JP4064788B2 - Cleaning agent for removing dirt - Google Patents

Cleaning agent for removing dirt Download PDF

Info

Publication number
JP4064788B2
JP4064788B2 JP2002328081A JP2002328081A JP4064788B2 JP 4064788 B2 JP4064788 B2 JP 4064788B2 JP 2002328081 A JP2002328081 A JP 2002328081A JP 2002328081 A JP2002328081 A JP 2002328081A JP 4064788 B2 JP4064788 B2 JP 4064788B2
Authority
JP
Japan
Prior art keywords
surfactant
cleaning
cleaning agent
ionic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002328081A
Other languages
Japanese (ja)
Other versions
JP2003176500A (en
Inventor
博 渡辺
智 原口
貞夫 井田
勝己 兼平
誠 片岡
洋子 藤堂
一好 桑原
和弘 佐藤
中 古野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002328081A priority Critical patent/JP4064788B2/en
Publication of JP2003176500A publication Critical patent/JP2003176500A/en
Application granted granted Critical
Publication of JP4064788B2 publication Critical patent/JP4064788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Detergent Compositions (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電気機器や電気部品の表面に付着した汚損物を除去する汚損物除去用洗浄剤に関する。
【0002】
【従来の技術】
例えば、電気機器や電気設備及び装置に組み込まれる部品の表面には、設置条件や設置環境によって、長期に亘る稼働中には、イオン性や油性などの汚損物質が付着する。
【0003】
このうち、前者のイオン性の汚損物質が電気機器の表面に付着すると、腐蝕等によって沿面絶縁耐電圧特性が低下する要因となるので、長期に亘る稼働中には定期的に拭き取ったり、部品を交換する必要がある。
【0004】
また、後者の油性の汚損物質が電気機器の表面に付着すると、製品の美観が損なわれ、長期に亘る稼働中には微小な塵埃の付着によって絶縁抵抗が低下する要因となる。特に、接点の接触面などに付着すると、接触抵抗の増加で温度上昇の要因となる。
【0005】
さらに、前者のイオン性物質が油性物質に含まれた場合には、イオン性の汚損物質だけの場合と同様に、腐蝕による絶縁特性の低下の要因となる。
【0006】
また、洗浄剤としては一般的に水を使用する方法がある。特に、イオン性物質は、水に化学的に溶解されるので有効であるが、乾燥性が劣るため、金属の種別によっては腐蝕する場合もある。
【0007】
そこで、本発明者等は、先に、イオン性汚損物質による汚損部品を洗浄するために、基材を損傷せず、イオン性物質を効果的に除去し、乾燥性にも優れたアルコール水溶液を使用した洗浄方法を開発した(特開平9-71884 号公報参照)。
【0008】
【発明が解決しようとする課題】
ところが、このアルコール水溶液による洗浄方法も、分子量が比較的大きい油性の汚損物質に対しては、洗浄力が不十分で、僅かに除去されない部分が残る場合があることが分かった。
【0009】
イオン性汚損物質と油性汚損物質をともに除去するために、界面活性剤を添加した水系の洗浄液を採用する方法も考えられるが、洗浄面に残留した界面活性剤や残留汚損物によって金属の表面が腐蝕するおそれがあるので、使用に当たっては細心の注意が必要であり、このため信頼性が低い。
【0010】
また、乾燥性に難点があるので、洗浄後に電力機器や電気装置を再起動させるまでには、十分な乾燥時間が必要となり、取扱い上難点がある。
本発明は上記した問題を解決するためになされたもので、その目的は、洗浄面を損傷することなく、イオン性汚損物質と油性汚損物質をともに容易に洗浄することのできる汚損物除去用洗浄剤を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の汚損物除去用洗浄剤の発明は、電気機器や電気設備及び装置に組み込まれる部品に付着したイオン性及び油性の汚損物質を洗浄するアルコール水溶液に界面活性剤を添加した汚損物除去用洗浄剤において、前記界面活性剤は非イオン性界面活性剤と陰イオン性界面活性剤の混合物であるとともに、前記アルコール水溶液への前記界面活性剤の添加量を0.重量%以上1重量%未満の範囲とし、アミン系化合物を有しないことを特徴とする。
【0012】
請求項1に記載の発明によると、アルコール水溶液へ界面活性剤を0.重量%以上1重量%未満添加することで、イオン性汚損物質と油性汚損物質をともに効果的に洗浄することができる。
【0015】
請求項2に記載の発明は、請求項1に記載の汚損物除去用洗浄剤において、前記非イオン性界面活性剤はポリオキシエチレンアルキルエーテル、前記陰イオン性界面活性剤はアルキルベンゼンスルホン酸ナトリウムであることを特徴とする。
【0019】
【発明の実施の形態】
以下、本発明の汚損物除去用洗浄剤の実施例について説明する。
実施例1
本実施例は、界面活性剤として、式(1) に示す分子式のポリオキシエチレンアルキルエーテルの非イオン性界面活性剤を用いた。
RO−(CH2 CH2 O)n −OH ・・・(1)
ここで、R:アルキル基又はアルキルフェニル基
【0020】
この界面活性剤を添加する濃度を0.重量%以上1重量%未満とする。
添加する界面活性剤の濃度を上記のような範囲とする理由は、一次洗浄において油性成分の溶解力を上げるためだけなら、界面活性剤の添加濃度を高くすればよいが、そうすると、一次洗浄後に洗浄部品の表面に残留する界面活性剤の量も増えることになる。そこで、後述する図1で示すすすぎ洗浄工程において、界面活性剤を完全に除去できなくなり、腐蝕発生の要因となるからである。
【0021】
図1は、この界面活性剤を一次洗浄に採用した本発明の汚損物除去用洗浄剤による洗浄方法の洗浄工程を示す流れ図である。
図1に示すように、まず、塵埃除去工程S1 で、圧縮空気又は窒素ガスを洗浄部品に吹き付けて、この洗浄部品の表面に付着している塵埃等を飛散させて取り除く。次の一次洗浄工程S2 では、前述した界面活性剤を添加した水とエタノールの水溶液に洗浄部品を3時間浸漬し、この洗浄部品に付着しているイオン性汚損物質や油性汚損物質を溶解し乳化させて、洗浄部品から除去する。
【0022】
続くすすぎ洗浄工程S3 では、洗浄部品を水とエタノールの比が等量の水溶液に移し、この水溶液を流水状態にして洗浄部品に付着している界面活性剤と汚損物質を完全に除去する。次の液切り工程S4 では、すすぎ槽から引き上げた洗浄部品に対して、窒素ガス又は圧縮空気を吹き付けて、洗浄部品の表面に付着している水とエタノールの水溶液を吹き飛ばす。
最後の乾燥工程S5 では、洗浄部品を加熱乾燥炉に搬入して、洗浄部品に残存している水とエタノールの水溶液を完全に蒸発させる。
【0023】
本発明者等は、前述した式(1) で示した界面活性剤の洗浄効果を検証するために、アルコール水溶液に界面活性剤の添加する割合を変えて、一次洗浄工程後に洗浄部品に残存した油の量を測定した。その測定結果は、表1及び図2に示すとおりである。
【0024】
【表1】

Figure 0004064788
【0025】
すなわち、界面活性剤の添加濃度は、0,0.2,0.5及び1重量%の4種とし、供試品は、ステンレス鋼板に切削油を塗布した後、乾燥させたものをそれぞれ3枚用いた。
供試品に残存した切削油の量は、洗浄工程の前後の供試品の重量の変化から求めた。なお、洗浄液への浸漬時間は3時間である。
【0026】
表1及び図2に示すように、0.2重量%においても、切削油の除去率は94%と高く、濃度が1重量%の洗浄液と同等の効果を示した。なお、目視検査では、残存する油は認められなかった。
【0027】
これに対し、界面活性剤を添加しない洗浄液では、切削油の除去率は3%と低く、界面活性剤を僅かに添加することで、大きな洗浄効果が得られることが分かった
【0028】
次に、本発明者等は、汚損物質がイオン性の場合の洗浄効果を検証するために、エポキシ樹脂製のプリント基板の表面に対して、硫酸ナトリウムを塗布した供試品の洗浄工程の前後における前記表面の沿面抵抗の変化を調べた。
【0029】
図3は、その測定環境条件と測定結果を示し、本発明の洗浄剤で洗浄した供試品は、40℃で湿度55%と65%においては、あまり優位性はなかったが、湿度85%の環境条件では、大差となった。また、プリント基板に印刷されたパターンなどの金属材料の腐食も見られなかった。
【0030】
以上のことから、本発明の洗浄剤を一次洗浄用として用いることにより、油性汚損物質とイオン性汚損物質をともに効果的に洗浄することができ、部品の表面などの損傷もないことが分かった。
【0031】
なお、上記実施例では、第1の工程の塵埃除去工程では、ガス吹付け工程を採用した例で説明したが、洗浄部品の汚損の程度によっては、このガス吹付け工程を省いて直接一次洗浄工程に入ってもよい。
【0032】
実施例2
本実施例では、実施例1で添加した非イオン性界面活性剤の代わりに、式(2)に示す化学式のアルキルベンゼンスルホン酸ナトリウムの陰イオン性界面活性剤を用いた。
【0033】
【化1】
Figure 0004064788
ここで、R:アルキル基
【0034】
表2及び図4は、その評価結果を示す。
本実施例は、実施例1と同様に、界面活性剤の添加濃度は、0,0.2,0.5及び1重量%の4種とし、供試品もステンレス鋼板に切削油を塗布し、乾燥させたものを各3枚用いた。また、供試品の切削油の残存量の測定方法及び洗浄液への浸漬時間も、実施例1と同様である。
【0035】
表2及び図4に示すように、界面活性剤の濃度が僅か0.2重量%においても、切削油の除去率は95%と高く、濃度が1重量%の洗浄液と同等の効果を示した。なお、目視検査では、残存する油は認められなかった。
【0036】
【表2】
Figure 0004064788
【0037】
これに対し、界面活性剤を添加しない洗浄液では、切削油の除去率は実施例1と同様に3%と低く、界面活性剤を僅かに添加することで、大きな洗浄効果が得られることが分かった。
【0038】
実施例3
本発明者等は、実施例1で用いた非イオン性界面活性剤と実施例2で用いた陰イオン性界面活性剤を重量%で50:50に混合して洗浄剤を作り、実施例1及び実施例2と同様に供試品を洗浄した。
この洗浄剤による供試品の試験結果でも、実施例1及び実施例2と同等の効果を得た。なお、前記混合比は7:3でも10:1でも、またこの逆でもよい。
【0039】
実施例4
本発明者等は、実施例1及び実施例2において、洗浄液のPH値を5〜8の範囲に調整した水とエタノールの水溶液と、PH値を9及び11に調整した水とエタノールの水溶液を用い、供試品は軟鋼鉄板、銅板、アルミニウム板の3種を用い、実施例1と同一条件で試験を行い、その表面の腐食の有無を調べた。
表3は、その試験結果を示す。
【0040】
【表3】
Figure 0004064788
【0041】
表3からアルミニウム板でPH値が9以上では、軽度の腐食が表面に見られ、PH値が11以下では、腐食の場所と面積が増えた。
【0042】
この洗浄液による供試品の試験結果でも、実施例1及び実施例2と同等の効果を得た。なお、前記混合比は7:3でも10:1でも、またこの逆でもよい。
【0043】
このように、軟鋼材及び銅材では、PH値が少なくとも11まで増えても異常はないが、アルミニウム材の場合には、PH値を中性値の5〜8の範囲に調整することが必要である。
【0044】
実施例5
本実施例では、実施例1に示す洗浄方法において、洗浄液の温度を50℃程度に上げて洗浄すると、20℃のときの洗浄と比べて、表4に示すように、油性汚損物質の洗浄効果を更に上げることができた。
【0045】
【表4】
Figure 0004064788
【0046】
ただし、液温の上昇は、溶解性の上昇に伴い、例えばプラスチックス部品では、材料の表面を損傷する恐れがあるので、20〜60℃の範囲で使用することが望ましい。
上記各実施例では、洗浄物として金属とプラスチックスについて述べたが、例えばセラミックス材の部品にも同様に適用することができる。
【0047】
また、上記各実施例では、洗浄液として水とエタノールを混合した水溶液の場合で説明したが、水とエタノールを混合した水溶液でもよく、陰イオン性界面活性剤として、アルキルベンゼンスルホン酸ナトリウムの例で説明したが、アルキル硫酸ナトリウムでも同様の効果が得られる。
【0048】
【発明の効果】
以上説明したように、本発明の汚損物除去用洗浄剤によれば、アルコール水溶液に界面活性剤を少量添加した洗浄液で、電力機器や電気部品の表面に付着したイオン性や油性の汚損物を容易かつ効果的に洗浄することができるとともに、乾燥時間も短縮することが可能となった。
【図面の簡単な説明】
【図1】本発明の実施例1の汚損物の洗浄方法を示す流れ図。
【図2】図1の実施例1の作用を示すグラフ。
【図3】本発明の汚損物の洗浄方法の実施例1の図2と異なる作用を示すグラフ。
【図4】本発明の実施例2の作用を示すグラフ。
【符号の説明】
S1 …塵埃除去工程、S2 …一次洗浄工程、S3 …すすぎ洗浄工程、S4 …液切り工程、S5 …乾燥工程。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning agent for removing fouling substances that removes fouling substances adhering to the surfaces of electrical equipment and electrical components.
[0002]
[Prior art]
For example, fouling substances such as ionic and oily substances adhere to the surfaces of components incorporated in electrical equipment, electrical equipment, and apparatuses during operation for a long period of time depending on installation conditions and installation environments.
[0003]
Among these, if the former ionic fouling substance adheres to the surface of electrical equipment, it will cause deterioration of creeping insulation withstand voltage characteristics due to corrosion, etc. It needs to be replaced.
[0004]
In addition, if the latter oily fouling substance adheres to the surface of an electrical device, the aesthetics of the product are impaired, and during the operation for a long period of time, it becomes a factor that the insulation resistance decreases due to the adhesion of minute dust. In particular, if it adheres to the contact surface of a contact, the contact resistance increases, causing a temperature increase.
[0005]
Further, when the former ionic substance is contained in the oily substance, it becomes a factor of deterioration of the insulating characteristics due to corrosion, as in the case of only the ionic fouling substance.
[0006]
As a cleaning agent, there is generally a method of using water. In particular, an ionic substance is effective because it is chemically dissolved in water, but it may be corroded depending on the type of metal because of its poor drying property.
[0007]
Accordingly, the present inventors firstly removed an ionic substance effectively without damaging the base material in order to clean the fouling parts due to the ionic fouling substance, and an alcohol aqueous solution having excellent drying properties. The cleaning method used was developed (see JP-A-9-71884).
[0008]
[Problems to be solved by the invention]
However, it has been found that this cleaning method using an alcohol aqueous solution also has an insufficient detergency for oily fouling substances having a relatively large molecular weight, and a portion that cannot be removed slightly may remain.
[0009]
In order to remove both ionic and oily pollutants, a water-based cleaning solution with a surfactant added may be used, but the surface of the metal may be affected by the surfactant or residual fouling remaining on the cleaned surface. Since there is a risk of corrosion, careful attention is required for use, and therefore the reliability is low.
[0010]
In addition, since there is a difficulty in drying, a sufficient drying time is required until the power equipment and the electric device are restarted after cleaning, which is difficult to handle.
The present invention has been made to solve the above-described problems, and its purpose is to clean the contaminants that can easily clean both the ionic and oily contaminants without damaging the cleaning surface. It is to provide an agent.
[0011]
[Means for Solving the Problems]
To achieve the above object, the invention of contaminant removal for cleaning agent according to claim 1, to wash the ionic and oily soiling substances attached to the components to be incorporated in electrical equipment and electrical installations and equipment Rua In the cleaning agent for removing contaminants in which a surfactant is added to an aqueous alcohol solution, the surfactant is a mixture of a nonionic surfactant and an anionic surfactant, and the surfactant to the aqueous alcohol solution is used. The amount of addition of 0. The range is from 2 % by weight to less than 1% by weight and is characterized by having no amine compound.
[0012]
According to the first aspect of the present invention, the surfactant is added to the aqueous alcohol solution in an amount of 0.00. By adding 2 wt% or more and less than 1 wt%, both the ionic fouling substance and the oily fouling substance can be effectively washed.
[0015]
The invention described in claim 2 is the cleaning agent for removing contaminants according to claim 1, wherein the nonionic surfactant is polyoxyethylene alkyl ether, and the anionic surfactant is sodium alkylbenzene sulfonate . It is characterized by being.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the cleaning agent for removing debris according to the present invention will be described below.
Example 1
In this example, a polyoxyethylene alkyl ether nonionic surfactant having a molecular formula represented by the formula (1) was used as the surfactant.
RO- (CH2CH2O) n-OH (1)
Here, R: an alkyl group or an alkylphenyl group
The concentration at which this surfactant is added is adjusted to 0. 2 wt% or more and less than 1 wt%.
The reason for setting the concentration of the surfactant to be added in the above range is to increase the concentration of the surfactant in order to increase the dissolving power of the oil component in the primary cleaning. The amount of surfactant remaining on the surface of the cleaning part will also increase. Therefore, in the rinsing step shown in FIG. 1 described later, the surfactant cannot be completely removed, causing corrosion.
[0021]
FIG. 1 is a flowchart showing a cleaning process of a cleaning method using the detergent for removing contaminants according to the present invention in which this surfactant is used for primary cleaning.
As shown in FIG. 1, first, in the dust removing step S1, compressed air or nitrogen gas is blown onto the cleaning component, and dust or the like adhering to the surface of the cleaning component is scattered and removed. In the next primary cleaning step S2, the cleaning component is immersed for 3 hours in the aqueous solution of ethanol and ethanol to which the above-mentioned surfactant is added, and the ionic and oily contaminants adhering to the cleaning component are dissolved and emulsified. And remove from the cleaning part.
[0022]
In the subsequent rinsing step S3, the cleaning component is transferred to an aqueous solution having an equal ratio of water and ethanol, and the aqueous solution is made to flow to completely remove the surfactant and fouling substances adhering to the cleaning component. In the next liquid draining step S4, nitrogen gas or compressed air is blown against the cleaning part pulled up from the rinsing tank, and the aqueous solution of ethanol and ethanol adhering to the surface of the cleaning part is blown off.
In the final drying step S5, the cleaning parts are carried into a heating and drying furnace, and the water and ethanol aqueous solution remaining in the cleaning parts are completely evaporated.
[0023]
In order to verify the cleaning effect of the surfactant represented by the above-described formula (1), the present inventors changed the ratio of the surfactant added to the aqueous alcohol solution and remained on the cleaning component after the primary cleaning step. The amount of oil was measured. The measurement results are as shown in Table 1 and FIG.
[0024]
[Table 1]
Figure 0004064788
[0025]
That is, the additive concentration of the surfactant is 4 types of 0, 0.2, 0.5, and 1% by weight, and each of the test samples is obtained by applying a cutting oil to a stainless steel plate and then drying it. Used.
The amount of cutting oil remaining in the specimen was determined from the change in the weight of the specimen before and after the cleaning process. The immersion time in the cleaning liquid is 3 hours.
[0026]
As shown in Table 1 and FIG. 2, even at 0.2% by weight, the removal rate of the cutting oil was as high as 94%, showing the same effect as the cleaning liquid having a concentration of 1% by weight. In the visual inspection, no remaining oil was observed.
[0027]
On the other hand, it was found that the cleaning liquid with no surfactant added had a low cutting oil removal rate of 3%, and that a large cleaning effect could be obtained by adding a small amount of surfactant .
[0028]
Next, in order to verify the cleaning effect when the fouling substance is ionic, the present inventors before and after the cleaning process of the test sample coated with sodium sulfate on the surface of the printed circuit board made of epoxy resin The change in creepage resistance of the surface was investigated.
[0029]
FIG. 3 shows the measurement environment conditions and the measurement results. The specimens cleaned with the cleaning agent of the present invention were not so advantageous at 40 ° C. and 55% and 65% humidity, but 85% humidity. The environmental conditions were very different. Moreover, corrosion of metal materials, such as a pattern printed on the printed circuit board, was not seen.
[0030]
From the above, it was found that by using the cleaning agent of the present invention for primary cleaning, both oily and ionic fouling substances can be effectively washed, and there is no damage to the surface of the parts. .
[0031]
In the above embodiment, the dust removal process of the first process has been described as an example in which a gas spraying process is adopted. However, depending on the degree of contamination of the cleaning parts, this gas spraying process is omitted and the primary cleaning is performed directly. You may enter the process.
[0032]
Example 2
In this example, instead of the nonionic surfactant added in Example 1, an anionic surfactant of sodium alkylbenzene sulfonate having the chemical formula shown in formula (2) was used.
[0033]
[Chemical 1]
Figure 0004064788
Where R: an alkyl group
Table 2 and FIG. 4 show the evaluation results.
In this example, as in Example 1, the additive concentration of the surfactant was 4 types of 0, 0.2, 0.5 and 1% by weight, and the test sample was coated with cutting oil on the stainless steel plate. Three each dried product was used. Further, the measurement method of the remaining amount of cutting oil of the test sample and the immersion time in the cleaning liquid are the same as in Example 1.
[0035]
As shown in Table 2 and FIG. 4, even when the concentration of the surfactant was only 0.2% by weight, the removal rate of the cutting oil was as high as 95%, which showed the same effect as the cleaning liquid having a concentration of 1% by weight. . In the visual inspection, no remaining oil was observed.
[0036]
[Table 2]
Figure 0004064788
[0037]
On the other hand, in the cleaning liquid to which no surfactant is added, the removal rate of the cutting oil is as low as 3% as in Example 1, and it can be seen that a large cleaning effect can be obtained by adding a little surfactant. It was.
[0038]
Example 3
The inventors made a cleaning agent by mixing the nonionic surfactant used in Example 1 and the anionic surfactant used in Example 2 in a weight ratio of 50:50. And the sample was washed in the same manner as in Example 2.
Also in the test result of the test sample with this cleaning agent, the same effect as in Example 1 and Example 2 was obtained. The mixing ratio may be 7: 3, 10: 1, or vice versa.
[0039]
Example 4
In Example 1 and Example 2, the present inventors prepared an aqueous solution of water and ethanol in which the pH value of the cleaning liquid was adjusted to a range of 5 to 8, and an aqueous solution of water and ethanol in which the PH value was adjusted to 9 and 11. The specimen used was a mild steel plate, a copper plate, and an aluminum plate, and the test was performed under the same conditions as in Example 1 to examine the presence or absence of corrosion on the surface.
Table 3 shows the test results.
[0040]
[Table 3]
Figure 0004064788
[0041]
From Table 3, when the PH value of the aluminum plate was 9 or more, mild corrosion was observed on the surface, and when the PH value was 11 or less, the location and area of corrosion increased.
[0042]
Also in the test result of the test sample using this cleaning solution, the same effect as in Example 1 and Example 2 was obtained. The mixing ratio may be 7: 3, 10: 1, or vice versa.
[0043]
Thus, in mild steel materials and copper materials, there is no abnormality even when the PH value increases to at least 11, but in the case of aluminum materials, it is necessary to adjust the PH value to a neutral value range of 5-8. It is.
[0044]
Example 5
In this example, in the cleaning method shown in Example 1, when the temperature of the cleaning liquid is increased to about 50 ° C. and cleaning is performed, the cleaning effect of the oily fouling substance is shown in Table 4 as compared with cleaning at 20 ° C. Was able to be raised further.
[0045]
[Table 4]
Figure 0004064788
[0046]
However, an increase in the liquid temperature is accompanied by an increase in solubility. For example, in the case of plastic parts, there is a risk of damaging the surface of the material.
In each of the above embodiments, metal and plastics have been described as cleaning objects. However, the present invention can be similarly applied to, for example, ceramic parts.
[0047]
Further, in each of the above examples, the case of an aqueous solution in which water and ethanol are mixed as a cleaning liquid has been described. However, an aqueous solution in which water and ethanol are mixed may be used, and an example of sodium alkylbenzene sulfonate as an anionic surfactant will be described. However, similar effects can be obtained with sodium alkyl sulfate.
[0048]
【The invention's effect】
As described above, according to the cleaning agent for removing fouling substances of the present invention, ionic or oily fouling substances adhering to the surface of electric power equipment or electrical components can be removed with a cleaning liquid obtained by adding a small amount of a surfactant to an alcohol aqueous solution. In addition to being able to clean easily and effectively, it became possible to shorten the drying time.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for cleaning fouling substances according to Embodiment 1 of the present invention.
FIG. 2 is a graph showing the operation of the first embodiment shown in FIG.
FIG. 3 is a graph showing an operation different from that in FIG. 2 of the first embodiment of the method for cleaning soiled materials according to the present invention.
FIG. 4 is a graph showing the operation of Example 2 of the present invention.
[Explanation of symbols]
S1 ... dust removal process, S2 ... primary cleaning process, S3 ... rinse cleaning process, S4 ... liquid draining process, S5 ... drying process.

Claims (2)

電気機器や電気設備及び装置に組み込まれる部品に付着したイオン性及び油性の汚損物質を洗浄するアルコール水溶液に界面活性剤を添加した汚損物除去用洗浄剤において、前記界面活性剤は非イオン性界面活性剤と陰イオン性界面活性剤の混合物であるとともに、前記アルコール水溶液への前記界面活性剤の添加量を0.重量%以上1重量%未満の範囲とし、アミン系化合物を有しないことを特徴とする汚損物除去用洗浄剤。In the electrical equipment and electrical equipment and contaminant removal cleaning agent obtained by adding a surfactant to the luer alcohol solution to clean the ionic and oily soiling substances attached to the component to be incorporated in the apparatus, the surfactant nonionic A surfactant surfactant and an anionic surfactant, and the amount of the surfactant added to the aqueous alcohol solution is set to 0. A cleaning agent for removing fouling substances characterized by having a range of 2 % by weight or more and less than 1% by weight and having no amine compound. 前記非イオン性界面活性剤はポリオキシエチレンアルキルエーテル、前記陰イオン性界面活性剤はアルキルベンゼンスルホン酸ナトリウムであることを特徴とする請求項1記載の汚損物除去用洗浄剤。  The cleaning agent for removing contaminants according to claim 1, wherein the nonionic surfactant is polyoxyethylene alkyl ether, and the anionic surfactant is sodium alkylbenzene sulfonate.
JP2002328081A 2002-11-12 2002-11-12 Cleaning agent for removing dirt Expired - Fee Related JP4064788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002328081A JP4064788B2 (en) 2002-11-12 2002-11-12 Cleaning agent for removing dirt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002328081A JP4064788B2 (en) 2002-11-12 2002-11-12 Cleaning agent for removing dirt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9177997A Division JPH10279999A (en) 1997-04-10 1997-04-10 Cleaning of stained material

Publications (2)

Publication Number Publication Date
JP2003176500A JP2003176500A (en) 2003-06-24
JP4064788B2 true JP4064788B2 (en) 2008-03-19

Family

ID=19197679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002328081A Expired - Fee Related JP4064788B2 (en) 2002-11-12 2002-11-12 Cleaning agent for removing dirt

Country Status (1)

Country Link
JP (1) JP4064788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4689410B2 (en) * 2005-08-29 2011-05-25 富士フイルム株式会社 Recycling method of lithographic printing plate support

Also Published As

Publication number Publication date
JP2003176500A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
KR100355212B1 (en) Post-washing method
JP2003536258A (en) Cleaning composition after chemical mechanical planarization (CMP)
TW201416436A (en) Cleaning formulations
WO2003065433A1 (en) Liquid detergent for semiconductor device substrate and method of cleaning
CN101523298B (en) A cleaning compound for removing photoresist
CN101412948A (en) Cleaning agent for plasma etching residue
KR0160126B1 (en) Method for cleaning rosin-base solder flux
CN1479780A (en) Method for cleaning etcher parts
JPH09111483A (en) Degreasing washing fluid and method for degreasing washing
CN101827927A (en) A plasma etching residues cleaning composition
JP4064788B2 (en) Cleaning agent for removing dirt
CN101270324A (en) Semiconductor etch residue remover and cleansing compositions
JP2007200944A (en) Substrate cleaning liquid
KR100965430B1 (en) Insulating detergent for electric machine
KR101101378B1 (en) Rinse composition for tft-lcd
JPH10279999A (en) Cleaning of stained material
JP2005074397A (en) Washing method of electronic equipment and its evaluating method
JP2000008080A (en) Industrial detergent composition and cleaning using the same
JP2949201B2 (en) Cleaning method
KR20030011480A (en) Stripper composition for photoresist
JP5203637B2 (en) Method and composition for removing resist, etching residue, and metal oxide from a substrate having aluminum and aluminum copper alloy
KR20090021429A (en) Cleaning solution
CN116262889B (en) Application of neutralization cleaning agent after plasma etching cleaning in cleaning semiconductor device
KR101426088B1 (en) Cleaning solution composition and process of cleaning panel using the same
JPH06340892A (en) Flux-cleaning agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070626

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees