistance of the Ti—Si—N deposited film and the silane annealing time after deposition.
Resistance was measured after exposure to air for 2 days. It is clearly shown that the sheet resistance rapidly decreases after annealing in silane for about 30 seconds.
[0026]
FIG. 9 is a graph showing the relationship between the sheet resistance of the Ti—Si—N deposited film and the silane flow rate during the deposition of Ti—Si—N, and the measurement was performed after air leakage for 2 days. As can be seen, as the silane flow rate increases, the sheet resistance of the film increases, so the increased value as a barrier layer due to the incorporation of silicon must be balanced with the high resistance value due to silicon.
[0027]
FIG. 10 is an electron micrograph showing the cross-sectional structure of the layer of the present invention, and this method shows that the insulation protection of the layer is maintained.
[0028]
Another exemplary deposition method embodiment In this embodiment, in the first step, TDMAT is pyrolyzed in the presence of nitrogen to form a TiN layer. Immediately after deposition, this layer is exposed to a silane atmosphere and the silane reacts with this layer to incorporate silicon into this layer to form a silicon rich surface layer. Oxygen absorption that causes layer degradation due to the presence of silicon is suppressed.
[0029]
In addition, when TDMAT is used as a precursor, carbon can be incorporated into the layer at a high percentage, and it is surprising that the carbon in the layer is not considered to be a problem. Expected to have no effect on lifespan.
[0030]
[Table 2]
Figure 0004065351
[0031]
Embodiment 2 of the adhesion method
In this embodiment, SiH 4 , TDMAT, and N 2 are combined in the first step to form a barrier layer by combining diluents. When the depth is sufficient, the flow of TDMAT and N 2 is stopped, but SiH 4 is measured. Flowing continuously over time, this embodiment described is the presently preferred embodiment.
[0032]
[Table 3]
Figure 0004065351
[0033]
Embodiment 3 of the adhesion method
SiH 4 can be replaced by other Si source compounds such as Si 2 H 6 . In this embodiment, Si 2 H 6 and TDMAT are caused to flow together with inert N 2 in the first step, and the flow of TDMAT and N 2 is stopped in the second step, and Si 2 H 6 is caused to flow in the layer surface. Incorporate extra silicon.
[0034]
Embodiment 4 of the deposition method
In this embodiment, TDMAT is replaced with TMEAT, that is, Ti (NCH 3 C 2 H 5 ) 4. In this embodiment, silane, TMEAT, and N 2 are flowed together in the first step. In the second step, pure silane is flowed to additionally incorporate silicon into the surface layer.
[0035]
Embodiment 5 of the adhesion method
TDMAT is replaced by TDEAT, that is, Ti (N (C 2 H 5 ) 2 ) 4 . In this case, TDEAT, silane is flowed together with N 2 or other inert diluent to deposit the Si—N—Ti layer, and the silicon concentration in the upper surface is increased using only silane in the next step.
[0036]
Embodiment 6 of the deposition method
In the present embodiment, to form a Ti x B y N film using boron source. Therefore, a boron source component (for example, B 2 H 6 ) is used when depositing the porous TiN film instead of the Si source component. This embodiment is adhered with Ti-B-N layer by flowing a TDEAT and diborane together with N 2 or other diluent, to increase the boron concentration in the upper surface by using only diborane in the next step.
[0037]
Exemplary Metallization Embodiments The methods described herein can be used in metallization applications, particularly copper (Cu) metallization. For example, the application shown in FIG. 6 provides a semi-finished structure that includes a transistor (not shown) under a conductive layer 510 (typically an aluminum alloy) surrounded by a lower intermediate level dielectric 515. An upper intermediate level dielectric 520 (eg, BPSG on TEOS deposited SiO 2 ) is then deposited and planarized by conventional methods (eg, chemical-mechanical polishing or CMP). The intermediate level dielectric 520 is then patterned and etched (in a damascene type manner) to form the slot 530 where the metallization line is desired, and the bias is desired (ie, the bottom). Deeper holes 540 are formed (where electrical contact to the conductive layer is desired). A diffusion barrier layer 530 is then deposited using one of the methods described above. A highly conductive metal 550 (eg, copper) is deposited over the entire surface in a conventional manner, and the entire is etched (eg, using CMP) to expose the flat surface of the intermediate level dielectric 520 where metal 550 is not present. .
[0038]
In this embodiment, the barrier layer of the present invention is formed entirely on the exposed portion of the intermediate level dielectric 520. That is, there is no place where the metal 550 is in direct contact with the intermediate level dielectric 520. This reduces the possibility that copper atoms (or life shortening agents such as gold) will diffuse into the semiconductor substrate via intermediate level dielectrics.
[0039]
Exemplary Metallization Embodiment 2
Another metallization embodiment shown in FIG. 7 includes the formation of a transistor having a polycide (polysilicon / silicide) gate 560 arranged in the direction of the source / drain diffusion 562, and then a first intermediate level dielectric. A body layer 564 is formed (if necessary, a plurality of additional layers having a corresponding plurality of additional intermediate level dielectric layers, which are not shown, are often deposited and patterned). Contact point 566 is patterned and etched prior to depositing barrier layer 570 using the inventive method disclosed herein. A metal layer 580 is then deposited and patterned. In the present exemplary embodiment, metal layer 580 is an aluminum alloy, which is under high pressure (force fill TM (Force Fill TM) method in this preferred embodiment), forcing injected into the contact hole.
[0040]
The disclosed innovative embodiments include (a) providing a substrate comprising at least one substantially monolithic object of semiconductor material, and (b) providing an insulating protective layer by CVD in a titanium and nitrogen containing atmosphere. A method of forming a thin film, comprising: a step of adhering; and (c) exposing the insulating protective layer to an atmosphere containing silicon or boron after the insulating protective layer is attached, wherein the step (c) Provides a thin film forming method for forming a silicon or boron rich surface on the insulating protective layer.
[0041]
Another innovative embodiment disclosed is an integrated circuit comprising a thin barrier layer film containing titanium and nitrogen, wherein the thin film has a stepwise change in the composition of silicon or boron, and the first surface thereof. Provides an integrated circuit having a higher silicon or boron concentration than others.
[0042]
