JP4062190B2 - Austenitic stainless steel pipe for nuclear power - Google Patents

Austenitic stainless steel pipe for nuclear power Download PDF

Info

Publication number
JP4062190B2
JP4062190B2 JP2003187694A JP2003187694A JP4062190B2 JP 4062190 B2 JP4062190 B2 JP 4062190B2 JP 2003187694 A JP2003187694 A JP 2003187694A JP 2003187694 A JP2003187694 A JP 2003187694A JP 4062190 B2 JP4062190 B2 JP 4062190B2
Authority
JP
Japan
Prior art keywords
grain size
stainless steel
test
steel pipe
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003187694A
Other languages
Japanese (ja)
Other versions
JP2005023343A (en
Inventor
雅之 相良
貴代子 竹田
正晃 五十嵐
博之 穴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003187694A priority Critical patent/JP4062190B2/en
Publication of JP2005023343A publication Critical patent/JP2005023343A/en
Application granted granted Critical
Publication of JP4062190B2 publication Critical patent/JP4062190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【0001】
【発明の属する技術分野】
本発明は、軽水炉などの高温純水環境で問題となる粒界応力腐食割れに対する抵抗性に優れたステンレス鋼管に関するもので、さらに詳しくは、腐食性流体に接触する管肉の表層部では結晶粒径が大きく、管肉の内部では結晶粒径が小さい組織を有するステンレス鋼管に関する。
【0002】
【従来の技術】
原子力発電設備で用いられる管および容器は、酸素を含有する高温の純水環境に曝されるため、粒界応力腐食割れが発生するおそれがある。したがって、これらの材料には、C含有量を極低レベルに規定した低炭素316Lステンレス鋼などが使用されている。これらの材料は、特に、粒界におけるCr欠乏などに起因する粒界応力腐食割れに対する抵抗性を向上させる目的で、C含有量を低減し、Moを含有させた材料となっている。
【0003】
原子力設備における高温水環境での粒界応力腐食割れ性を改善する方法として、例えば、特許文献1には、固溶強化型Ni基合金の高耐食化と良好な機械的性質を得るため、最終投階の熱処理において前記合金を1000〜1100℃に加熱し、含有C量の60%以上を固溶させると共に、この加熱温度において結晶粒径を結晶粒度番号(JIS G0552)で4以上の細粒に調整した後、加熱温度から300℃までを200℃/sec以上の冷却速度で急冷する固溶強化型Ni基合金の耐食性改善熱処理法が開示されている。
【0004】
また、材料の結晶粒径を規定した材料として、特許文献2には、C、N、Mn、Ni、Cr、Si、Mo、Cu、Al、V、Tiなどの各元素の含有量の関数として表される応力腐食割れ指数および残留加工誘起マルテンサイト量の値が0%以上で、かつ、結晶粒径が2μm以下のオーステナイト結晶粒加工組織を有し、引張り強さおよび耐力が規定された耐応力腐食割れに優れた高強度・高耐力オーステナイト系ステンレス鋼線およびその製造方法が開示されている。
【0005】
さらに、材料の表面の結晶粒径を制御した例としては、特許文献3に、酸化剤または燃料に接触すべき表面部分の平均結晶粒径が好ましくは10〜100μmの多結晶組織からなる固体高分子型燃料電池用セパレータが開示されている。
そして、特許文献4には、耐水蒸気酸化性と高温強度とを備えた鋼管として、鋼管の平均結晶粒度番号がNo.6またはそれ以下の粗粒組織とその内面側における厚さが50〜300μmで平均結晶粒度番号がNo.7またはそれ以上の細粒層とを有し、細粒層部のC+Nが0.15%以上であるオーステナイトステンレス鋼管が開示されている。
【0006】
しかしながら、上記特許文献1および2に開示されるような材料の厚さ方向の全域にわたって結晶粒を細粒化したオーステナイト系ステンレス鋼やNi基合金、および特許文献4に開示されているような材料の表面部分の結晶粒を細粒化したオーステナイト系ステンレス鋼管の何れにおいても、高温水環境下における粒界応力腐食割れの発生を充分に防止することはできない。また、特許文献3に開示されたセパレータ材料は、高温水環境とは腐食環境が大きく異なる環境下で用いられ、しかも表面部分の結晶粒径は100μm程度以下の比較的細粒の材料である。
【0007】
上述したとおり、原子力用ステンレス鋼管の高温純水環境下における耐粒界応力腐食割れに対する抵抗性の向上については、なお改善すべき課題がある。
【特許文献1】
特開平5−140707号公報(特許請求の範囲および段落〔0007〕〜〔0010〕)
【特許文献2】
特開平8−246106号公報(特許請求の範囲および段落〔0019〕)
【特許文献3】
特開2001−6694号公報(特許請求の範囲および段落〔0006〕〜〔0013〕)
【特許文献4】
特公平4−53943号公報(特許請求の範囲および第3欄17行〜第6欄27行)
【0008】
【発明が解決しようとする課題
前述のとおり、従来技術では、オーステナイト系ステンレス鋼は高温水環境において粒界応力腐食割れを生じるおそれがある。
【0009】
この形態の応力腐食割れを支配する要因は、割れの発生する起点の存否および割れの伝播特性である。前記要因のうち、割れの起点となりやすいのは、表面介在物の存在による組織的不均一箇所や表面加工による硬化層の存在箇所である。一方、割れの伝播を加速するのは、伝播経路である粒界に存在する材料欠陥であり、具体的には、粒界におけるCrの欠乏による材料の鋭敏化、PやSのような不純物の粒界偏析などである。
【0010】
本発明は、従来技術の項で述べた問題に鑑みてなされたものであり、上記した粒界応力腐食割れの発生要因、特に割れの起点となりやすい表層部での発生応力を低減させることにより、高温純水環境における粒界応力腐食割れの発生に対する抵抗性の高い原子力用オーステナイト系ステンレス鋼管を得ることを課題としている。
【0011】
【課題を解決するための手段】
前記したとおり、高温水環境における粒界応力腐食割れの発生を支配する要因は、割れの起点の生成および割れの伝播である。本発明者らは、上述の課題を解決するために、従来の問題点を踏まえて、特に割れの起点の生成防止の観点から、高温純水環境における耐粒界応力腐食割れ性の向上を検討し、以下の(a)〜(c)に示す知見を得た。
【0012】
(a)原子力用プラントの製造過程で材料表面に施される切削加工などにより形成される表面近傍の硬化層では、加工硬化により材料の内部よりも引張強度が上昇することから、引張強度が相対的に低い材料内部と同等の歪み量が加えられた場合には、前記硬化層では高い応力が発生し、割れの起点が形成されやすいと推察される。
(b)したがって、前記(a)の表面近傍の硬化層における結晶粒度を予め引張強度の低い粗粒とすることにより、表面近傍に歪みが加えられた場合の発生応力を低下させ、割れの発生頻度を低減できる。
(c)表面近傍の硬化層における結晶粒度の粗粒化の程度については、JISG0551で規定される平均結晶粒度番号が2以下であれば、充分な耐食性が得られる。
【0013】
なお、上記の(a)〜(c)に示す知見については、さらに詳しく後述するが、これらの知見は、従来の知見、すなわち、ステンレス鋼の耐粒界応力腐食割れ性は、結晶粒径の小さい方が優れており、その理由は、結晶粒径の小さい方が粒界への応力集中が少なく、また、不純物の偏析度合いも小さいことによるとされてきた知見とは全く異なる新しい知見である。
本発明は、上記の新しい知見に基いて完成されたものであり、その要旨は、下記の(1)〜(4)に示す原子力用オーステナイト系ステンレス鋼管にある。
【0014】
(1)質量%で、Cr:15〜30%、Ni:8〜30%、C:0.001〜0.1%、Si:0.1〜1.0%、Mn:0.1〜2.0%、P:0.05%以下、S:0.05%以下およびN:0.001〜0.15%を含有し、残部がFeおよび不純物からなり、かつ腐食性流体と接する面から少なくとも0.2mmまでの表層部の平均結晶粒度番号がJIS G0551で2以下であり、腐食性流体と接する面から少なくとも1mm以上の内部の平均結晶粒度番号が同7以上の組織を有することを特徴とする高温純水環境における耐粒界応力腐食割れ特性に優れた原子力用オーステナイト系ステンレス鋼管。
【0015】
(2)前記(1)に記載の原子力用オーステナイト系ステンレス鋼管において、さらに、質量%で、Mo:0.05〜3.0%を含有させてもよい。
【0016】
(3)前記(1)または(2)に記載の原子力用オーステナイト系ステンレス鋼管において、さらに、質量%で、V:0.001〜1.0%、Nb:0.001〜1.0%、Ti:0.001〜1.0%およびZr:0.001〜1.0%のうちの1種または2種以上を含有させてもよい。
【0017】
(4)前記(1)〜(3)のいずれかに記載の原子力用オーステナイト系ステンレス鋼管において、さらに、質量%で、Ca:0.0003〜0.010%を含有させてもよい。
【0018】
なお、「腐食性流体と接する面」とは、前記ステンレス鋼を腐食させる高温純水などの流体と接触する鋼管の表面を意味する。本発明においては、鋼管の内表面および外表面のいずれか一方であってもよいし、両方であってもよい。
【0019】
【発明の実施の形態】
本発明は、腐食性流体と接する面から少なくとも0.2mmまでの表層部の平均結晶粒度番号がJIS G0551で2以下であり、腐食性流体と接する面から少なくとも1mm以上の内部の平均結晶粒度番号が同7以上の組織を有するオーステナイト系ステンレス鋼管であり、以下にさらに詳しく説明する。
【0020】
前述したように、従来、ステンレス鋼の耐粒界応力腐食割れ性は、結晶粒径が小さい方が優れているとされている。また、その理由は、結晶粒径の小さい材料の場合の方が結晶粒界の境界面積が大きいことから、応力集中が少なく、また、不純物であるPやSなどの溶質元素の偏析の程度も小さくなることによるとされている。
【0021】
高温水環境における粒界応力腐食割れは、材料表層部の介在物や表層部の加工層が起点となって割れが発生し、これが結晶粒界を伝播する。表層部の介在物については、鋼中のS含有量やO(酸素)含有量を制限することによって、硫化物や酸化物の量を低減することができる。一方、材料の表面近傍では、原子力用プラントの製造段階において、溶接後に表面仕上げのためのグラインダーなどによる切削または研磨加工が施されるため、これらの加工により表層部には硬化層が形成される。
【0022】
図1は、材料の応力−歪み曲線におよぼす結晶粒の大きさの影響を模式的に示す図である。同図において、Aで示す曲線は結晶粒径が大きい場合の関係を示し、Bで示す曲線は結晶粒径が小さい場合の関係を示している。
【0023】
同図の関係から、結晶粒径の大きい材料と結晶粒径の小さい材料に同等の歪み(同図中のε)が加えられたとき、引張強度の低い結晶粒径の大きい材料に発生する応力(同図中のσ2)は、引張強度の高い結晶粒径の小さい材料に発生する応力(同図中のσ1)に比較して小さいと推察される。
【0024】
上記の曲線AおよびBにより示される発生応力の大小関係を考慮して、材料の表層部の硬化層、すなわち引張強度の高い材料を予め粗粒化しておくことにより、材料の表層部を前記図1中のBで示す曲線のように、発生応力が低い特性を有する材料に改善できる。
【0025】
そこで、鋭敏化熱処理を施した材料の表層部の結晶粒を熱処理により粗粒化した後、材料表面をグラインダーで研磨して二重U曲げ試験片を作製し、これを250℃、溶存酸素濃度30ppmの高温純水中に浸漬して、粒界応力腐食割れ試験を行い、最大割れ深さにより耐粒界応力腐食割れ性を評価した。なお、供試鋼としては、C:0.02%、Si:0.5%、Mn:1.5%、P:0.03%、S:0.001%、Cr:17.5%、Ni:12.3%、N:0.02%、Nb:0.03%の化学成分を有するオーステナイト系ステンレス鋼を使用し、その他の試験条件は、後述の実施例に記載した条件と同様とした。
【0026】
図2は、高温水中における応力腐食割れ試験結果を示す図である。同図の結果より、材料内部および表層部ともに結晶粒径の小さい平均結晶粒度番号7としたケース1の場合に比較して、材料内部は結晶粒径が小さい粒度番号7のままで、表層部の結晶粒を粗粒化して粒度番号3としたケース2では、表面歪みが加えられ加工硬化した後においても、応力腐食割れによる最大割れ深さは低減し、割れの発生頻度は低下することが判明した。
【0027】
さらに、ケース3のように、材料内部の平均結晶粒度番号は7のままとし、材料表層部の結晶粒を、平均結晶粒度番号が2またはそれ以下となるまで粗粒化すれば、充分な耐応力腐食割れ性が得られることが明らかとなった。
以下に、本発明で規定した結晶粒度および鋼の成分組成範囲の限定理由ならびに好ましい範囲について説明する。
【0028】
1)管肉の表層部および内部の結晶粒度
前記のとおり、本発明では、腐食性流体と接する面から少なくとも0.2mmまでの表層部の平均結晶粒度番号をJIS G0551で2以下とする。表層部の厚さが0.2mm未満では表層部の結晶粒が粗粒化したとしても発生応力低減による粒界応力腐食割れ発生の低減効果が得られず、また、平均結晶粒度番号が2を超えて大きい範囲においても、耐粒界応力腐食割れ性の向上効果が得られないからである。
【0029】
一方、本発明では、腐食性流体と接する面から少なくとも1mm以上の内部の平均結晶粒度番号は7以上とする。腐食性流体と接する面から少なくとも1mmより内部の平均結晶粒度番号が7未満であると、粒界への応力集中が大きく、また粒界偏析元素の濃度も高くなるため、割れの伝播を阻止する効果が得られなくなり、耐粒界腐食性が低くなる。なお、腐食性流体と接する面から少なくとも1mm以上の内部の平均結晶粒度番号を8以上とすればさらに耐応力腐食割れ性が向上するので好ましい。
上記のように、肉厚方向に結晶粒径が変化した鋼管を得るためには、熱処理などにより鋼管の肉厚方向の全域にわたって結晶粒度番号を7以上とした鋼管を製造し、さらに、腐食性流体と接する面の表層部のみを、例えば1000℃以上などのように、材料の再結晶温度以上の温度で加熱処理するのが好ましい。表層部のみを加熱する方法としては、腐食性流体と接する面と反対側の面を冷却しながら腐食性流体と接する面の表層部を加熱するなどの方法によればよい。
【0030】
さらに、例えば、鋼管の内面表層部を加熱することにより内面表層部の結晶粒を粗粒化処理した後、外面表層部を同様に加熱することにより外面表層部の結晶粒を粗粒化処理を施すなどすれば、内面および外面の双方の面の表層部のみの結晶粒を粗粒化することが可能である。
2)ステンレス鋼の化学組成
C:0.001〜0.1%:
Cは、ステンレス鋼の強度および耐力を確保するために必要な元素であり、C含有量が0.001%未満ではその効果が得られない。一方、含有量が0.1%を超えて多くなると結晶粒界に炭化物が形成され、耐粒界応力腐食割れ性が損なわれる。そこで、C含有量の範囲を0.001〜0.1%とした。
【0031】
Si:0.1〜1.0%:
Siは、精錬過程における脱酸剤として必要な元素であり、脱酸の効果を得るためには、0.1%以上を含有させる必要がある。しかし、1.0%を超えて多く含有させると靭性が低下するので、靭性確保のため、その含有量は1.0%以下とした。
【0032】
Mn:0.1〜2.0%:
Mnは、脱酸に有効な元素であり、含有量が0.1%以上でその効果が得られる。一方、2.0%を超えて含有させると耐食性を劣化させるので、その含有量は2.0%以下とした。
【0033】
P:0.05%以下:
Pは、鋼中の不純物元素であり、その含有量は少なければ少ないほどよい。含有量が0.05%を超えるとPが結晶粒界に偏析し、耐粒界応力腐食割れ性を劣化させることから、含有量の上限を0.05%とした。
【0034】
S:0.05%以下:
Sは、鋼中の不純物元素であり、結晶粒界に偏析して耐粒界応力腐食割れ性を劣化させるばかりか、熱間加工性を低下させるため、含有量の上限を0.05%とした。
Cr:15〜30%:
Crは、耐食性を向上するために不可欠な元素であり、含有量が15%以上で充分な効果が得られる。しかし、30%を超える含有は、熱間加工性の劣化を招くので、含有量は30%以下とした。
【0035】
Ni:8〜30%:
Niは、耐食性を向上させるため、およびオーステナイト相を形成させるために有効な元素であり、Ni含有率が8%以上でこれらの効果が得られる。一方、30%を超えて多く含有されると上記の効果が飽和し、また、Niは高価な元素であることから経済性を損ねることとなる。そこで、Ni含有量の上限を30%とした。
【0036】
Mo:0.05〜3.0%:
Moは、ステンレス鋼の耐食性を向上させる作用を有する元素であり、含有してもしなくてもよい。Moを含有させることによる耐食性の向上が要求される場合には、0.05%以上を含有させることによりその効果が得られる。一方、3.0%を超えて多量に含有させると金属間化合物が粒界に析出し、耐粒界応力腐食割れ性が劣化する。そこで、Moを含有させる場合の含有量の範囲は0.05〜3.0%とした。
【0037】
N:0.001〜0.15%:
Nは、鋼の強度を確保するために必要な元素であり、含有量が0.001%以上でその効果が得られる。しかし、0.15%を超えて多量に含有されると溶接性が劣化するので、N含有量の上限は0.15%とした。
【0038】
V、Nb、TiおよびZr:1種または2種以上を各0.001〜1.0%:
V、Nb、TiおよびZrは、結晶粒を細粒化する効果を有する元素であり、含有してもしなくてもよい。結晶粒の細粒化が特に要求される場合には、これらの元素の1種または2種以上をそれぞれ0.001%以上含有させることによりその効果が得られる。一方、それぞれの元素を1.0%を超えて多量に含有させてもその効果は飽和する。そこで、これらの元素を含有させる場合の含有量の範囲はそれぞれ0.001〜1.0%とした。
【0039】
Ca:0.0003〜0.010%:
Caは、熱間加工性を向上させる作用を有する元素であり、含有してもしなくてもよい。熱間加工性の向上を必要とする場合には、0.0003%以上を含有させることによりその効果が得られる。一方、0.010%を超えて含有させてもその効果は飽和する。そこで、Caを含有させる場合の含有量の範囲は0.0003〜0.010%とした。
【0040】
【実施例】
本発明の効果を確認するため、種々の化学成分を有するステンレス鋼材について、材料の表層部および厚さ方向内部の結晶粒径を調整し、応力腐食割れ試験を行って、その結果を評価した。
【0041】
〔試験材の作製〕
表1に示す化学成分を有する18種類のステンレス鋼を溶製し、これらの鋼を用いてインゴットを鋳造し、1200℃に加熱後、熱間鍛造及び熱間圧延を施して厚さ5mmの板材を得た。
【0042】
【表1】

Figure 0004062190
【0043】
この板材を920〜950℃に加熱後、水冷による焼入れ処理を行い、板材の内部までほぼ均一に結晶粒度番号が7または8の細粒組織を有する板材を得た。さらに、この板材の一方の表層部を水冷しながら、もう一方の表層部を再結晶温度以上の1000℃に加熱する熱処理を行い、表層部の結晶粒を粗粒化した。そして、再度、同様の熱処理を行い、板材の両面について、表層部の結晶粒の結晶粒度番号を2以下とした。なお、一部の板材については、表層部の加熱温度を800℃と低くして同様な熱処理を行った。
【0044】
この板材に対してArガス雰囲気中において、650℃で30時間保持する鋭敏化熱処理を施して粒界にCr欠乏相を生成させ、表面をグラインダーにより研磨加工した後、下記の二重U曲げ試験用の試験片を切り出した。
【0045】
〔高温純水中における応力腐食割れ試験〕
幅10mm×長さ75mm×厚さ2mmの試験片2枚を重ね合わせて、内側が7.5R、外側が9.5RとなるようにU字曲げ加工を行い、二重U曲げ試験片とした。
【0046】
この試験片を、250℃、溶存酸素濃度30ppmの高温純水中に1000時間浸漬した後、取り出して板厚方向の割れ深さを光学顕微鏡を用いたミクロ観察により測定し、最大割れ深さにより耐応力腐食割れ性を評価した。
なお、最大割れ深さが100μm未満の場合を良好とし、それ以上の場合を不良とした。
【0047】
〔試験結果〕
熱処理条件、結晶粒度および腐食試験後の最大割れ深さを表1に示す。ここで、同表中の表層部の結晶粒度番号は、板材表面から0.2mmまでの表層部の平均結晶粒度番号をJIS G0551に規定する方法により表示したものであり、また、内部の結晶粒度番号は、板材表面から1mm以上の板厚方向内部の結晶粒度番号を同様の方法により表示したものである。
【0048】
試験番号1〜11は、本発明鋼である供試鋼番号1〜11を用いた本発明例についての試験であり、また、試験番号12〜18は、比較鋼である供試鋼番号12〜18を用いた比較例についての試験である。
【0049】
試験番号1〜11は、供試鋼の表面から0.2mmまでの表層部では平均結晶粒度番号が2の粗粒組織を有し、一方、表面から1mm以上の内部では平均結晶粒度番号が7または8の細粒組織を有する本発明鋼についての試験であり、最大割れ深さは、いずれも100μm未満の良好な耐応力腐食割れ特性を示した。
特に、Moを含有する供試鋼番号2を用いた試験番号2、MoおよびVを含有する供試鋼番号1を用いた試験番号1、Mo、V、Nbを含有する供試鋼番号3を用いた試験番号3、ならびにMoおよびTiを含有する供試鋼番号4を用いた試験番号4では、一層良好な耐応力腐食割れ性を示した。
【0050】
また、V、Nb、Ti、またはZrのいずれかを含有する供試鋼番号6〜9を用いた試験番号6〜9においても、同様に、一層良好な耐応力腐食割れ性を示した。
さらに、Caを含有する供試鋼番号10を用いた試験番号10、ならびにMo、V、Nb、Ti、ZrおよびCaを含有する供試鋼番号5を用いた試験番号5では、別途、高温での引張試験(グリーブル試験)により熱間加工性も良好なことを確認した。
【0051】
これらに対して、P含有量が0.07%と高く、また内部の結晶粒度番号が6であって結晶粒径が大きい供試鋼番号12を用いた試験番号12では、表層部の結晶粒は充分に粗粒化しているにも拘わらず、耐応力腐食割れ性が不良となっている。
【0052】
N含有量が0.19%と高く、また内部の結晶粒度番号が6であり粒径の大きい供試鋼番号13を用いた試験番号13においても、耐応力腐食割れ性は不良であった。
【0053】
Cr含有量が13.2%と低く、また表層部の加熱温度を800℃として再結晶温度よりも低下させた供試鋼番号14では、表層部の結晶粒度番号が3であり粗粒化が不充分であったため、これを用いた試験番号14では、耐応力腐食割れ性が劣る結果となった。
【0054】
表層部の加熱温度を800℃として再結晶温度よりも低下させた供試鋼番号15では、表層部の結晶粒度番号が4と、粗粒化がさらに不充分であり、また内部の結晶粒度番号は6であり粒径が大きいことから、これを用いた試験番号15では、さらに一層、耐応力腐食割れ性が劣った。
【0055】
内部の結晶粒度番号が6であり、内部の結晶粒径の大きい供試鋼番号16を用いた試験番号16では、表層部の結晶粒は充分に粗粒化しているにも拘わらず、耐応力腐食割れ性は不良であった。
【0056】
表層部の加熱温度を800℃と低下させた供試鋼番号17では、表層部の結晶粒度番号が4であって、供試鋼番号15と同様に粗粒化が不充分であり、これを用いた試験番号17では、耐応力腐食割れ性が劣っていた。
【0057】
内部の結晶粒度番号が5であり、内部の結晶粒径の大きい供試鋼番号18を用いた試験番号18では、表層部の結晶粒は充分に粗粒化しているにも拘わらず、耐応力腐食割れ性は不良であった。
【0058】
【発明の効果】
本発明のオーステナイト系ステンレス鋼管は、腐食性流体と接触する管肉表層部では粗粒結晶を、また内部では細粒結晶を有する金属組織からなるため、特に割れの起点となりやすい表層部での発生応力が低減され、高温純水環境における優れた耐粒界応力腐食割れ特性を有する。したがって、本発明のステンレス鋼管は、軽水炉などの原子力プラント用鋼管として好適であり、当技術分野の発展に大きく寄与する。
【図面の簡単な説明】
【図1】材料の応力−歪み曲線におよぼす結晶粒の大きさの影響を模式的に示す図である。
【図2】高温純水中における応力腐食割れ試験結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stainless steel pipe excellent in resistance to intergranular stress corrosion cracking, which is a problem in a high-temperature pure water environment such as a light water reactor, and more specifically, in the surface layer portion of a pipe wall in contact with a corrosive fluid. The present invention relates to a stainless steel pipe having a structure having a large diameter and a small crystal grain size inside the pipe wall.
[0002]
[Prior art]
Since pipes and containers used in nuclear power generation facilities are exposed to a high-temperature pure water environment containing oxygen, there is a possibility that intergranular stress corrosion cracking may occur. Therefore, for these materials, low carbon 316L stainless steel whose C content is regulated to an extremely low level is used. These materials are materials that have a reduced C content and contain Mo, particularly for the purpose of improving resistance to intergranular stress corrosion cracking caused by Cr deficiency at the grain boundaries.
[0003]
As a method for improving the intergranular stress corrosion cracking property in a high-temperature water environment in a nuclear facility, for example, Patent Document 1 discloses a final solution in order to obtain high corrosion resistance and good mechanical properties of a solid solution strengthened Ni-based alloy. The alloy is heated to 1000 to 1100 ° C. in the heat treatment of throwing to dissolve 60% or more of the C content, and at this heating temperature, the crystal grain size is a fine grain having a grain size number (JIS G0552) of 4 or more. A heat treatment method for improving the corrosion resistance of a solid solution-strengthened Ni-base alloy is disclosed in which the temperature is adjusted to 300 ° C. and then rapidly cooled at a cooling rate of 200 ° C./sec or more.
[0004]
In addition, as a material that defines the crystal grain size of the material, Patent Document 2 includes a function of the content of each element such as C, N, Mn, Ni, Cr, Si, Mo, Cu, Al, V, and Ti. It has an austenite grain structure with a stress corrosion cracking index and a residual work induced martensite value of 0% or more and a crystal grain size of 2 μm or less, and has a tensile strength and a proof stress specified. A high strength and high yield strength austenitic stainless steel wire excellent in stress corrosion cracking and a method for producing the same are disclosed.
[0005]
Furthermore, as an example of controlling the crystal grain size on the surface of the material, Patent Document 3 discloses that a high solid content consisting of a polycrystalline structure in which the average crystal grain size of the surface portion to be in contact with the oxidant or fuel is preferably 10 to 100 μm. A molecular fuel cell separator is disclosed.
And in patent document 4, the average crystal grain size number of a steel pipe is No. as a steel pipe provided with steam oxidation resistance and high temperature strength. The coarse grain structure of 6 or less and the thickness on the inner surface side thereof is 50 to 300 μm, and the average grain size number is No. An austenitic stainless steel pipe having 7 or more fine-grained layers and having C + N of the fine-grained layer portion of 0.15% or more is disclosed.
[0006]
However, austenitic stainless steel or Ni-base alloy in which crystal grains are refined over the entire thickness direction of the material as disclosed in Patent Documents 1 and 2, and a material as disclosed in Patent Document 4 In any of the austenitic stainless steel pipes in which the crystal grains of the surface portion are refined, the occurrence of intergranular stress corrosion cracking in a high-temperature water environment cannot be sufficiently prevented. The separator material disclosed in Patent Document 3 is used in an environment where the corrosive environment is significantly different from the high-temperature water environment, and the surface portion has a relatively fine grain size of about 100 μm or less.
[0007]
As described above, there is still a problem to be improved regarding the improvement of resistance to intergranular stress corrosion cracking in a high-temperature pure water environment of a stainless steel pipe for nuclear power.
[Patent Document 1]
Japanese Patent Laid-Open No. 5-140707 (Claims and paragraphs [0007] to [0010])
[Patent Document 2]
JP-A-8-246106 (Claims and paragraph [0019])
[Patent Document 3]
JP 2001-6694 A (claims and paragraphs [0006] to [0013])
[Patent Document 4]
Japanese Examined Patent Publication No. 4-53943 (Claims and column 3, line 17 to column 6, line 27)
[0008]
As described above, in the prior art, austenitic stainless steel may cause intergranular stress corrosion cracking in a high-temperature water environment.
[0009]
Factors governing this form of stress corrosion cracking are the existence of crack initiation points and the propagation characteristics of cracks. Among the above factors, cracks are likely to be the starting point of a systematic uneven portion due to the presence of surface inclusions or a hardened layer due to surface processing. On the other hand, the propagation of cracks is accelerated by material defects existing at the grain boundaries which are propagation paths. Specifically, the material becomes sensitized by the lack of Cr at the grain boundaries, and impurities such as P and S For example, grain boundary segregation.
[0010]
The present invention has been made in view of the problems described in the section of the prior art, and by reducing the generation factor of the above-described intergranular stress corrosion cracking, particularly the stress generated in the surface layer portion that is likely to be the starting point of cracking, The objective is to obtain an austenitic stainless steel pipe for nuclear power that is highly resistant to the occurrence of intergranular stress corrosion cracking in a high-temperature pure water environment.
[0011]
[Means for Solving the Problems]
As described above, the factors governing the occurrence of intergranular stress corrosion cracking in a high-temperature water environment are the generation of crack starting points and the propagation of cracks. In order to solve the above-mentioned problems, the present inventors examined improvement of intergranular stress corrosion cracking resistance in a high-temperature pure water environment from the viewpoint of preventing the generation of the starting point of cracking based on the conventional problems. The following findings (a) to (c) were obtained.
[0012]
(A) In the cured layer near the surface formed by cutting applied to the surface of the material in the manufacturing process of the nuclear power plant, the tensile strength is higher than the inside of the material due to work hardening. When a strain amount equivalent to the inside of a low material is applied, high stress is generated in the hardened layer, and it is assumed that a crack starting point is easily formed.
(B) Therefore, by making the crystal grain size in the hardened layer near the surface of (a) coarse grains having low tensile strength in advance, the stress generated when strain is applied near the surface is reduced, and cracks are generated. The frequency can be reduced.
(C) With respect to the degree of coarsening of the crystal grain size in the hardened layer near the surface, sufficient corrosion resistance can be obtained if the average crystal grain size number defined by JISG0551 is 2 or less.
[0013]
In addition, although the knowledge shown in the above (a) to (c) will be described in more detail later, these findings are based on conventional knowledge, that is, the intergranular stress corrosion cracking resistance of stainless steel is the crystal grain size. The smaller one is superior, because the smaller the crystal grain size, the less the stress concentration at the grain boundary, and the new knowledge that is completely different from the knowledge that has been attributed to the low degree of segregation of impurities. .
The present invention has been completed based on the above-mentioned new findings, and the gist thereof is an austenitic stainless steel pipe for nuclear power shown in the following (1) to (4).
[0014]
(1) By mass%, Cr: 15-30%, Ni: 8-30%, C: 0.001-0.1%, Si: 0.1-1.0%, Mn: 0.1-2 0.0%, P: 0.05% or less, S: 0.05% or less, and N: 0.001 to 0.15%, with the balance being Fe and impurities, and in contact with the corrosive fluid characterized by having at least a surface layer portion average crystal grain size number of up to 0.2mm is 2 or less in JIS G0551, at least more than 1mm inside the average crystal grain size number is the 7 or more tissue from the surface in contact with corrosive fluids An austenitic stainless steel pipe for nuclear use with excellent intergranular stress corrosion cracking resistance in a high-temperature pure water environment .
[0015]
(2) The nuclear austenitic stainless steel pipe according to (1) may further contain Mo: 0.05 to 3.0% by mass.
[0016]
(3) In the austenitic stainless steel pipe for nuclear power described in the above (1) or (2), V: 0.001 to 1.0%, Nb: 0.001 to 1.0%, One or more of Ti: 0.001 to 1.0% and Zr: 0.001 to 1.0% may be contained.
[0017]
(4) The nuclear austenitic stainless steel pipe according to any one of (1) to (3) may further contain Ca: 0.0003 to 0.010% by mass.
[0018]
The “surface in contact with the corrosive fluid” means the surface of the steel pipe that comes into contact with a fluid such as high-temperature pure water that corrodes the stainless steel. In the present invention, either one or both of the inner surface and the outer surface of the steel pipe may be used.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the average crystal grain size number of the surface layer portion from the surface in contact with the corrosive fluid to at least 0.2 mm is 2 or less in JIS G0551, and the average crystal grain size number in the interior of at least 1 mm or more from the surface in contact with the corrosive fluid Is an austenitic stainless steel pipe having a structure of 7 or more, and will be described in more detail below.
[0020]
As described above, conventionally, the intergranular stress corrosion cracking resistance of stainless steel is considered to be superior when the crystal grain size is smaller. The reason for this is that, in the case of a material having a smaller crystal grain size, the boundary area of the crystal grain boundary is larger, so there is less stress concentration, and the degree of segregation of solute elements such as impurities such as P and S is also low. It is said to be smaller.
[0021]
Intergranular stress corrosion cracking in a high-temperature water environment generates cracks starting from inclusions in the material surface layer and processed layers in the surface layer, which propagate through the grain boundaries. About the inclusion of a surface layer part, the quantity of sulfide and an oxide can be reduced by restricting S content and O (oxygen) content in steel. On the other hand, in the vicinity of the surface of the material, cutting or polishing is performed by a grinder or the like for surface finishing after welding in the manufacturing stage of the nuclear power plant, so that a hardened layer is formed in the surface layer portion by these processes. .
[0022]
FIG. 1 is a diagram schematically showing the influence of the size of crystal grains on the stress-strain curve of a material. In the figure, the curve indicated by A indicates the relationship when the crystal grain size is large, and the curve indicated by B indicates the relationship when the crystal grain size is small.
[0023]
From the relationship in the figure, when an equivalent strain (ε a in the figure) is applied to a material having a large crystal grain size and a material having a small crystal grain size, it occurs in a material having a low crystal strength and a large crystal grain size. The stress (σ 2 in the figure) is presumed to be smaller than the stress (σ 1 in the figure) generated in a material having a high tensile strength and a small crystal grain size.
[0024]
In consideration of the magnitude relationship between the generated stresses indicated by the curves A and B above, the surface layer portion of the material is roughened in advance by hardening the hardened layer of the material surface layer portion, that is, the material having a high tensile strength. As shown by the curve indicated by B in 1, the material can be improved to a material having a low generated stress.
[0025]
Therefore, after the grain of the surface layer portion of the material subjected to sensitizing heat treatment is coarsened by heat treatment, the material surface is polished with a grinder to produce a double U-bending test piece, which has a dissolved oxygen concentration of 250 ° C. A grain boundary stress corrosion cracking test was conducted by immersion in 30 ppm high-temperature pure water, and the intergranular stress corrosion cracking resistance was evaluated based on the maximum crack depth. As test steels, C: 0.02%, Si: 0.5%, Mn: 1.5%, P: 0.03%, S: 0.001%, Cr: 17.5%, An austenitic stainless steel having chemical components of Ni: 12.3%, N: 0.02%, Nb: 0.03% is used, and other test conditions are the same as those described in the examples below. did.
[0026]
FIG. 2 is a diagram showing the results of a stress corrosion cracking test in high temperature water. From the results shown in the figure, the inner part of the material and the surface layer part have a smaller grain size No. 7 than the case 1 in which the average grain size No. 7 has a smaller grain size. In case 2 in which the grain size is coarsened to give grain size number 3, even after surface strain is applied and work hardened, the maximum crack depth due to stress corrosion cracking may be reduced, and the frequency of cracking may be reduced. found.
[0027]
Further, as in case 3, if the average grain size number inside the material is kept at 7 and the grains in the surface layer of the material are coarsened until the average grain size number is 2 or less, sufficient resistance can be obtained. It became clear that the stress corrosion cracking property was obtained.
The reasons for limiting the grain size and the component composition range of steel defined in the present invention and the preferred ranges will be described below.
[0028]
1) Surface grain part and internal crystal grain size of tube meat As described above, in the present invention, the average grain size number of the surface layer part from the surface in contact with the corrosive fluid to at least 0.2 mm is set to 2 or less in JIS G0551. If the thickness of the surface layer portion is less than 0.2 mm, even if the crystal grains of the surface layer portion become coarse, the effect of reducing the occurrence of intergranular stress corrosion cracking due to the reduction of the generated stress cannot be obtained, and the average grain size number is 2. This is because the effect of improving the intergranular stress corrosion cracking resistance cannot be obtained even in a larger range.
[0029]
On the other hand, in the present invention, the average grain size number in the interior of at least 1 mm or more from the surface in contact with the corrosive fluid is 7 or more. If the average grain size number is less than 7 at least 1 mm from the surface in contact with the corrosive fluid, the stress concentration at the grain boundary is large and the concentration of the grain boundary segregating element is also high, thereby preventing the propagation of cracks. The effect cannot be obtained, and the intergranular corrosion resistance is lowered. It is preferable that the average grain size number of at least 1 mm or more from the surface in contact with the corrosive fluid is 8 or more because stress corrosion cracking resistance is further improved.
As described above, in order to obtain a steel pipe whose crystal grain size is changed in the thickness direction, a steel pipe having a grain size number of 7 or more is manufactured over the entire thickness direction of the steel pipe by heat treatment or the like. It is preferable to heat-treat only the surface layer portion of the surface in contact with the fluid at a temperature equal to or higher than the recrystallization temperature of the material, such as 1000 ° C. or higher. As a method of heating only the surface layer portion, a method of heating the surface layer portion of the surface in contact with the corrosive fluid while cooling the surface opposite to the surface in contact with the corrosive fluid may be used.
[0030]
Further, for example, after the inner surface layer portion of the steel pipe is heated to roughen the grains of the inner surface layer portion, the outer surface layer portion is similarly heated to roughen the outer surface layer crystal grains. If applied, it is possible to coarsen the crystal grains of only the surface layer portions of both the inner surface and the outer surface.
2) Chemical composition C of stainless steel: 0.001 to 0.1%:
C is an element necessary for ensuring the strength and proof stress of stainless steel. If the C content is less than 0.001%, the effect cannot be obtained. On the other hand, if the content exceeds 0.1%, carbides are formed at the grain boundaries, and the intergranular stress corrosion cracking resistance is impaired. Therefore, the range of the C content is set to 0.001 to 0.1%.
[0031]
Si: 0.1 to 1.0%:
Si is an element necessary as a deoxidizing agent in the refining process, and in order to obtain a deoxidizing effect, it is necessary to contain 0.1% or more. However, if the content exceeds 1.0%, the toughness decreases, so the content was made 1.0% or less to ensure toughness.
[0032]
Mn: 0.1 to 2.0%:
Mn is an element effective for deoxidation, and the effect is obtained when the content is 0.1% or more. On the other hand, if the content exceeds 2.0%, the corrosion resistance deteriorates, so the content was made 2.0% or less.
[0033]
P: 0.05% or less:
P is an impurity element in steel, and the smaller the content, the better. If the content exceeds 0.05%, P segregates at the grain boundaries and deteriorates the intergranular stress corrosion cracking resistance, so the upper limit of the content was set to 0.05%.
[0034]
S: 0.05% or less:
S is an impurity element in the steel, and segregates at the grain boundaries to deteriorate the intergranular stress corrosion cracking resistance and lowers the hot workability, so the upper limit of the content is 0.05%. did.
Cr: 15-30%:
Cr is an indispensable element for improving the corrosion resistance, and a sufficient effect is obtained when the content is 15% or more. However, if the content exceeds 30%, the hot workability is deteriorated, so the content is set to 30% or less.
[0035]
Ni: 8-30%:
Ni is an effective element for improving the corrosion resistance and for forming an austenite phase, and these effects can be obtained when the Ni content is 8% or more. On the other hand, if the content exceeds 30%, the above effect is saturated, and Ni is an expensive element, so the economy is impaired. Therefore, the upper limit of the Ni content is set to 30%.
[0036]
Mo: 0.05-3.0%:
Mo is an element having an action of improving the corrosion resistance of stainless steel, and may or may not be contained. When improvement of corrosion resistance by containing Mo is required, the effect can be obtained by adding 0.05% or more. On the other hand, when it is contained in a large amount exceeding 3.0%, an intermetallic compound is precipitated at the grain boundary, and the intergranular stress corrosion cracking resistance is deteriorated. Therefore, the range of the content when Mo is contained is set to 0.05 to 3.0%.
[0037]
N: 0.001 to 0.15%:
N is an element necessary for ensuring the strength of the steel, and the effect is obtained when the content is 0.001% or more. However, if the content exceeds 0.15% and weldability deteriorates, the upper limit of the N content is set to 0.15%.
[0038]
V, Nb, Ti and Zr: 0.001 to 1.0% each of one type or two or more types:
V, Nb, Ti, and Zr are elements having an effect of refining crystal grains, and may or may not be contained. In the case where finer crystal grains are particularly required, the effect can be obtained by adding one or more of these elements in an amount of 0.001% or more. On the other hand, even if each element is contained in a large amount exceeding 1.0%, the effect is saturated. Therefore, the content ranges when these elements are contained are 0.001 to 1.0%, respectively.
[0039]
Ca: 0.0003 to 0.010%:
Ca is an element having an effect of improving hot workability and may or may not be contained. When improvement in hot workability is required, the effect can be obtained by adding 0.0003% or more. On the other hand, the effect is saturated even if it exceeds 0.010%. Therefore, the content range when Ca is contained is set to 0.0003 to 0.010%.
[0040]
【Example】
In order to confirm the effect of the present invention, for the stainless steel materials having various chemical components, the surface layer portion of the material and the crystal grain size inside the thickness direction were adjusted, the stress corrosion cracking test was performed, and the results were evaluated.
[0041]
[Production of test materials]
18 types of stainless steels having the chemical components shown in Table 1 were melted, ingots were cast using these steels, heated to 1200 ° C., and then subjected to hot forging and hot rolling to form a plate having a thickness of 5 mm. Got.
[0042]
[Table 1]
Figure 0004062190
[0043]
After heating this plate material to 920-950 degreeC, the quenching process by water cooling was performed and the plate material which has the fine grain structure | tissue whose crystal grain size number is 7 or 8 substantially uniformly to the inside of a plate material was obtained. Further, while heat-cooling one surface layer portion of the plate material, heat treatment was performed to heat the other surface layer portion to 1000 ° C. above the recrystallization temperature, thereby coarsening the crystal grains of the surface layer portion. And the same heat processing was performed again, and the crystal grain size number of the crystal grain of the surface layer part was made into 2 or less about both surfaces of a board | plate material. In addition, about the one part board | plate material, the heating temperature of the surface layer part was made low as 800 degreeC, and the same heat processing was performed.
[0044]
The plate material is subjected to a sensitizing heat treatment held at 650 ° C. for 30 hours in an Ar gas atmosphere to generate a Cr-deficient phase at the grain boundary, and after polishing the surface with a grinder, the following double U bending test is performed. A test specimen for use was cut out.
[0045]
[Stress corrosion cracking test in high-temperature pure water]
Two test pieces each having a width of 10 mm, a length of 75 mm, and a thickness of 2 mm were overlapped, and U-shaped bending was performed so that the inner side became 7.5R and the outer side became 9.5R, thereby obtaining a double U-bending test piece. .
[0046]
This test piece was immersed in high-temperature pure water with a dissolved oxygen concentration of 30 ppm at 250 ° C. for 1000 hours, and then taken out, and the crack depth in the plate thickness direction was measured by micro observation using an optical microscope. Stress corrosion cracking resistance was evaluated.
In addition, the case where the maximum crack depth was less than 100 micrometers was made favorable, and the case beyond it was made defective.
[0047]
〔Test results〕
Table 1 shows the heat treatment conditions, crystal grain size, and maximum crack depth after the corrosion test. Here, the crystal grain size number of the surface layer part in the same table is the average crystal grain size number of the surface layer part from the surface of the plate material to 0.2 mm is displayed by the method prescribed in JIS G0551, and the internal crystal grain size The number indicates the grain size number in the thickness direction of 1 mm or more from the surface of the plate by the same method.
[0048]
Test numbers 1 to 11 are tests on the present invention examples using test steel numbers 1 to 11 which are steels of the present invention, and test numbers 12 to 18 are test steel numbers of 12 to 12 which are comparative steels. 18 is a test for a comparative example using 18.
[0049]
Test Nos. 1 to 11 have a coarse grain structure with an average grain size number of 2 in the surface layer portion from the surface of the test steel to 0.2 mm, and an average grain size number of 7 in the interior of 1 mm or more from the surface. Or it was a test on the steel of the present invention having a fine grain structure of 8, and the maximum crack depth showed good stress corrosion cracking properties of less than 100 μm.
In particular, test number 2 using test steel number 2 containing Mo, test number 1 using test steel number 1 containing Mo and V, test steel number 3 containing Mo, V, and Nb. Test number 3 used and test number 4 using test steel number 4 containing Mo and Ti showed better stress corrosion cracking resistance.
[0050]
In addition, even in test numbers 6 to 9 using test steel numbers 6 to 9 containing any of V, Nb, Ti, or Zr, similarly, better stress corrosion cracking resistance was exhibited.
Furthermore, in test number 10 using test steel number 10 containing Ca and test number 5 using test steel number 5 containing Mo, V, Nb, Ti, Zr and Ca, separately, at a high temperature It was confirmed that the hot workability was good by the tensile test (Gleeble test).
[0051]
On the other hand, in the test number 12 using the test steel number 12 in which the P content is as high as 0.07% and the internal crystal grain size number is 6 and the crystal grain size is large, the crystal grains in the surface layer portion Despite being sufficiently coarse, the stress corrosion cracking resistance is poor.
[0052]
Also in test number 13 using test steel number 13 having a high N content of 0.19%, an internal crystal grain number of 6 and a large grain size, the stress corrosion cracking resistance was poor.
[0053]
In test steel No. 14 in which the Cr content is as low as 13.2% and the heating temperature of the surface layer portion is set to 800 ° C. and is lower than the recrystallization temperature, the crystal grain size number of the surface layer portion is 3, and coarsening is not caused. Since it was insufficient, Test No. 14 using this resulted in inferior stress corrosion cracking resistance.
[0054]
In the test steel No. 15 in which the heating temperature of the surface layer was set to 800 ° C. and lower than the recrystallization temperature, the grain size number of the surface layer was 4, and the coarsening was further insufficient, and the internal grain size number Is 6 and the particle size is large, and in test number 15 using this, the stress corrosion cracking resistance was further inferior.
[0055]
In the test number 16 using the inner steel grain size number 6 and the test steel number 16 having a large inner crystal grain size, although the crystal grains in the surface layer portion are sufficiently coarse, the stress resistance Corrosion cracking was poor.
[0056]
In the test steel number 17 in which the heating temperature of the surface layer portion was lowered to 800 ° C., the crystal grain size number of the surface layer portion was 4, and like the test steel number 15, the coarsening was insufficient. In the test number 17 used, the stress corrosion cracking resistance was inferior.
[0057]
In the test number 18 using the test steel number 18 having an internal crystal grain size number 5 and having a large internal crystal grain size, although the crystal grains in the surface layer portion are sufficiently coarse, the stress resistance Corrosion cracking was poor.
[0058]
【The invention's effect】
Since the austenitic stainless steel pipe of the present invention is composed of a metal structure having a coarse crystal in the tube surface layer portion that comes into contact with the corrosive fluid and a fine crystal crystal inside, it is generated at the surface layer portion that is particularly prone to crack initiation. Stress is reduced and has excellent intergranular stress corrosion cracking properties in high temperature pure water environment. Therefore, the stainless steel pipe of the present invention is suitable as a steel pipe for a nuclear power plant such as a light water reactor, and greatly contributes to the development of this technical field.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the influence of crystal grain size on a stress-strain curve of a material.
FIG. 2 is a diagram showing a stress corrosion cracking test result in high-temperature pure water.

Claims (4)

質量%で、Cr:15〜30%、Ni:8〜30%、C:0.001〜0.1%、Si:0.1〜1.0%、Mn:0.1〜2.0%、P:0.05%以下、S:0.05%以下およびN:0.001〜0.15%を含有し、残部がFeおよび不純物からなり、かつ腐食性流体と接する面から少なくとも0.2mmまでの表層部の平均結晶粒度番号がJIS G0551で2以下であり、腐食性流体と接する面から少なくとも1mm以上の内部の平均結晶粒度番号が同7以上の組織を有することを特徴とする高温純水環境における耐粒界応力腐食割れ特性に優れた原子力用オーステナイト系ステンレス鋼管。In mass%, Cr: 15-30%, Ni: 8-30%, C: 0.001-0.1%, Si: 0.1-1.0%, Mn: 0.1-2.0% , P: 0.05% or less, S: 0.05% or less, and N: 0.001 to 0.15%, the balance being Fe and impurities, and at least 0. average crystal grain size number of the surface layer portion up to 2mm is 2 or less in JIS G0551, high temperatures average crystal grain size number of at least inside 1mm or more from the surface in contact with corrosive fluid and having a same 7 or more tissues Austenitic stainless steel pipe for nuclear use with excellent intergranular stress corrosion cracking resistance in pure water environment . さらに、質量%で、Mo:0.05〜3.0%を含有することを特徴とする請求項1に記載の原子力用オーステナイト系ステンレス鋼管。The austenitic stainless steel pipe for nuclear power according to claim 1, further comprising Mo: 0.05 to 3.0% by mass. さらに、質量%で、V:0.001〜1.0%、Nb:0.001〜1.0%、Ti:0.001〜1.0%およびZr:0.001〜1.0%のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の原子力用オーステナイト系ステンレス鋼管。Further, in terms of mass%, V: 0.001 to 1.0%, Nb: 0.001 to 1.0%, Ti: 0.001 to 1.0%, and Zr: 0.001 to 1.0%. The austenitic stainless steel pipe for nuclear power according to claim 1 or 2, wherein one or more of them are contained. さらに、質量%で、Ca:0.0003〜0.010%を含有することを特徴とする請求項1〜3のいずれかに記載の原子力用オーステナイト系ステンレス鋼管。The austenitic stainless steel pipe for nuclear power according to any one of claims 1 to 3, further comprising Ca: 0.0003 to 0.010% by mass.
JP2003187694A 2003-06-30 2003-06-30 Austenitic stainless steel pipe for nuclear power Expired - Fee Related JP4062190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003187694A JP4062190B2 (en) 2003-06-30 2003-06-30 Austenitic stainless steel pipe for nuclear power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003187694A JP4062190B2 (en) 2003-06-30 2003-06-30 Austenitic stainless steel pipe for nuclear power

Publications (2)

Publication Number Publication Date
JP2005023343A JP2005023343A (en) 2005-01-27
JP4062190B2 true JP4062190B2 (en) 2008-03-19

Family

ID=34186463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003187694A Expired - Fee Related JP4062190B2 (en) 2003-06-30 2003-06-30 Austenitic stainless steel pipe for nuclear power

Country Status (1)

Country Link
JP (1) JP4062190B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503483B2 (en) * 2005-04-14 2010-07-14 日立Geニュークリア・エナジー株式会社 Material to be welded, welded structure using the same and high corrosion resistance austenitic stainless steel
US8865060B2 (en) 2007-10-04 2014-10-21 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
EP2199420B1 (en) * 2007-10-04 2013-05-22 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
US20150010425A1 (en) 2007-10-04 2015-01-08 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel
JP5163196B2 (en) * 2008-03-14 2013-03-13 新日鐵住金株式会社 Austenitic stainless steel pipe for high frequency bending and bending method using the steel pipe
JP2010174308A (en) * 2009-01-28 2010-08-12 Toshiba Corp Corrosion-resistant austenitic stainless steel and manufacturing method therefor
WO2010110003A1 (en) * 2009-03-27 2010-09-30 住友金属工業株式会社 Austenitic stainless steel
JP4530112B1 (en) * 2009-03-27 2010-08-25 住友金属工業株式会社 Austenitic stainless steel
JP5819651B2 (en) * 2010-07-21 2015-11-24 日本特殊陶業株式会社 Glow plug
CA2839876C (en) * 2011-06-24 2016-04-12 Nippon Steel & Sumitomo Metal Corporation Austenitic stainless steel and method for producing austenitic stainless steel material
JP6089657B2 (en) * 2012-12-07 2017-03-08 愛知製鋼株式会社 Austenitic stainless steel for high pressure hydrogen having excellent sensitivity to hydrogen embrittlement at low temperature and method for producing the same
KR20170056047A (en) * 2015-11-12 2017-05-23 주식회사 포스코 Austenitic stainless steel having exceelent orange peel resistance and method of manufacturing the same
KR102113824B1 (en) * 2018-11-06 2020-05-22 주식회사 세아창원특수강 Heat resistance austenitic stainless steel with high temperature fatigue life

Also Published As

Publication number Publication date
JP2005023343A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
JP4031992B2 (en) High manganese duplex stainless steel with excellent hot workability and method for producing the same
JP3632672B2 (en) Austenitic stainless steel pipe excellent in steam oxidation resistance and manufacturing method thereof
KR101256268B1 (en) Austenitic stainless steel
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
WO2011111871A1 (en) Highly oxidation-resistant ferrite stainless steel plate, highly heat-resistant ferrite stainless steel plate, and manufacturing method therefor
JP5658893B2 (en) Ferritic stainless steel sheet with excellent heat resistance and method for producing the same
KR20070103081A (en) Ferritic heat-resistant steel
JP6920420B2 (en) Austenitic stainless steel sheet and its manufacturing method
JPWO2012005330A1 (en) Ni-added steel sheet and manufacturing method thereof
JP4062190B2 (en) Austenitic stainless steel pipe for nuclear power
WO2018104984A1 (en) HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
WO2019131954A1 (en) Austenite-based heat-resistant alloy
WO2010110003A1 (en) Austenitic stainless steel
JPWO2018003823A1 (en) Austenitic stainless steel
KR20210010566A (en) Clad steel sheet and its manufacturing method
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JP2020105572A (en) Austenitic heat resistant steel
JP2007254806A (en) Turbine casing
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JP2017205800A (en) Ni-BASED ALLOY FOR WELDING, AND FILLER MATERIAL FOR BOILING WATER REACTOR
JPWO2010038470A1 (en) Steel plate with excellent low temperature toughness and low strength anisotropy of base metal and weld heat affected zone, and method for producing the same
JP5782753B2 (en) Manufacturing method of high Cr high Ni alloy tube and high Cr high Ni alloy
JP6347408B2 (en) High strength Ni-base alloy
JP2021075758A (en) Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE
JP2017020054A (en) Stainless steel and stainless steel tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees