JP4062849B2 - Breakwater structure and breakwater using the breakwater structure - Google Patents

Breakwater structure and breakwater using the breakwater structure Download PDF

Info

Publication number
JP4062849B2
JP4062849B2 JP2000050789A JP2000050789A JP4062849B2 JP 4062849 B2 JP4062849 B2 JP 4062849B2 JP 2000050789 A JP2000050789 A JP 2000050789A JP 2000050789 A JP2000050789 A JP 2000050789A JP 4062849 B2 JP4062849 B2 JP 4062849B2
Authority
JP
Japan
Prior art keywords
breakwater
wave
wall portion
wall
front wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000050789A
Other languages
Japanese (ja)
Other versions
JP2001241022A (en
Inventor
秀昭 長山
博 堀内
征登 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2000050789A priority Critical patent/JP4062849B2/en
Publication of JP2001241022A publication Critical patent/JP2001241022A/en
Application granted granted Critical
Publication of JP4062849B2 publication Critical patent/JP4062849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内湾等の比較的波高が小さく地盤が軟弱な海域に設置する防波堤用構造体及び該防波堤用構造体を用いた防波堤に関する。
【0002】
【従来の技術】
内湾等の比較的波高が小さい海域に適した防波堤としては、例えば図6に示すカーテン式防波堤がある。カーテン式防波堤は、前後に開脚して設けられた杭体51と、該杭体51の上端部を連結する連結部材53と、前記杭体51の前側の杭体51aに沿って設置されたカーテンウォール55とから構成されている。かかる構成のカーテン式防波堤は、杭体51を軟弱な海底地盤57内に一定の深さだけ挿入することによって海底地盤に固定されている。
このようなカーテン式防波堤は内湾等の比較的波高が小さい海域に適した構造物であり、カーテンウォール55で海面付近を遮断するとともに、カーテンウォール55に作用する波力を杭体51の横抵抗によって支持している。
【0003】
また、軟弱地盤上に建設される防波堤の他の例として、図7に示す特公平5−6603号公報に開示された防波堤がある。同公報に開示された防波堤は、幅広の底版59と、該底版59の上に立設された防波板部61と、該防波板部61を補強する補強材63と、底版59を海底地盤57に固定するための杭体65を備えている。
【0004】
【発明が解決しようとする課題】
図6に示したカーテン式防波堤は、構造が比較的簡単であることや、カーテンウォール55と海底間の隙間を通して海水交換が可能であり、水質の悪化を抑制できるという利点がある。
しかしながら、海底地盤57に打ち込んだ杭体51の横抵抗により支持するため海底地盤57が軟弱な場合には、杭径や杭体51の根入れ長さを大きくする必要があり、このための杭打ち作業に長時間を要し、鋼材重量が大きくなるという問題がある。
【0005】
また、図7に示した防波堤は、ケーソンを用いる通常の重力式防波堤に比べて軽量化され、また、地盤改良が不要であるという利点がある。
しかしながら、防波板部61が海底地盤57から海面まで連続する不透過壁であるためカーテン式防波堤に比べて波浪外力が大きくなり、杭径や杭長を大きくする必要がある。
【0006】
また、図8に示すように、港外側から港内側に向かって進行してきた波に対して、防波板部61の壁面に波の峰がある時(押し波時)は防波板部61は波力を受けると同時に、底版59の下面に防波板部61前後面の水位差に見合う揚圧力(三角形分布)が作用する。このため、防波堤には、港内側に滑動させようとする力と転倒させようとする力が作用する。
【0007】
また、図9のように港外側から港内側に向かって進行してきた波に対して、壁面に波の谷がある時(引き波時)は、押し波時と逆向きの水圧、揚圧力が作用し、防波堤には、港外側に滑動させようとする力と転倒させようとする力が作用する。
このように、押し波、引き波によって、海底地盤57に繰返し荷重が作用し、海底地盤57が流動化して地耐力が低下するという問題がある。さらに、不透過壁構造のため、海水の流通が阻害され水質の悪化を生じやすいという問題もある。
【0008】
本発明は、上記問題点を解決するためになされたものであり、内湾等の比較的波高が小さく地盤が軟弱な海域に適用でき、低廉で施工性が良く、かつ、海水交換が可能な防波堤を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る防波堤用構造体は、海底地盤上に載置可能な骨組み構造体と、該骨組み構造体に、該骨組み構造体の下端部から一定間隔離し、かつ前方から後方に向けて傾斜させた状態で設けられた前壁部と、前記骨組み構造体の後部に設けられ、前記前壁部よりも低く設定された後壁部とを備えたものである。
【0010】
また、前記骨組み構造体をH形鋼により形成し、前記前壁部を構成する壁部材を前記H形鋼のフランジ部で保持するようにしたものである。
【0011】
さらに、前記前壁部の下方に通水性を有する中詰め石保持部材を設置したものである。
【0012】
また、本発明の防波堤は、上記防波堤用構造体を、前記前壁部が連続するように並べて海底地盤に配置し、前記前壁部と前記後壁部との間に捨て石を中詰めしたものである。
【0013】
【発明の実施の形態】
図1、図2は本発明の一実施の形態を説明する図であり、図1は本実施形態を後方斜め上方から見た斜視図、図2は正面図である。図において、1はH形鋼からなる骨組部材によって組み立てられた防波堤用構造体であり、防波堤は、この防波堤用構造体を複数個海に設置して構成される。以下、防波堤用構造体1の構成を、図1、図2に基づいて説明する。
2は海底地盤に設置されるコンクリートからなる台座であり、この例では1個の防波堤用構造体1に4つの台座を有している。
【0014】
3はH形鋼をL型に形成したL型支持部材であり、1個の防波堤用構造体につき7個が並列に配置されている。L型支持部材3の立片3aは後方に傾斜して形成されており、この例では、水平片3bと立片3aの成す角度が約60度に設定されている。4は一端側がL型支持部材3の立片3aのほぼ中央部に、他端が水平片3bの後端側に、それぞれ接合されてL型支持部材3を支持する斜材である。
【0015】
5aはL型支持部材3の水平片3bの前端側に7個の水平片3bに亘って接合された下部横材、5bは下部横材5aの上方に下部横材5aと一定間隔を離して設置された上部横材である。この例では上部横材5bは立片3aの上側約1/3の位置に設置されている。
【0016】
6はL型支持部材3の立片3aに設置されたプレキャスト材からなる壁材である。ここで壁材6の設置方法を図3に基づいて説明すると、立片3aを構成するH形鋼上下フランジの隙間に壁材6を挿入して、壁材6の下辺が上部横材5bに当接するまで下降させる。さらに、その上方に壁材6を同様に挿入して積み重ねる。そして、壁材6とH形鋼のフランジとの間にクサビ8をたたき込んで固定する。この壁材6が本発明の前壁部を構成する。
【0017】
再び、図1、図2について、7は立片3aにおける壁材6の下方に設置された金網である。9はL型支持部材3の水平片3bの後端側にそれぞれ設置された支持部材、11は支持部材9の後方側に7個の支持部材に亘って接合された後壁である。後壁11の高さは壁材6よりも低く設定されている。
13は両端に配置されたL型支持部材3の外側方に設置された側壁である。15は両端に配置されたL型支持部材3の斜材4から、両端から2番目に配置されたL型支持部材3の斜材4に架設された端部補強材である。
なお、以上の構成のうち、L型支持部材3、斜材4、上下部横材5a,5b及び端部補強材15によって骨組み構造部が構成されている。
【0018】
次に、上記のように構成された本実施の形態の据え付け作業工程について、設置後の状態の側面形状を示す図4を参照にしながら説明する。
▲1▼台座2の設置
台座2が設置される位置の海底地盤を床堀して基礎捨石17(図4参照)を設置して、必要最小限の水平面を形成する。
次に、防波堤用構造体1を支持するコンクリート製の台座2(高さ50cm程度、1基につき4箇所)を水平にした基礎捨石17上に設置し、水中コンクリートで固定して基礎とする。なお、本実施の形態における防波堤用構造体1は、H形鋼からなる骨組み構造であり構造物自重を軽量化しているため、基礎捨石マウンドの設置が不要となる。したがって、大がかりな捨石表面の均し作業も不要となり作業全体が簡略化できる。
【0019】
▲2▼防波堤用構造体の設置
工場で製作した骨組み構造部(重量100tf以下)を台船で設置予定場所の海上まで輸送する。そして、起重機船の起重機によって海底地盤の台座2上に据え付ける。据え付け後、中詰め捨石の投入前の耐波安定のため、骨組み構造部を台座2に鎖等の連結部材を用いて仮固定する。
【0020】
▲3▼中詰め捨石の投入
次に、骨組み構造部の内側に捨石19(図4参照)を投入する。捨石19は安定確保に必要な量を投入すればよい。なお、捨石19を積み上げた際に、安定して積み上げられるのは上面の傾斜角が40度程度までであることが知られている。そこで、この例では、より安定的に捨石19を設置するために傾斜角が約30度程度になるようにしている。
【0021】
▲4▼壁材の設置
次に、L型支持部材3の立片3aに、H形鋼のフランジ部をガイドとしてプレキャスト材からなる壁材6を斜め方向に落とし込む。そして、H形鋼のフランジ部と壁材6の隙間にクサビ等をたたき込んで壁材6を固定する。このとき、壁材6の位置が海面付近に配置させるようにする。
【0022】
▲5▼洗掘防護
海底地盤が砂地盤の場合には、防波堤用構造体1の港外側前面の海底地盤上に防砂シート21を設置し、この上に低マウンド高、肩幅小の捨石マウンド23を設置する。これは防波堤用構造体1の港外側壁体前面において、潮流や波の波高変動に伴って海底地盤の砂が吸い出され、洗掘されるのを防止するためである。なお、波浪条件が厳しいときには、図4に示すように捨石マウンド23の上に根囲め石25を置く場合もある。
【0023】
以上のように構成された本実施の形態において、港外側から港内側に向かって進行してきた波を、壁材6が受け止めて港内側に波が進行するのを防止する。そして、壁材6の壁面に波の峰がある時(押し波時)は、防波堤用構造体1が港内側に滑動しようとするのに対して壁材6の後面側の捨石19の重量による摩擦抵抗で安定性を確保する。
また、壁材6を傾斜させたことにより、壁材6の前面に波浪外力が作用すると、波力による下向き力が生じ、構造物重量が増えたと同等の状態になり滑動安定性が高められる。
さらに、防波堤用構造体1には底面がないので、揚圧力が作用せず、図7に示した揚圧力が作用する従来例に比較して、安定性が高い。
【0024】
一方、港外側から港内側に向かって進行してきた波に対して、壁材6の前面に波の谷がある時(引き波時)は、図7に示した従来技術のように直立した壁体の場合には港外側と港内側の水位差によって、構造体を港外側に転倒させようとする力が作用する。
しかしながら、本実施の形態においては、背面側の後壁11が低く、後壁11の面積が小さいので、防波堤用構造体1を後方から前方への転倒させるように作用する力が小さいく、安定性が高い。
【0025】
また、壁材6の下方に金網7を設置したことにより、中詰め石19を防波堤用構造体1内に確実に保持できると共に、中詰め石19を通して海水が港外側と港内側で互いに流通でき、港内の水質環境を改善できる。
【0026】
以上のように、本実施の形態によれば、全体をH形鋼による骨組み構造とし、底板を設けていないことから、全体の重量が軽く、設置時の施工性がよい。また、壁材6を後方に傾斜させたことより、押し波時には、波圧の下向きの分力を利用して滑動を防止できる。さらに、底板がないので、揚圧力が作用せず、安定性が高い。
【0027】
なお、構造物の据え付け作業における重量制限に余裕がある場合には、台座2を予め構造物に一体化しておくことも可能である。
【0028】
波浪条件が厳しい場合には、防波堤用構造体1の奥行寸法を大きくしてもよいし、あるいは後壁を高くして投入する捨石量を増やしてもよい。また、あるいは波力、地盤支持力との関係も考慮して、図5のように防波堤用構造体1内には平坦に捨石19を置いて、防波堤用構造体1の背後に捨石による押え盛土27を設けてもよい。いずれにしても中詰め捨石の投入は、適宜、設計条件によって、適切な配置とすることができる。
【0029】
また、上記の例では壁材6の傾斜角度が約60度になるように設定したが、この傾斜角度は適宜変更することも可能であり、例えば、壁材6を寝かせるようにすれば、押し波時の波力の下向き成分が大きくなり、より安定性を増すことができる。
さらに、上記の例では、壁材6の下方に金網7を設置した例を示したが、金網に代えて、他の材質の網状の部材であってもよい。またあるいは、格子状の板状部材であってもよく、要は、中詰め石19が崩れないように保持でき、かつ通水性を保持できるものであればよい。
【0030】
【発明の効果】
本発明は以上のように構成されているので、以下のような効果を奏する。
【0031】
前壁部を傾斜させたことにより、前壁部に波浪外力が作用すると、波力による下向き力が生じ、構造物重量が増えたと同等の作用をし、滑動安定性が高められる。
また、前壁部を支持する構造を骨組み構造としたことにより、構造体全体の重量を軽量化でき、据え付け時の作業効率がよく、また据え付け工事の費用を低くすることができる。
さらに、骨組み構造としたことにより、底版がないので、揚圧力が作用せず、転倒安定性が高い。
また、前壁部の下方に通水性を有する中詰め石保持部材を設置したことにより、中詰め石を確実に保持できると共に中詰め石を通して海水が港外側と港内側で互いに流通するようになり、港内の水質環境を改善できる。
【図面の簡単な説明】
【図1】 本発明の一実施の形態の斜視図である。
【図2】 本発明の一実施の形態の正面図である。
【図3】 本発明の一実施の一部の拡大図である。
【図4】 本発明の一実施の形態の側面図である。
【図5】 本発明の一実施の形態の他の態様の側面図である。
【図6】 従来例の側面図である。
【図7】 他の従来例の説明図である。
【図8】 従来例に作用する波力の作用の説明図である(押し波時)。
【図9】 従来例に作用する波力の作用の説明図である(引き波時)。
【符号の説明】
1 防波堤用構造体
3 L型支持部材
4 斜材
6 壁材
7 金網
11 後壁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a breakwater structure installed in a sea area having a relatively small wave height such as an inner bay and a soft ground, and a breakwater using the breakwater structure.
[0002]
[Prior art]
As a breakwater suitable for a sea area having a relatively small wave height such as an inner bay, there is a curtain type breakwater shown in FIG. The curtain type breakwater was installed along the pile body 51 provided by opening the legs forward and backward, the connecting member 53 connecting the upper end of the pile body 51, and the pile body 51a on the front side of the pile body 51. The curtain wall 55 is constituted. The curtain type breakwater having such a configuration is fixed to the seabed ground by inserting the pile body 51 into the soft seabed ground 57 by a certain depth.
Such a curtain type breakwater is a structure suitable for the sea area where the wave height is relatively small such as an inner bay, and the curtain wall 55 blocks the sea surface and the wave force acting on the curtain wall 55 is applied to the lateral resistance of the pile body 51. Is supported by.
[0003]
Another example of a breakwater constructed on soft ground is the breakwater disclosed in Japanese Patent Publication No. 5-6603 shown in FIG. The breakwater disclosed in the publication includes a wide bottom plate 59, a wave preventing plate portion 61 erected on the bottom plate 59, a reinforcing member 63 that reinforces the wave preventing plate portion 61, and a bottom plate 59 attached to the seabed. The pile body 65 for fixing to the ground 57 is provided.
[0004]
[Problems to be solved by the invention]
The curtain type breakwater shown in FIG. 6 has an advantage that the structure is relatively simple and that the seawater can be exchanged through the gap between the curtain wall 55 and the seabed, so that deterioration of water quality can be suppressed.
However, when the seabed ground 57 is soft to support by the lateral resistance of the pile body 51 driven into the seabed ground 57, it is necessary to increase the pile diameter and the depth of the pile body 51. There is a problem that it takes a long time for the hammering operation and the weight of the steel material increases.
[0005]
Further, the breakwater shown in FIG. 7 is advantageous in that it is lighter than a normal gravity breakwater using caisson and does not require ground improvement.
However, since the wave-breaking plate portion 61 is an impermeable wall that continues from the seabed ground 57 to the sea surface, the wave external force becomes larger than that of the curtain-type breakwater, and it is necessary to increase the pile diameter and the pile length.
[0006]
Further, as shown in FIG. 8, when there is a wave peak on the wall surface of the wave preventing plate part 61 (at the time of pushing waves) with respect to the wave traveling from the outer side of the port toward the inner side of the port, the wave preventing plate part 61. At the same time as the wave force is received, a lifting pressure (triangular distribution) corresponding to the water level difference between the front and rear surfaces of the wave preventing plate 61 acts on the lower surface of the bottom plate 59. For this reason, the force which tries to slide to the inner side of a harbor and the force which tries to make it fall act on a breakwater.
[0007]
In addition, when there is a wave trough on the wall surface (during a pulling wave) with respect to the wave traveling from the outside of the port toward the inside of the port as shown in FIG. Acting on the breakwater, the force to try to slide to the outside of the port and the force to try to overturn act.
As described above, there is a problem that the load is repeatedly applied to the seabed ground 57 by the push wave and the pulling wave, and the seabed ground 57 is fluidized to reduce the ground strength. Furthermore, due to the impermeable wall structure, there is a problem that the circulation of seawater is hindered and the water quality tends to deteriorate.
[0008]
The present invention has been made to solve the above-described problems, and can be applied to a sea area having a relatively small wave height such as an inner bay where the ground is soft. The breakwater is inexpensive, has good workability, and can exchange seawater. The purpose is to provide.
[0009]
[Means for Solving the Problems]
The structure for a breakwater according to the present invention includes a framework structure that can be placed on the seabed ground, and the framework structure is separated from the lower end of the framework structure by a certain distance and inclined from the front to the rear. And a rear wall portion provided at a rear portion of the framework structure and set lower than the front wall portion.
[0010]
Further, the frame structure is formed of H-shaped steel, and a wall member constituting the front wall portion is held by a flange portion of the H-shaped steel.
[0011]
Furthermore, a filling stone holding member having water permeability is installed below the front wall portion.
[0012]
Moreover, the breakwater according to the present invention is a structure in which the structure for breakwater is arranged on the seabed ground so that the front wall portion is continuous, and discarded stones are packed between the front wall portion and the rear wall portion. It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 and FIG. 2 are diagrams for explaining an embodiment of the present invention. FIG. 1 is a perspective view of the present embodiment as viewed obliquely from above and FIG. 2 is a front view. In the figure, reference numeral 1 denotes a breakwater structure assembled by a frame member made of H-shaped steel, and the breakwater is constructed by installing a plurality of breakwater structures in the sea. Hereinafter, the structure of the structure 1 for breakwaters is demonstrated based on FIG. 1, FIG.
Reference numeral 2 denotes a pedestal made of concrete installed on the seabed ground. In this example, one breakwater structure 1 has four pedestals.
[0014]
Reference numeral 3 denotes an L-shaped support member in which an H-shaped steel is formed in an L-shape, and seven are arranged in parallel for each breakwater structure. The standing piece 3a of the L-shaped support member 3 is formed to be inclined rearward. In this example, the angle formed by the horizontal piece 3b and the standing piece 3a is set to about 60 degrees. Reference numeral 4 denotes a diagonal member that supports the L-type support member 3 by joining one end to the substantially central portion of the upright piece 3a of the L-type support member 3 and the other end to the rear end side of the horizontal piece 3b.
[0015]
5a is a lower cross member joined across seven horizontal pieces 3b on the front end side of the horizontal piece 3b of the L-shaped support member 3, and 5b is spaced above the lower cross member 5a at a predetermined interval above the lower cross member 5a. It is the upper crosspiece installed. In this example, the upper cross member 5b is installed at a position about 1/3 on the upper side of the upright piece 3a.
[0016]
Reference numeral 6 denotes a wall material made of a precast material installed on the upright piece 3 a of the L-type support member 3. Here, the installation method of the wall material 6 will be described with reference to FIG. 3. The wall material 6 is inserted into the gap between the H-shaped steel upper and lower flanges constituting the upright piece 3a, and the lower side of the wall material 6 becomes the upper cross member 5b. Lower until contact. Furthermore, the wall material 6 is similarly inserted and stacked thereon. Then, a wedge 8 is struck and fixed between the wall material 6 and the flange of the H-shaped steel. This wall material 6 constitutes the front wall portion of the present invention.
[0017]
1 and 2 again, reference numeral 7 denotes a wire mesh installed below the wall member 6 in the upright piece 3a. Reference numeral 9 denotes a support member installed on the rear end side of the horizontal piece 3b of the L-type support member 3, and 11 denotes a rear wall joined to the rear side of the support member 9 across seven support members. The height of the rear wall 11 is set lower than the wall material 6.
Reference numeral 13 denotes a side wall installed on the outer side of the L-shaped support member 3 disposed at both ends. Reference numeral 15 denotes an end portion reinforcing member erected from the diagonal member 4 of the L-type support member 3 arranged at both ends to the diagonal member 4 of the L-type support member 3 arranged second from both ends.
Of the above configuration, the L-shaped support member 3, the diagonal member 4, the upper and lower lateral members 5 a and 5 b, and the end reinforcing member 15 constitute a skeleton structure.
[0018]
Next, the installation work process of the present embodiment configured as described above will be described with reference to FIG. 4 showing the side surface shape after installation.
(1) Installation of pedestal 2 The bottom floor ground where the pedestal 2 is installed is dug up and a foundation rubble 17 (see FIG. 4) is installed to form the minimum required horizontal surface.
Next, a concrete pedestal 2 (about 50 cm high, four locations per unit) that supports the breakwater structure 1 is placed on a horizontal foundation rubble 17 and fixed with underwater concrete to form a foundation. In addition, since the structure 1 for breakwaters in this Embodiment is a frame structure which consists of H-section steel, and the weight of a structure is reduced in weight, installation of a foundation rubble mound becomes unnecessary. Therefore, a large leveling operation of the rubble surface is not required, and the entire operation can be simplified.
[0019]
(2) The structure of the breakwater structure will be transported to the sea where it will be installed by a trolley. And it installs on the base 2 of a submarine ground with the hoist of a hoist ship. After installation, the frame structure is temporarily fixed to the pedestal 2 using a connecting member such as a chain for wave resistance stabilization before the filling of the stuffed stone.
[0020]
(3) Inserting crushed stones Next, rubble 19 (see FIG. 4) is inserted inside the framework structure. The rubble 19 may be put in an amount necessary for ensuring stability. In addition, when the rubble 19 is piled up, it is known that it is piled up stably that the inclination angle of the upper surface is up to about 40 degrees. Therefore, in this example, in order to install the rubble 19 more stably, the inclination angle is set to about 30 degrees.
[0021]
(4) Installation of wall material Next, the wall material 6 made of a precast material is dropped into the upright piece 3a of the L-type support member 3 in an oblique direction using the flange portion of the H-shaped steel as a guide. Then, a wedge or the like is beaten into the gap between the flange portion of the H-shaped steel and the wall material 6 to fix the wall material 6. At this time, the wall material 6 is arranged near the sea surface.
[0022]
(5) When the scour protection seabed is sand, a sandproof sheet 21 is installed on the seabed ground in front of the port of the breakwater structure 1, and a rubble mound 23 with a low mound height and a small shoulder width is placed thereon. Is installed. This is to prevent the sand on the seabed from being sucked out and scoured in accordance with tidal currents and wave height fluctuations in front of the harbor outer wall of the breakwater structure 1. In addition, when the wave conditions are severe, as shown in FIG. 4, there is a case where a root stone 25 is placed on the rubble mound 23.
[0023]
In this Embodiment comprised as mentioned above, the wall material 6 receives the wave which progressed toward the port inner side from the port outer side, and prevents that a wave advances to the port inner side. And, when there is a wave peak on the wall surface of the wall material 6 (at the time of pushing wave), the breakwater structure 1 tries to slide inside the port, whereas it depends on the weight of the rubble 19 on the rear surface side of the wall material 6 Ensure stability with frictional resistance.
In addition, if the wave external force acts on the front surface of the wall material 6 by inclining the wall material 6, a downward force due to the wave force is generated, and the structure becomes equivalent to an increase in the weight of the structure, and the sliding stability is improved.
Furthermore, since the breakwater structure 1 does not have a bottom surface, the lifting pressure does not act, and the stability is higher than the conventional example in which the lifting pressure shown in FIG. 7 acts.
[0024]
On the other hand, when there is a wave trough in front of the wall material 6 (during a pulling wave) with respect to the waves traveling from the outside of the port toward the inside of the port, the upright wall as in the prior art shown in FIG. In the case of a body, a force acts to cause the structure to fall over to the outside of the port due to the difference in water level between the outside of the port and the inside of the port.
However, in the present embodiment, the rear wall 11 on the back side is low and the area of the rear wall 11 is small, so that the force acting to cause the breakwater structure 1 to fall from the rear to the front is small and stable. High nature.
[0025]
In addition, by installing the wire mesh 7 below the wall material 6, the filling stone 19 can be reliably held in the breakwater structure 1, and seawater can flow between the outside and the inside of the port through the filling stone 19. Can improve the water quality environment in the port.
[0026]
As described above, according to the present embodiment, the entire structure is a frame structure made of H-shaped steel, and the bottom plate is not provided. Therefore, the overall weight is light and the workability during installation is good. Further, since the wall member 6 is inclined rearward, the sliding can be prevented by using the downward component force of the wave pressure at the time of pushing. Furthermore, since there is no bottom plate, the lifting pressure does not act and the stability is high.
[0027]
In addition, when there is a margin in the weight limit in the installation work of the structure, the pedestal 2 can be integrated with the structure in advance.
[0028]
When the wave conditions are severe, the depth dimension of the breakwater structure 1 may be increased, or the amount of rubble to be thrown in may be increased by raising the rear wall. In consideration of the relationship between the wave force and the ground support force, a flat rubble 19 is placed in the breakwater structure 1 as shown in FIG. 27 may be provided. In any case, the filling of the stuffed stone can be appropriately arranged according to the design conditions.
[0029]
In the above example, the inclination angle of the wall material 6 is set to be about 60 degrees. However, this inclination angle can be changed as appropriate. For example, if the wall material 6 is laid down, the wall material 6 is pushed. The downward component of the wave force at the time of the wave becomes large, and the stability can be further increased.
Furthermore, in the above example, an example in which the metal mesh 7 is installed below the wall material 6 is shown, but a net-like member made of another material may be used instead of the metal mesh. Alternatively, it may be a lattice-like plate-like member. In short, any member can be used as long as the filling stone 19 can be held so as not to collapse and water permeability can be maintained.
[0030]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
[0031]
When the wave external force acts on the front wall portion by inclining the front wall portion, a downward force due to the wave force is generated, which acts as if the structure weight is increased, and the sliding stability is enhanced.
Further, since the structure for supporting the front wall portion is a framework structure, the weight of the entire structure can be reduced, the work efficiency during installation can be improved, and the cost of installation work can be reduced.
Furthermore, since it has a frame structure, since there is no bottom plate, no lifting pressure is applied and the tipping stability is high.
In addition, by installing the stuffing stone holding member having water permeability below the front wall, the stuffing stone can be reliably held, and seawater can flow through the stuffing stone between the outside and inside the port. Can improve the water quality environment in the port.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of the present invention.
FIG. 2 is a front view of an embodiment of the present invention.
FIG. 3 is an enlarged view of a part of one embodiment of the present invention.
FIG. 4 is a side view of an embodiment of the present invention.
FIG. 5 is a side view of another aspect of the embodiment of the present invention.
FIG. 6 is a side view of a conventional example.
FIG. 7 is an explanatory diagram of another conventional example.
FIG. 8 is an explanatory diagram of the action of wave force acting on the conventional example (at the time of pushing wave).
FIG. 9 is an explanatory diagram of the action of wave force acting on a conventional example (at the time of pulling).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Structure for breakwater 3 L-type support member 4 Diagonal material 6 Wall material 7 Wire mesh 11 Rear wall

Claims (4)

海底地盤上に載置可能な骨組み構造体と、
該骨組み構造体に、該骨組み構造体の下端部から一定間隔離し、かつ前方から後方に向けて傾斜させた状態で設けられた前壁部と、
前記骨組み構造体の後部に設けられ、前記前壁部よりも低く設定された後壁部とを備えたことを特徴とする防波堤用構造体。
A framework structure that can be placed on the submarine ground;
A front wall portion provided on the framework structure in a state of being separated from the lower end portion of the framework structure for a certain period and inclined from the front to the rear;
A breakwater structure, comprising a rear wall provided at a rear portion of the frame structure and set lower than the front wall portion.
前記骨組み構造体をH形鋼により形成し、前記前壁部を構成する壁部材を前記H形鋼のフランジ部で保持するようにしたことを特徴とする請求項1記載の防波堤用構造体。  2. The breakwater structure according to claim 1, wherein the frame structure is formed of H-shaped steel, and a wall member constituting the front wall portion is held by a flange portion of the H-shaped steel. 前記前壁部の下方に通水性を有する中詰め石保持部材を設置したことを特徴とする請求項1又は2記載の防波堤用構造体。  The breakwater structure for a breakwater according to claim 1 or 2, wherein a filling stone retaining member having water permeability is installed below the front wall portion. 請求項1乃至3の何れかに記載の防波堤用構造体を、前記前壁部が連続するように並べて海底地盤に配置し、前記前壁部と前記後壁部との間に捨て石を中詰めしたことを特徴とする防波堤。The structure for a breakwater according to any one of claims 1 to 3 is arranged on the seabed ground so that the front wall portion is continuous, and a discarded stone is packed between the front wall portion and the rear wall portion. Breakwater characterized by that.
JP2000050789A 2000-02-28 2000-02-28 Breakwater structure and breakwater using the breakwater structure Expired - Lifetime JP4062849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050789A JP4062849B2 (en) 2000-02-28 2000-02-28 Breakwater structure and breakwater using the breakwater structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050789A JP4062849B2 (en) 2000-02-28 2000-02-28 Breakwater structure and breakwater using the breakwater structure

Publications (2)

Publication Number Publication Date
JP2001241022A JP2001241022A (en) 2001-09-04
JP4062849B2 true JP4062849B2 (en) 2008-03-19

Family

ID=18572538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050789A Expired - Lifetime JP4062849B2 (en) 2000-02-28 2000-02-28 Breakwater structure and breakwater using the breakwater structure

Country Status (1)

Country Link
JP (1) JP4062849B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101362918B1 (en) * 2013-08-02 2014-02-12 주식회사 항도엔지니어링 Caisson with soil pressure dispersedand friction increased, and harbor facilities
KR101766182B1 (en) * 2017-04-27 2017-08-10 이영규 Submerged Breakwater Structure for Prevention of Coastal Corrosion

Also Published As

Publication number Publication date
JP2001241022A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP3464484B2 (en) Embankment structure
CA1043581A (en) Quay structure
CA1268635A (en) Stabilised earth structures
JPS6053138B2 (en) Marine wall and how to establish it
JP4062849B2 (en) Breakwater structure and breakwater using the breakwater structure
JP3740096B2 (en) Jacketed underwater foundation
JP2003082636A (en) Breakwater structure and method for constructing the same
CN209353348U (en) Steel plate supporting pile structure
CN210163928U (en) Underwater open caisson near-neighbor anchor pile positioning structure
GB1560703A (en) Marine walls
JP2022019139A (en) Basket unit and civil engineering structure
JP2003313844A (en) Breakwater caisson and setting method of breakwater caisson
JP2001207425A (en) Structure for breakwater and breakwater using the structure for breakwater
AU2008201576A1 (en) A Retaining Wall for Erosion Protection
KR102607803B1 (en) Assembling type wave dissipation block and vertically stacked coastal structure using the same
US5118222A (en) Method and apparatus for constructing seawalls and docks
CN220202740U (en) Jacket foundation for offshore booster station
JP3776690B2 (en) Jacket structure
EP3783154A1 (en) Quay wall and method for building a quay wall
JP4116019B2 (en) Seawall block
CN113737829A (en) Steel sheet pile and concrete wall combined cofferdam structure and construction method
JP2013053443A (en) Caisson breakwater with anti-tip reinforcement
JP2521625B2 (en) Artificial fish reef for soft ground
JP3160077B2 (en) Steel cell structure and method of constructing the same
CN114197488A (en) Foundation ditch double row pile supporting construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4062849

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

EXPY Cancellation because of completion of term