Modifications and Changes As those skilled in the art will appreciate, the innovative concepts described herein can be modified and changed over a wide range of applications, and thus the scope of the present subject matter is It is not limited to the teachings of any particular embodiment.
[0043]
The general background of CVD and metallization is described in the following publications, which help to show the knowledge of those skilled in the art of modification and implementation: metallization and metal-semiconductor interfaces ( VLSI Metallization: Physics and Technology (Siena 1991); Muralka, “Metalization Theory and Practice for VLSI and ULSI (1993)”; Multilevel Metallization Handbook for Integrated Circuits (Wilson) 1993); Lao, “Multilevel Interconnect Technology (1993)”; Chemical Vapor Deposition (ML Hitchman 1993); Bulletin of the Electrochemical Society of Plasma Processing; (All these publications mentioned) Which is incorporated herein by reference).
[0044]
The following items are further disclosed with respect to the above description.
(1) (a) providing a substrate comprising at least one substantially monolithic object of semiconductor material; (b) depositing an insulating protective layer by CVD in an atmosphere containing titanium and nitrogen; (C) a method of forming a thin film including a step of exposing the insulating protective layer to an atmosphere containing silicon or boron after attaching the insulating protective layer, wherein the insulating step is performed by the step (c). A thin film forming method in which a surface rich in silicon or boron is formed on a protective layer.
(2) The forming method according to item 1, wherein the step (c) is performed immediately after the step (b) without any intermediate step.
(3) The forming method according to item 1, wherein step (b) uses an atmosphere containing silicon or boron.
(4) The forming method according to item 3, wherein step (b) uses an atmosphere containing SiH 4 .
(5) The forming method according to item 1, wherein step (b) uses an atmosphere containing a titanium source component selected from the group consisting of TDMAT, TMEAT, and TDEAT.
(6) The formation method according to item 1, further including rapid thermal annealing as a next step.
(7) An integrated circuit comprising a thin barrier layer film containing titanium and nitrogen, wherein the thin film has a stepwise change in the composition of silicon or boron, and the silicon or boron concentration is different on the first surface. Higher integrated circuit than
(8) The integrated circuit according to item 7, wherein the thin film contains at least 10% carbon.
(9) The integrated circuit according to item 7, wherein the thin film is made of amorphous SiN X and TiN X. (10) The integrated circuit according to item 7, wherein the thin film is an amorphous combination of TiN x and boron.
(11) The integrated circuit according to item 7, wherein the absorption of oxygen into the thin film decreases when rich in silicon or boron.
(12) In a method of forming a barrier layer on a substrate and bonding contacts / bias, a step of preparing a lower structure, a step of forming a dielectric layer on the substrate, and an opening in the substrate And exposing at least a part of the lower structure (the opening has a sidewall) and forming a film using a metal-organic precursor (the film is formed on the dielectric layer, the opening And a step of heating in an active gas atmosphere to incorporate silicon or boron into the film.
(13) The metal-organic precursor consists of [(CH 3 ) 2 N] 4 Ti, [(C 2 H 5 ) 2 N] 4 Ti, [(CH 3 ) (C 2 H 5 ) N] 4 Ti. 13. A method according to claim 12, comprising a material selected from the group.
(14) The method according to item 12, wherein the active gas comprises any gas that allows silicon or boron to be incorporated into the metal-organic film.
(15) The method according to item 12, wherein the active gas is selected from the group consisting of silane, disilane, diborane, or any combination thereof.
(16) The method according to item 12, which is a substrate of a lower structure.
(17) The method according to item 12, wherein the lower structure is a conductive layer.
(18) CVD method for Ti—Si—N or Ti—B—N, wherein a single supply gas (preferably TDMAT) serves as a source of titanium and nitrogen, and another supply gas is silicon or boron. Use as a source. This avoids gas phase particle nucleation, while providing good insulation protection. When the predetermined layer thickness is deposited, the flow of the titanium / nitrogen or titanium / boron source is stopped and then the silicon or boron feed gas is continuously flowed for a period of time. Thereby, an insulating protective Ti—N film having a low defect density and rich in Si or B is formed. In a second embodiment, a single feed gas, such as TDMAT, is pyrolyzed to form a Ti-N layer. Annealing after deposition is performed in a gas supplying silicon or boron, and these substances are incorporated into the layer. Incorporation of silicon or boron into this layer minimizes oxygen absorption into the film and thus stabilizes the formed film. Surfaces rich in Si or B also help to improve Al wetting and adhesion to Cu and are therefore useful in modern metallization applications. Compared to the sputtering method, the present invention provides a method for depositing a film that has a very good step coverage and an easy control of the Si / Ti ratio. Compared to the TDEAT + NH 3 + SiH 4 method, the present invention eliminates the gas phase reaction between the Ti source and NH 3 .
[Brief description of the drawings]
FIG. 1 is a flow diagram illustrating one embodiment of the present invention.
FIG. 2 is a graph showing sheet resistance (as a function of air exposure) for a film formed using a prior art film formation method and a film formed using one embodiment of the present invention.
FIGS. 3a and 3b are graphs showing data obtained from X-ray photoelectron spectroscopy (XPS) depth profile analysis, respectively, wherein a is carbon, oxygen in a film formed using a prior art method. , Nitrogen, titanium, and silicon, and b represents the atomic concentration of carbon, oxygen, nitrogen, titanium, and silicon in the film formed by the method of the present invention.
FIG. 4 is a transmission electron diffraction diagram of a film formed using the method of the present invention.
FIG. 5 is a flow chart showing a second embodiment of the present invention.
FIG. 6 shows an example of metallization on a barrier film layer deposited by the innovative method of the present invention.
FIG. 7 shows an example of metallization on a barrier film layer deposited by the innovative method of the present invention.
FIG. 8 is a graph showing the relationship between the sheet resistance of deposited Ti—Si—N and the silane annealing time after deposition.
FIG. 9 is a graph showing the relationship between the sheet resistance of deposited Ti—Si—N and the silane flow rate during deposition of Ti—Si—N.
FIG. 10 is a photomicrograph showing the cross-sectional structure of the innovative layer of the present invention (showing that the method of the present invention retains the insulating protection of the layer).

Claims (2)

(a)半導体基板を準備する工程と、(b)チタンと窒素を含む雰囲気中でCVDを使用してチタンを含む絶縁保護性層を付着させる工程と、(c)上記絶縁保護性層を付着させた後で、上記絶縁保護性層を珪素又は硼素を含有する雰囲気に、350℃から500℃の温度で露出させる工程とを含む薄膜形成法であって、前記工程(c)により上記絶縁保護性層上に珪素又は硼素濃度の高い表面を形成させる、上記薄膜形成法。  (A) a step of preparing a semiconductor substrate, (b) a step of attaching an insulating protective layer containing titanium using CVD in an atmosphere containing titanium and nitrogen, and (c) attaching the insulating protective layer. And exposing the insulating protective layer to an atmosphere containing silicon or boron at a temperature of 350 ° C. to 500 ° C., wherein the insulating protection is performed by the step (c). The above thin film forming method, wherein a surface having a high silicon or boron concentration is formed on the conductive layer. 基板上に障壁層を形成して、コンタクト/バイアスを接合させる方法において、下部構造体を準備する工程と、上記基板上に誘電体層を形成する工程と、上記基板中に開口を形成して上記下部構造の少なくとも1部を露出させる工程であって、上記開口は側壁を有する工程と、金属−有機前駆物質を用いて膜を形成する工程であって、上記膜を上記誘電体層上、上記開口側壁上、及び上記下部構造体の上記露出部上に形成する工程と、純シラン雰囲気、希釈シラン雰囲気、ジシラン雰囲気、又はB 雰囲気中で、350℃から500℃の温度で加熱工程を行い、珪素又は硼素を上記膜中に取込む工程とを含む方法。In the method of bonding a contact / bias by forming a barrier layer on a substrate, a step of preparing a lower structure, a step of forming a dielectric layer on the substrate, and forming an opening in the substrate Exposing at least a portion of the substructure, the opening having a sidewall, and forming a film using a metal-organic precursor, the film on the dielectric layer, Heating at a temperature of 350 ° C. to 500 ° C. in the pure silane atmosphere, diluted silane atmosphere, disilane atmosphere, or B 2 H 6 atmosphere in the step of forming on the opening side wall and on the exposed portion of the lower structure Performing a step and incorporating silicon or boron into the film.
JP30117997A 1996-10-31 1997-10-31 Method for producing an insulating protective barrier film based on Ti-Si-N and Ti-BN with low defect density Expired - Fee Related JP4065351B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US2879896P 1996-10-31 1996-10-31
US784657 1997-01-21
US028798 1997-01-21
US08/784,657 US6017818A (en) 1996-01-22 1997-01-21 Process for fabricating conformal Ti-Si-N and Ti-B-N based barrier films with low defect density

Publications (2)

Publication Number Publication Date
JPH10189491A JPH10189491A (en) 1998-07-21
JP4065351B2 true JP4065351B2 (en) 2008-03-26

Family

ID=26704095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30117997A Expired - Fee Related JP4065351B2 (en) 1996-10-31 1997-10-31 Method for producing an insulating protective barrier film based on Ti-Si-N and Ti-BN with low defect density

Country Status (3)

Country Link
JP (1) JP4065351B2 (en)
KR (1) KR19980032971A (en)
TW (1) TW363213B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475912B1 (en) 1998-06-01 2002-11-05 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method and apparatus for fabricating the same while minimizing operating failures and optimizing yield
JP2003045960A (en) * 2001-08-01 2003-02-14 Matsushita Electric Ind Co Ltd Semiconductor device and method of manufacturing same
JPWO2007094044A1 (en) * 2006-02-14 2009-07-02 富士通マイクロエレクトロニクス株式会社 Semiconductor device manufacturing method and semiconductor manufacturing apparatus
JP2008041977A (en) * 2006-08-08 2008-02-21 Nec Electronics Corp Manufacturing method of semiconductor circuit device

Also Published As

Publication number Publication date
JPH10189491A (en) 1998-07-21
KR19980032971A (en) 1998-07-25
TW363213B (en) 1999-07-01

Similar Documents

Publication Publication Date Title
US6017818A (en) Process for fabricating conformal Ti-Si-N and Ti-B-N based barrier films with low defect density
US6645847B2 (en) Microelectronic interconnect material with adhesion promotion layer and fabrication method
US7799671B1 (en) Interfacial layers for electromigration resistance improvement in damascene interconnects
US7838441B2 (en) Deposition and densification process for titanium nitride barrier layers
US11587829B2 (en) Doping control of metal nitride films
US6627995B2 (en) Microelectronic interconnect material with adhesion promotion layer and fabrication method
EP0869544B1 (en) Method for depositing a diffusion barrier
US8076241B2 (en) Methods for multi-step copper plating on a continuous ruthenium film in recessed features
US6087257A (en) Methods of fabricating a selectively deposited tungsten nitride layer and metal wiring using a tungsten nitride layer
US7799674B2 (en) Ruthenium alloy film for copper interconnects
US6683381B2 (en) Semiconductor device having a copper interconnect layer
US10784157B2 (en) Doped tantalum nitride for copper barrier applications
US20080242088A1 (en) Method of forming low resistivity copper film structures
US20100151676A1 (en) Densification process for titanium nitride layer for submicron applications
WO2002067319A2 (en) Copper interconnect structure having diffusion barrier
US20080237860A1 (en) Interconnect structures containing a ruthenium barrier film and method of forming
US20020132469A1 (en) Method for forming metal wiring layer
JP4065351B2 (en) Method for producing an insulating protective barrier film based on Ti-Si-N and Ti-BN with low defect density
EP0840363A1 (en) Method for fabricating a conductive diffusion barrier layer by PECVD
EP0839927A2 (en) Method of forming films comprising TiN and Al
JP2000007337A (en) Tantalum thin film and thin film consisting mainly of tantalum and their production
JP2004335799A (en) Metal film depositing method and metal wiring forming method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070322

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071003

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees