JP4059495B2 - Heater wire - Google Patents

Heater wire Download PDF

Info

Publication number
JP4059495B2
JP4059495B2 JP2003104016A JP2003104016A JP4059495B2 JP 4059495 B2 JP4059495 B2 JP 4059495B2 JP 2003104016 A JP2003104016 A JP 2003104016A JP 2003104016 A JP2003104016 A JP 2003104016A JP 4059495 B2 JP4059495 B2 JP 4059495B2
Authority
JP
Japan
Prior art keywords
insulating layer
heating coil
winding
melting temperature
heater wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003104016A
Other languages
Japanese (ja)
Other versions
JP2004311238A5 (en
JP2004311238A (en
Inventor
秀司 黒金
Original Assignee
荏原電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原電線株式会社 filed Critical 荏原電線株式会社
Priority to JP2003104016A priority Critical patent/JP4059495B2/en
Publication of JP2004311238A publication Critical patent/JP2004311238A/en
Publication of JP2004311238A5 publication Critical patent/JP2004311238A5/ja
Application granted granted Critical
Publication of JP4059495B2 publication Critical patent/JP4059495B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、磁界洩れを防止でき、異常発熱時には電流を直ちに遮断し危険を防止することのできる暖房器用ヒーター線に関する。
【0002】
【従来の技術】
ホットカーペット、電気毛布などの多暖房器用ヒーター線からの発生磁界の洩れを低減させること、異常発熱時の検知と通電停止については従来より知られている。例えば、特許第3229618号公報には、2層にした発熱巻線より発生する磁界が互いに打ち消すヒーター線において、断線による温度の異常上昇時には隔離層が融解して発熱線から検知線に電気が流れて通電が遮断される技術が開示されている。しかしながら、この技術は、2層の発熱巻線の間の絶縁層は、ポリイミド樹脂を使用しているため電気毛布などの細い柔軟なヒーター線の製造は困難である。
また、特許第3312331号公報には、2層の発熱巻線の間の絶縁樹脂の融点の方が、発熱線と検知線との間の絶縁樹脂の融点より高いものを使用する。しかしながら、この方法では、異常発熱時に内部発熱巻線と外部発熱巻線と信号線がほぼ同時に短絡し、それを回避するには融点の差がかなり大きい別々の絶縁樹脂を使用しなければならない欠点がある。
【特許文献1】
特許第3229618号公報
【特許文献2】
特許第3312331号公報
【0003】
【発明が解決しようとする課題】
本発明は、磁界の洩れが実質的には全く発生せず、発熱巻線同士の短絡を確実に防止でき、ヒーター線の異常発熱時には直ちに通電を停止できる安全な暖房器具のヒーター線を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者は、従来技術の欠点を、鋭意研究の結果、2本の発熱巻線の間の絶縁層に溶融温度の高い補強層を設けることによって解決し得ることを見出し本発明を完成するに至った。
すなわち本発明は、
(1)中芯の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に内側絶縁層を設け、当該内側絶縁層の外側に補強層を設け、当該補強層の外周にスパイラル状の外部発熱巻線を巻き、当該外部発熱巻線の外側に外側絶縁層を設け、当該外側絶縁層の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いこと特徴とするヒーター線、
(2)中芯の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に内側絶縁層を設け、当該内側絶縁層の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に外側絶縁層を設け、当該外側絶縁層の外側に補強層を設け、当該補強層の外周に外部発熱巻線を巻き、当該外部発熱巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いことを特徴とするヒーター線、及び
(3)中芯の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に内側絶縁層を設け、当該内側絶縁層の外側に補強層を設け、当該補強層の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に外側絶縁層を設け、当該外側絶縁層の外周にスパイラル状の外部発熱巻線を巻き、当該外部発熱巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いことを特徴とするヒーター線、
を提供するものである。
【0005】
【発明の実施の形態】
本発明ヒーター線は、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線の巻き方向を設定し接続することによって、磁界の洩れが実質的には全く発生せず、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高い補強層を内側絶縁層の外側に設けることにより発熱巻線同士の短絡を確実に防止でき、ヒーター線の異常発熱時には直ちに信号巻線が検知し、通電を停止できる安全な暖房器具用のヒーター線である。側絶縁内層と外側絶縁層は同質のものを使用することができる。
【0006】
以下に、図面によって本発明をさらに詳細に説明する。
図1、図2、図3及び図4に示すように、本発明ヒーター線Hに用いる中芯1は、断面が同心円状に積層された本発明ヒーター線Hの中心部に設けられた基軸を形成するものであって、柔軟性を有し、積層基軸としての強度を有し、常時使用時に融解しないものであれば、通常積層ヒーター線基軸に使用されるものを特に制限することなく使用することができる。例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、ポリスチレンなどのポリオレフィン類、ポリエチレンテレフタレート、ポリカーボネートなどのポリエステル類、ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミド類などの合成樹脂製のものを使用することができる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、などの熱可塑性合成樹脂製のものを好適に使用することができる。
本発明ヒーター線Hに用いる中芯1の直径は、ヒーター線のサイズに応じて適宜選択することができる。通常中芯1の直径は、0.2〜1mmのものを使用することができる。
本発明に用いる内部発熱巻線2は、本発明ヒーター線Hに用いる2層の発熱巻線のうち、中芯1から近い位置にスパイラル状に巻いた発熱巻線であって、通電時には、内部を流れる電流に対する固有抵抗によって発熱することができる。柔軟性を有し、繰り返し折り曲げに対して耐えられる強度を有し、所定の固有抵抗を有する導線であれば、通常の積層ヒーター線に使用されるものを特に制限することなく使用することができる。例えば、銅線、銅合金などを使用することができる。銅合金平角線を好適に使用することができる。本発明に用いる内部発熱巻線2の直径及び長さは、使用する暖房用具用ヒーター線仕様に応じて適宜選択することができる。
本発明に用いる内部発熱巻線2の線軸方向単位長さ当たりの抵抗値は、本発明に用いる外部発熱線5の線軸方向単位長さ当たりの抵抗値より高い。また、本発明に用いる内部発熱巻線2のスパイラル状の巻きピッチは、本発明に用いる外部発熱線5のスパイラル状の巻きピッチより密であるものを使用することができる。
電源接続部側端部から見て、内部発熱巻線2と外部発熱巻線5の中芯1に対する円周方向の電流の流れが逆向きになるように内部発熱巻線2と外部発熱巻線5の巻き方向を設定してスパイラル状に巻くことができる。
【0007】
本発明に用いる内側絶縁層3は、中芯1から最も近い位置に設けられた絶縁層であって、図2及び図4に示すように、内部発熱巻線2が中芯1から最も近い位置に設けられた場合には、内部発熱巻線2の外側に設けられ、図3に示すように、信号巻線が中芯1から最も近い位置に設けられた場合には、信号巻線の外側に設けることができる。内側絶縁層の溶融温度と外側絶縁層の溶融温度との差が10℃以内であるものを使用することができる。
本発明に用いる内側絶縁層3は、柔軟性を有し、繰り返し折り曲げに対して耐えられる強度を有し、常時使用時に融解しないものであれば、通常の積層ヒーター線絶縁層に使用されるものを特に制限することなく使用することができる。例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、ポリブチレンなどのポリオレフィン類、ナイロン6、ナイロン66、ナイロン11、ナイロン12などのポリアミド類などの合成樹脂製のものを使用することができる。ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、ナイロンなどの熱可塑性合成樹脂製のものを好適に使用することができる。ナイロン12製のものを特に好適に使用することができる。
本発明に用いる内側絶縁層3の直径及び厚さは、内部発熱巻線2の外側の直径及び使用する暖房用具用ヒーター線仕様に応じて適宜選択することができる。通常内側絶縁層3の厚さは、0.1〜0.5mmのものを使用することができる。
本発明に用いる補強層4は、内部発熱巻線2の外側に設けた絶縁層の外周に設ける絶縁層であって、内部発熱巻線2と外部発熱巻線5との間の短絡を防止することができる。この目的を達成するために、本発明に用いる補強層4の溶融温度は、内側絶縁層3及び外側絶縁層6の溶融温度より30℃以上高いものを使用することができる。これにより、本発明ヒーター線の異常発熱時には、本発明に用いる補強層4が溶融するより早く、補強層4によって仕切られている内部発熱巻線2と外部発熱巻線5同士が短絡することなく、信号巻線7と内部発熱巻線2または信号巻線7と外部発熱巻線5との間の絶縁層が溶融して信号巻線7と短絡し、本発明ヒーター線の通電を遮断することができる。
【0008】
本発明に用いる補強層4は、柔軟性を有し、繰り返し折り曲げに対して耐えられる強度を有し、補強層4の溶融温度が内側絶縁層3及び外側絶縁層6の溶融温度より30℃以上高く、本発明の目的を達成ものであれば、特に制限することなく、公知の絶縁材を使用することができる。例えば、内側絶縁層3及び外側絶縁層6が共に溶融温度が180℃程度のポリアミド系樹脂であるときには、溶融温度が210℃以上のポリエステル系樹脂などを好適に使用することができる。
本発明に用いる補強層4は、前記要件を満足し、内部発熱巻線2と外部発熱巻線5との間の短絡を防止できるものであれば、形状、又は、厚さは特に制限することなく選択することができる。円筒状であってもよく、テープ状であってもよい。本発明ヒーター線製造の容易さのために、ポリエチレンテレフタレート樹脂テープをスパイラル状に重ね巻きしたものを特に好適に使用することができる。
本発明に用いる補強層4のテープの厚さ及び幅は、内部発熱巻線2の仕様に応じて適宜選択することができる。通常のテープの厚さは、0.03〜0.3mm、好ましくは、0.05〜0.2mmのものを使用することができる。テープの幅は、3〜30mm、好ましくは、3〜20mmのものを使用することができる。
本発明に用いる補強層4テープを重ね巻きする重ね幅は、テープ幅の1/5〜1/2が好適である。
本発明に用いる補強層4は、表面絶縁層8に軟質ポリ塩化ビニルを使用する場合には、図3に示すように、外側絶縁層6の外側に軟質ポリ塩化ビニルに含まれる可塑剤の浸透を防止できる材質のものを使用することにより、内側絶縁層3及び外側絶縁層6への可塑剤の浸透を防止でき、内側絶縁層3及び外側絶縁層6でのインピーダンス変化、絶縁劣化などを防止でき、この結果本発明ヒーター線の温度制御が不良になるのを防止することができる。可塑剤の浸透を防止する補強層4は、ポリエチレンテレフタレート樹脂テープをスパイラル状に巻いたものを特に好適に使用することができる。
本発明に用いる外部発熱線5は、本発明ヒーター線Hに用いる2層の発熱巻線のうち、内部発熱巻線2より中芯1から遠い位置にスパイラル状に巻いた発熱巻線であって、前記内部発熱巻線2と同じ仕様のものを使用することができる。また、本発明に用いる外部発熱線5の線軸方向単位長さ当たりの抵抗値は、本発明に用いる内部発熱巻線2の線軸方向単位長さ当たりの抵抗値より高いものを使用することができる。また、本発明に用いる外部発熱線5のスパイラル状の巻きピッチは、本発明に用いる内部発熱巻線2のスパイラル状の巻きピッチより粗であるものを使用することができる。
本発明に用いる外部発熱巻線5は、内部発熱巻線2の一方の端部と、接続されてなり、内部発熱巻線2と外部発熱巻線5の中芯1に対する円周方向の電流の流れが逆向きになるように外部発熱巻線5の巻き方向を設定してスパイラル状に巻くことができる。
本発明に用いる外側絶縁層6は、中芯1から内側絶縁層3より遠い位置に設けられた絶縁層であって、図2に示すように、内部発熱巻線2が中芯1から最も近い位置に設けられた場合には、外部発熱巻線5の外側に設けられ、図3に示すように、信号巻線7が中芯1から最も近い位置に設けられた場合には、内部発熱巻線2の外側に設けられ、図4に示すように、信号巻線7が補強層4の外側に設けられた場合には、信号巻線7の外側に設けることができる。本発明に用いる外側絶縁層6は、その溶融温度と内側絶縁層3の溶融温度との差が10℃以内のものであれば、内側絶縁層3用のものを特に制限なく使用することができる。
【0009】
本発明に用いる信号巻線7は、繰り返し屈曲などにより発熱巻線が損傷し、異常発熱を起したとき信号巻線7と隣接する絶縁層が溶融して、信号巻線7に電流が流れるのを検知し、本発明ヒーター線の通電を遮断するためのものであって、通常暖房用ヒーター線に用いる検知用導線を特に制限することなく使用することができる。
本発明に用いる表面絶縁層8は、本発明ヒーター線の最外部を覆う絶縁層であって、柔軟性を有し本発明ヒーター線を保護することのできるものであれば、公知の絶縁材料を特に制限することなく使用することができる。例えば、ポリエチレン、ポリプロピレン、エチレンプロピレンコポリマー、ポリブチレンなどのポリオレフィン類、ナイロン6、ナイロン66などのポリアミド類、軟質ポリ塩化ビニルなどの合成樹脂製のものを使用することができる。ポリエチレン、エチレンプロピレンコポリマー、軟質ポリ塩化ビニルなどを好適に使用することができる。
本発明に用いる内部発熱巻線と外部発熱巻線の電流の流れは、中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線の巻き方向を設定することができる。スパイラル状に巻いた内部発熱巻線から発生する磁界と外部発熱巻線から発生する磁界が互いに打ち消すように内部発熱巻線と外部発熱巻線との端部を接続することができる。
本発明に用いる溶融温度は、高分子材料を加熱し温度が上昇して行くと比容積(cm3/g)が次第に増大し、該高分子材料特有の温度に達すると融解し、比容積が急上昇し、その後再び一定の熱膨張係数を持つ直線状態で比容積が増加する現象に着目し、前記の高分子材料が融解を開始し、再び一定の熱膨張係数を持つに至る特有の温度(融点)を本発明に用いる溶融温度とすることができる。この測定方法による融点は、例えば、ポリエチレンの融点は141℃、ポリプロピレンの融点は176℃、ナイロン6の融点は223℃、ポリエチレンテレフタレートの融点は265℃と表示されている(高分子学会編:プラスチック加工技術ハンドブック178〜180ページ)。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図2に示す本発明ヒーター線を作製した。ヒーター線Hに用いる中芯1は、直径が0.50mmのポリエチレンテレフタレート樹脂線状物を使用した。内部発熱巻線2は、断面寸法0.044×0.4mmの銅合金平角線を使用し、線軸方向単位長さ当たりの抵抗値3.0オームのものをスパイラル状に巻いて使用した。内側絶縁層3は、ナイロン12樹脂による厚さが0.25mmのものを使用した。補強層4は、厚さが0.025mm、幅が6.0mmの、ポリエチレンテレフタレート樹脂テープをスパイラル状に、重ね幅をテープ幅の1/3で重ね巻きして使用した。外部発熱巻線5は、断面寸法0.044×0.4mmの銅合金平角線を使用し、線軸方向単位長さ当たりの抵抗値3.9オームのものをスパイラル状に巻いて使用した。外側絶縁層6は、ナイロン12樹脂による厚さが0.2mmのものを使用した。信号巻線7は、外径0.09mmの純ニッケル線を一定のピッチでスパイラル状に巻いて使用した。表面絶縁層8は市販の耐熱軟質ポリ塩化ビニル樹脂による厚さ0.45mmのものを使用した。
前記によって作製した本発明ヒーター線を収納固定した縦1.4m横0.8mの電気毛布を作製した。
該電気毛布に、100ボルト、50サイクルの交流電源を半波整流回路により整流し、消費電力50ワットに設定して通電し、ヒーター線から10mmの位置で、磁界測定器[米国HOLADAY社製、「HI−3604」]によって洩れ磁界を測定した。内部発熱線のみに通電した時は洩れ磁界の強さは18ミリガウスであった。内部発熱線及び外部発熱線両方に通電した時は洩れ磁界の強さは0.17ミリガウスであった。
該電気毛布は定常状態では、0.5アンペア流すところ、変圧器によって電圧を変え、3.5アンペア流し強制加熱試験した。信号巻線との短絡が早い場合には、信号巻線回路を遮断し、強制加熱試験を継続した。結果は次の通りであった。
信号巻線との短絡時間 2分17秒
内部発熱線との短絡時間 8分57秒
内部発熱線強制加熱試験を前記強制加熱試験と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 1分15秒
外部発熱線との短絡時間 10分以上
【0011】
実施例2
図3に示す本発明ヒーター線を作製した。信号巻線7が中芯に最も近い位置に設けられたこと、内側絶縁層3が信号巻線7と内部発熱巻線との間に設けられたこと、外側絶縁層6が内部発熱巻線2と外部発熱巻線5との間に設けられたこと以外は、実施例1と同じ条件で行った。磁界を測定した結果は、内部発熱線のみに通電した時の洩れ磁界の強さは18.1ミリガウスであった。内部発熱線及び外部発熱線両方に通電した時は洩れ磁界の強さは0.18ミリガウスであった。
外部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 3分10秒
内部発熱線との短絡時間 7分50秒
内部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 2分09秒
外部発熱線との短絡時間 10分以上
実施例3
図4に示す本発明ヒーター線を作製した。信号巻線7が補強層4の外側に設けられたこと、外側絶縁層6が信号巻線7の外側に設けられたこと、外部発熱巻線5が最も外側に設けられたこと以外は、実施例1と同じ条件で行った。
磁界を測定した結果は、内部発熱線のみに通電した時の洩れ磁界の強さは17.9ミリガウスであった。内部発熱線及び外部発熱線両方に通電した時は洩れ磁界の強さは0.17ミリガウスであった。
外部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 3分03秒
内部発熱線との短絡時間 6分48秒
内部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 1分04秒
外部発熱線との短絡時間 10分以上
【0012】
比較例1
内側絶縁層3が厚さ0.2mmのポリエチレンテレフタレート樹脂であり、補強層4を使用しなかったこと以外は、実施例1と同じ条件で行った。
磁界を測定した結果は、内部発熱線のみに通電した時の洩れ磁界の強さは17.9ミリガウスであった。内部発熱線及び外部発熱線両方に通電した時は洩れ磁界の強さは0.18ミリガウスであった。
外部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 1分57秒
内部発熱線との短絡時間 2分01秒
内部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 5分02秒
外部発熱線との短絡時間 4分28秒
比較例2
内側絶縁層3が厚さ0.3mmのナイロン樹脂であり、補強層4を使用しなかったこと以外は、実施例1と同じ条件で行った。
磁界を測定した結果は、内部発熱線のみに通電した時の洩れ磁界の強さは18.1ミリガウスであった。内部発熱線及び外部発熱線両方に通電した時は洩れ磁界の強さは0.17ミリガウスであった。
外部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 2分05秒
内部発熱線との短絡時間 2分10秒
内部発熱線の強制加熱試験を実施例1と同条件で行った。結果は次の通りであった。
信号巻線との短絡時間 1分59秒
外部発熱線との短絡時間 49秒
【0013】
【発明の効果】
本発明によれば、磁界の洩れが実質的には全く発生せず、発熱巻線同士の短絡を確実に防止でき、ヒーター線の異常発熱時には直ちに通電を停止できる安全な暖房器具のヒーター線を提供することができる。
【図面の簡単な説明】
【図1】図1は、本発明ヒーター線の断面図である。
【図2】図2は、本発明ヒーター線の内部斜視図である。
【図3】図3は、本発明ヒーター線の内部斜視図である。
【図4】図4は、本発明ヒーター線の内部斜視図である。
【符号の説明】
H ヒーター線
1 中芯
2 内部発熱巻線
3 内側絶縁層
4 補強層
5 外部発熱巻線
6 外側絶縁層
7 信号巻線
8 表面絶縁層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heater wire for a heater that can prevent leakage of a magnetic field and can immediately interrupt current when abnormal heat is generated to prevent danger.
[0002]
[Prior art]
It has been conventionally known to reduce leakage of a magnetic field generated from a heater wire for a multi-heater such as a hot carpet or an electric blanket, and to detect and stop energization when abnormal heat is generated. For example, in Japanese Patent No. 3229618, in a heater wire in which magnetic fields generated by two layers of heat generating windings cancel each other, when the temperature rises abnormally due to disconnection, the isolation layer melts and electricity flows from the heat generating wire to the detection wire. Thus, a technique for cutting off the power supply is disclosed. However, in this technique, it is difficult to manufacture a thin flexible heater wire such as an electric blanket because a polyimide resin is used for the insulating layer between the two heat generating windings.
Japanese Patent No. 3321331 uses a material having a higher melting point of the insulating resin between the two layers of heat generating windings than the melting point of the insulating resin between the heat generating line and the detection line. However, in this method, the internal heating coil, the external heating coil, and the signal line are short-circuited almost simultaneously at the time of abnormal heat generation, and in order to avoid this, it is necessary to use separate insulating resins having a considerably large melting point difference. There is.
[Patent Document 1]
Japanese Patent No. 3229618 [Patent Document 2]
Japanese Patent No. 3321331 [0003]
[Problems to be solved by the invention]
The present invention provides a safe heater wire for a heating appliance that substantially prevents magnetic field leakage, can reliably prevent a short circuit between heat generating windings, and can immediately stop energization in the event of abnormal heating of the heater wire. It was made for the purpose.
[0004]
[Means for Solving the Problems]
The inventor has found that the drawbacks of the prior art can be solved by providing a reinforcing layer having a high melting temperature in the insulating layer between the two heating windings as a result of intensive studies. It came.
That is, the present invention
(1) A spiral internal heating coil is wound around the outer periphery of the core, an inner insulating layer is provided outside the inner heating coil, a reinforcing layer is provided outside the inner insulating layer, and an outer periphery of the reinforcing layer is provided. A spiral external heat generating winding is wound, an outer insulating layer is provided outside the external heat generating winding, a spiral signal winding is wound around the outer insulating layer, and a surface insulating layer is formed outside the signal winding. A heater wire provided with an internal heating coil so that the current flow in the circumferential direction is reversed with respect to the center of the internal heating coil and the external heating coil when viewed from the end on the power supply connection side And the heater wire wound with the external heating coil, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is the melting of the inner and outer insulating layers. A heater wire characterized by being 30 ° C higher than the temperature,
(2) A spiral signal winding is wound around the outer periphery of the core, an inner insulating layer is provided outside the signal winding, and a spiral internal heating coil is wound around the outer periphery of the inner insulating layer. An outer insulating layer is provided outside the winding, a reinforcing layer is provided outside the outer insulating layer, an external heating coil is wound around the outer periphery of the reinforcing layer, and a surface insulating layer is provided outside the outer heating coil. Heater wire, internal heating coil and external heating so that the current flow in the circumferential direction with respect to the core of the internal heating coil and external heating coil is reversed when viewed from the end of the power supply connection side In the heater wire wound with the winding, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is 30 than the melting temperature of the inner and outer insulating layers. Heater wire characterized by being higher than ℃, and (3) outer circumference of the core A spiral internal heat generating winding is wound, an inner insulating layer is provided outside the internal heat generating winding, a reinforcing layer is provided outside the inner insulating layer, and a spiral signal winding is wound around the outer periphery of the reinforcing layer. A heater wire in which an outer insulating layer is provided outside the signal winding, a spiral external heating coil is wound around the outer insulating layer, and a surface insulating layer is provided outside the external heating coil. The inner heating coil and the outer heating coil were wound so that the current flow in the circumferential direction with respect to the center of the inner heating coil and the outer heating coil was reversed when viewed from the end of the power supply connection side. In the heater wire, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is 30 ° C. higher than the melting temperature of the inner and outer insulating layers. Features heater wire,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The heater wire of the present invention is connected by setting the winding direction of the internal heating coil and the external heating coil so that the current flow in the circumferential direction with respect to the inner core of the internal heating coil and the external heating coil is reversed. Accordingly, substantially no leakage of the magnetic field occurs, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is the inner and outer insulating layers. By providing a reinforcing layer 30 ° C or more higher than the melting temperature of the outer layer on the outside of the inner insulating layer, it is possible to reliably prevent short-circuiting of the heat generating windings, and when the heater wire abnormally generates heat, the signal winding can immediately detect and stop energization It is a heater wire for a safe heater. The same side insulating inner layer and outer insulating layer can be used.
[0006]
Hereinafter, the present invention will be described in more detail with reference to the drawings.
As shown in FIGS. 1, 2, 3, and 4, the core 1 used for the heater wire H of the present invention has a base shaft provided at the center of the heater wire H of the present invention whose cross sections are laminated concentrically. As long as it is formed, has flexibility, has strength as a lamination base, and does not melt at all times, it is used without particular limitation on what is normally used for the lamination heater wire base. be able to. For example, those made of synthetic resins such as polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer and polystyrene, polyesters such as polyethylene terephthalate and polycarbonate, and polyamides such as nylon 6, nylon 66, nylon 11 and nylon 12 are used. be able to. The thing made from thermoplastic synthetic resins, such as polyethylene, a polypropylene, a polyethylene terephthalate, can be used conveniently.
The diameter of the core 1 used for the heater wire H of the present invention can be appropriately selected according to the size of the heater wire. Usually, the core 1 having a diameter of 0.2 to 1 mm can be used.
The internal heating coil 2 used in the present invention is a heating coil wound in a spiral shape at a position close to the core 1 among the two layers of the heating coil used in the heater wire H of the present invention. Heat can be generated by the specific resistance to the current flowing through As long as it has flexibility, has strength to withstand repeated bending, and has a predetermined specific resistance, it can be used without particular limitation on those used for ordinary laminated heater wires. . For example, a copper wire or a copper alloy can be used. A copper alloy rectangular wire can be suitably used. The diameter and length of the internal heating coil 2 used in the present invention can be appropriately selected according to the heater wire specification for the heating tool to be used.
The resistance value per unit axial length of the internal heating coil 2 used in the present invention is higher than the resistance value per unit axial length of the external heating wire 5 used in the present invention. Further, the winding pitch of the internal heating coil 2 used in the present invention is denser than the spiral winding pitch of the external heating wire 5 used in the present invention.
The internal heat generating winding 2 and the external heat generating winding so that the flow of current in the circumferential direction with respect to the core 1 of the internal heat generating winding 2 and the external heat generating winding 5 is reversed when viewed from the end of the power supply connection side. The winding direction of 5 can be set and wound in a spiral shape.
[0007]
The inner insulating layer 3 used in the present invention is an insulating layer provided at a position closest to the core 1, and the internal heating winding 2 is positioned closest to the core 1 as shown in FIGS. 2 and 4. When the signal winding is provided at a position closest to the center core 1 as shown in FIG. 3, the outer side of the signal winding is provided. Can be provided. The difference between the melting temperature of the inner insulating layer and the melting temperature of the outer insulating layer can be 10 ° C. or less.
The inner insulating layer 3 used in the present invention has flexibility, can withstand repeated bending, and can be used for a normal laminated heater wire insulating layer as long as it does not melt during normal use. Can be used without any particular limitation. For example, those made of synthetic resins such as polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer and polybutylene, and polyamides such as nylon 6, nylon 66, nylon 11 and nylon 12 can be used. The thing made from thermoplastic synthetic resins, such as polyethylene, a polypropylene, an ethylene propylene copolymer, nylon, can be used conveniently. Those made of nylon 12 can be used particularly preferably.
The diameter and thickness of the inner insulating layer 3 used in the present invention can be appropriately selected according to the outer diameter of the internal heating coil 2 and the heater wire specifications for the heating tool to be used. Usually, the inner insulating layer 3 having a thickness of 0.1 to 0.5 mm can be used.
The reinforcing layer 4 used in the present invention is an insulating layer provided on the outer periphery of the insulating layer provided outside the internal heating coil 2 and prevents a short circuit between the internal heating coil 2 and the external heating coil 5. be able to. In order to achieve this object, the melting temperature of the reinforcing layer 4 used in the present invention can be higher by 30 ° C. than the melting temperature of the inner insulating layer 3 and the outer insulating layer 6. As a result, during abnormal heat generation of the heater wire of the present invention, the internal heating coil 2 and the external heating coil 5 partitioned by the reinforcing layer 4 are not short-circuited before the reinforcing layer 4 used in the present invention melts. The insulation layer between the signal winding 7 and the internal heating winding 2 or between the signal winding 7 and the external heating winding 5 is melted and short-circuited with the signal winding 7 to cut off the energization of the heater wire of the present invention. Can do.
[0008]
The reinforcing layer 4 used in the present invention has flexibility and has strength to withstand repeated bending, and the melting temperature of the reinforcing layer 4 is 30 ° C. or more than the melting temperature of the inner insulating layer 3 and the outer insulating layer 6. As long as the object of the present invention is achieved, a known insulating material can be used without particular limitation. For example, when both the inner insulating layer 3 and the outer insulating layer 6 are polyamide resins having a melting temperature of about 180 ° C., a polyester resin having a melting temperature of 210 ° C. or more can be preferably used.
As long as the reinforcing layer 4 used in the present invention satisfies the above requirements and can prevent a short circuit between the internal heating coil 2 and the external heating coil 5, the shape or thickness thereof is particularly limited. You can choose without. A cylindrical shape may be sufficient and a tape shape may be sufficient. In order to facilitate the production of the heater wire of the present invention, it is possible to particularly preferably use a polyethylene terephthalate resin tape which is wound in a spiral shape.
The thickness and width of the tape of the reinforcing layer 4 used in the present invention can be appropriately selected according to the specifications of the internal heating coil 2. A normal tape having a thickness of 0.03 to 0.3 mm, preferably 0.05 to 0.2 mm can be used. The tape has a width of 3 to 30 mm, preferably 3 to 20 mm.
The stacking width for stacking the reinforcing layer 4 tape used in the present invention is preferably 1/5 to 1/2 of the tape width.
In the case of using soft polyvinyl chloride for the surface insulating layer 8, the reinforcing layer 4 used in the present invention penetrates the plasticizer contained in the soft polyvinyl chloride outside the outer insulating layer 6, as shown in FIG. By using a material that can prevent the penetration of the plasticizer, it is possible to prevent the plasticizer from penetrating into the inner insulating layer 3 and the outer insulating layer 6 and to prevent impedance change and insulation deterioration in the inner insulating layer 3 and the outer insulating layer 6. As a result, it is possible to prevent the temperature control of the heater wire of the present invention from becoming poor. As the reinforcing layer 4 for preventing the plasticizer from penetrating, a spirally wound polyethylene terephthalate resin tape can be used particularly preferably.
The external heating wire 5 used in the present invention is a heating coil wound in a spiral shape at a position farther from the core 1 than the internal heating coil 2 among the two layers of heating coils used in the heater wire H of the present invention. The same specification as that of the internal heating coil 2 can be used. The resistance value per unit length in the axial direction of the external heating wire 5 used in the present invention can be higher than the resistance value per unit length in the axial direction of the internal heating winding 2 used in the present invention. . Also, the spiral winding pitch of the external heating wire 5 used in the present invention can be coarser than the spiral winding pitch of the internal heating winding 2 used in the present invention.
The external heating coil 5 used in the present invention is connected to one end of the internal heating coil 2, and the current in the circumferential direction with respect to the core 1 of the internal heating coil 2 and the external heating coil 5 is changed. The winding direction of the external heating winding 5 can be set so that the flow is reversed, and the winding can be wound in a spiral shape.
The outer insulating layer 6 used in the present invention is an insulating layer provided at a position farther from the inner core 1 than the inner insulating layer 3, and the internal heating coil 2 is closest to the inner core 1 as shown in FIG. In the case where it is provided at the position, it is provided on the outside of the external heat generating winding 5, and as shown in FIG. When the signal winding 7 is provided outside the reinforcing layer 4 as shown in FIG. 4, the signal winding 7 can be provided outside the signal winding 7. As the outer insulating layer 6 used in the present invention, the one for the inner insulating layer 3 can be used without particular limitation as long as the difference between the melting temperature thereof and the melting temperature of the inner insulating layer 3 is within 10 ° C. .
[0009]
In the signal winding 7 used in the present invention, when the heat generating winding is damaged due to repeated bending or the like, and abnormal heat generation occurs, the insulating layer adjacent to the signal winding 7 is melted, and current flows through the signal winding 7. The detection conductor used for the heater wire for normal heating can be used without any particular limitation.
The surface insulating layer 8 used in the present invention is an insulating layer that covers the outermost part of the heater wire of the present invention, and is a known insulating material as long as it has flexibility and can protect the heater wire of the present invention. It can be used without any particular limitation. For example, polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer, polybutylene, polyamides such as nylon 6 and nylon 66, and synthetic resins such as soft polyvinyl chloride can be used. Polyethylene, ethylene propylene copolymer, soft polyvinyl chloride and the like can be preferably used.
Set the winding direction of the internal heating coil and the external heating coil so that the current flow of the internal heating coil and the external heating coil used in the present invention is reversed in the circumferential direction with respect to the core. can do. The ends of the internal heating coil and the external heating coil can be connected so that the magnetic field generated from the internal heating coil wound in a spiral and the magnetic field generated from the external heating coil cancel each other.
The melting temperature used in the present invention is such that the specific volume (cm 3 / g) gradually increases as the polymer material is heated and the temperature rises. Focusing on the phenomenon that the specific volume increases in a linear state having a constant coefficient of thermal expansion after a sudden rise, the specific temperature (the temperature at which the polymer material starts to melt and again has a constant coefficient of thermal expansion ( Melting point) can be the melting temperature used in the present invention. Melting points by this measurement method are indicated, for example, as polyethylene having a melting point of 141 ° C., polypropylene having a melting point of 176 ° C., nylon 6 having a melting point of 223 ° C., and polyethylene terephthalate having a melting point of 265 ° C. Processing Technology Handbook 178-180 pages).
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
The heater wire of the present invention shown in FIG. 2 was produced. The core 1 used for the heater wire H was a polyethylene terephthalate resin linear material having a diameter of 0.50 mm. The internal heating coil 2 was a copper alloy rectangular wire having a cross-sectional dimension of 0.044 × 0.4 mm, and a coil having a resistance value of 3.0 ohms per unit length in the direction of the wire axis was spirally wound. The inner insulating layer 3 was made of nylon 12 resin having a thickness of 0.25 mm. For the reinforcing layer 4, a polyethylene terephthalate resin tape having a thickness of 0.025 mm and a width of 6.0 mm was spirally wound with an overlap width of 1/3 of the tape width. As the external heating coil 5, a copper alloy rectangular wire having a cross-sectional dimension of 0.044 × 0.4 mm was used, and a coil having a resistance value of 3.9 ohms per unit length in the axial direction was wound in a spiral shape. As the outer insulating layer 6, a nylon 12 resin having a thickness of 0.2 mm was used. The signal winding 7 was used by winding a pure nickel wire having an outer diameter of 0.09 mm in a spiral shape at a constant pitch. As the surface insulating layer 8, a commercially available heat-resistant soft polyvinyl chloride resin having a thickness of 0.45 mm was used.
An electric blanket having a length of 1.4 m and a width of 0.8 m in which the heater wire of the present invention produced as described above was housed and fixed was produced.
The electric blanket is rectified by a half-wave rectifier with a 100 volt, 50-cycle AC power supply, energized with a power consumption set to 50 watts, and at a position 10 mm from the heater wire, a magnetic field measuring instrument (manufactured by HOLADAY, USA) The leakage magnetic field was measured by “HI-3604”]. When only the internal heating wire was energized, the leakage magnetic field strength was 18 milligauss. When both the internal heating wire and the external heating wire were energized, the leakage magnetic field strength was 0.17 milligauss.
In the steady state, the electric blanket was subjected to 0.5 ampere, the voltage was changed by a transformer, and a 3.5 ampere current was applied for forced heating test. When the short circuit with the signal winding was early, the signal winding circuit was cut off and the forced heating test was continued. The results were as follows.
Short circuit time with signal winding 2 minutes 17 seconds Short circuit time with internal heating wire 8 minutes 57 seconds The internal heating wire forced heating test was performed under the same conditions as the forced heating test. The results were as follows.
Short circuit time with signal winding 1 minute 15 seconds Short circuit time with external heating wire 10 minutes or more
Example 2
The heater wire of the present invention shown in FIG. 3 was produced. The signal winding 7 is provided at a position closest to the center, the inner insulating layer 3 is provided between the signal winding 7 and the internal heating winding, and the outer insulating layer 6 is provided in the internal heating winding 2. And the external heating coil 5 were performed under the same conditions as in Example 1. As a result of measuring the magnetic field, the strength of the leakage magnetic field when only the internal heating wire was energized was 18.1 milligauss. When both the internal heating wire and the external heating wire were energized, the leakage magnetic field strength was 0.18 milligauss.
The forced heating test of the external heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 3 minutes and 10 seconds Short circuit time with internal heating wire 7 minutes and 50 seconds A forced heating test of the internal heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 2 minutes 09 seconds Short circuit time with external heating wire 10 minutes or more Example 3
The heater wire of the present invention shown in FIG. 4 was produced. Except that the signal winding 7 is provided outside the reinforcing layer 4, the outer insulating layer 6 is provided outside the signal winding 7, and the external heating coil 5 is provided outside. It carried out on the same conditions as Example 1.
As a result of measuring the magnetic field, the strength of the leakage magnetic field when only the internal heating wire was energized was 17.9 milligauss. When both the internal heating wire and the external heating wire were energized, the leakage magnetic field strength was 0.17 milligauss.
The forced heating test of the external heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 3 minutes 03 seconds Short circuit time with internal heating wire 6 minutes 48 seconds A forced heating test of the internal heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 1 minute 04 seconds Short circuit time with external heating wire 10 minutes or more
Comparative Example 1
The inner insulating layer 3 was made of polyethylene terephthalate resin having a thickness of 0.2 mm, and the same conditions as in Example 1 were performed except that the reinforcing layer 4 was not used.
As a result of measuring the magnetic field, the strength of the leakage magnetic field when only the internal heating wire was energized was 17.9 milligauss. When both the internal heating wire and the external heating wire were energized, the leakage magnetic field strength was 0.18 milligauss.
The forced heating test of the external heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 1 minute 57 seconds Short circuit time with internal heating wire 2 minutes 01 seconds A forced heating test of the internal heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 5 minutes 02 seconds Short circuit time with external heating wire 4 minutes 28 seconds Comparative Example 2
The inner insulating layer 3 was made of nylon resin having a thickness of 0.3 mm, and the same conditions as in Example 1 were performed except that the reinforcing layer 4 was not used.
As a result of measuring the magnetic field, the strength of the leakage magnetic field when only the internal heating wire was energized was 18.1 milligauss. When both the internal heating wire and the external heating wire were energized, the leakage magnetic field strength was 0.17 milligauss.
The forced heating test of the external heating wire was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 2 minutes 05 seconds Short circuit time with internal heating wires 2 minutes 10 seconds A forced heating test of the internal heating wires was performed under the same conditions as in Example 1. The results were as follows.
Short circuit time with signal winding 1 minute 59 seconds Short circuit time with external heating wire 49 seconds
【The invention's effect】
According to the present invention, there is provided a heater wire for a safe heater that can prevent magnetic field leakage substantially at all, reliably prevent a short circuit between heat generating windings, and immediately stop energization in the event of abnormal heating of the heater wire. Can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a heater wire of the present invention.
FIG. 2 is an internal perspective view of the heater wire of the present invention.
FIG. 3 is an internal perspective view of the heater wire of the present invention.
FIG. 4 is an internal perspective view of the heater wire of the present invention.
[Explanation of symbols]
H Heater wire 1 Core 2 Internal heating coil 3 Inner insulation layer 4 Reinforcement layer 5 External heating coil 6 Outer insulation layer 7 Signal winding 8 Surface insulation layer

Claims (3)

中芯の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に内側絶縁層を設け、当該内側絶縁層の外側に補強層を設け、当該補強層の外周にスパイラル状の外部発熱巻線を巻き、当該外部発熱巻線の外側に外側絶縁層を設け、当該外側絶縁層の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いことを特徴とするヒーター線。A spiral internal heat generating winding is wound around the outer periphery of the core, an inner insulating layer is provided outside the internal heat generating winding, a reinforcing layer is provided outside the inner insulating layer, and a spiral shape is formed around the outer periphery of the reinforcing layer. An external heating coil was wound, an outer insulating layer was provided outside the external heating coil, a spiral signal winding was wound around the outer insulating layer, and a surface insulating layer was provided outside the signal winding. Heater wire, internal heating coil and external heating so that the current flow in the circumferential direction with respect to the core of the internal heating coil and external heating coil is reversed when viewed from the end of the power supply connection side In the heater wire wound with the winding, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is 30 than the melting temperature of the inner and outer insulating layers. Heater wire characterized by being higher than ℃. 中芯の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に内側絶縁層を設け、当該内側絶縁層の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に外側絶縁層を設け、当該外側絶縁層の外側に補強層を設け、当該補強層の外周に外部発熱巻線を巻き、当該外部発熱巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いことを特徴とするヒーター線。A spiral signal winding is wound around the outer periphery of the core, an inner insulating layer is provided outside the signal winding, a spiral internal heating coil is wound around the outer periphery of the inner insulating layer, and the inner heating coil An outer insulating layer is provided outside, a reinforcing layer is provided outside the outer insulating layer, an external heating coil is wound around the outer periphery of the reinforcing layer, and a heater wire is provided with a surface insulating layer outside the external heating coil. As seen from the end of the power supply connection side, the internal heating coil and the external heating coil are arranged so that the current flow in the circumferential direction with respect to the center of the internal heating coil and the external heating coil is reversed. In the wound heater wire, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is 30 ° C. higher than the melting temperature of the inner and outer insulating layers A heater wire characterized by that. 中芯の外周にスパイラル状の内部発熱巻線を巻き、当該内部発熱巻線の外側に内側絶縁層を設け、当該内側絶縁層の外側に補強層を設け、当該補強層の外周にスパイラル状の信号巻線を巻き、当該信号巻線の外側に外側絶縁層を設け、当該外側絶縁層の外周にスパイラル状の外部発熱巻線を巻き、当該外部発熱巻線の外側に表面絶縁層を設けたヒーター線であって、電源接続部側端部から見て、内部発熱巻線と外部発熱巻線の中芯に対する円周方向の電流の流れが逆向きになるように内部発熱巻線と外部発熱巻線を巻いたヒーター線において、外側絶縁層の溶融温度と内側絶縁層の溶融温度との差が10℃以内であり、且つ、補強層の溶融温度が内側及び外側絶縁層の溶融温度より30℃以上高いことを特徴とするヒーター線。A spiral internal heat generating winding is wound around the outer periphery of the core, an inner insulating layer is provided outside the internal heat generating winding, a reinforcing layer is provided outside the inner insulating layer, and a spiral shape is formed around the outer periphery of the reinforcing layer. A signal winding is wound, an outer insulating layer is provided outside the signal winding, a spiral external heating coil is wound around the outer insulating layer, and a surface insulating layer is provided outside the external heating coil. Heater wire, internal heating coil and external heating so that the current flow in the circumferential direction with respect to the core of the internal heating coil and external heating coil is reversed when viewed from the end of the power supply connection side In the heater wire wound with the winding, the difference between the melting temperature of the outer insulating layer and the melting temperature of the inner insulating layer is within 10 ° C., and the melting temperature of the reinforcing layer is 30 than the melting temperature of the inner and outer insulating layers. Heater wire characterized by being higher than ℃.
JP2003104016A 2003-04-08 2003-04-08 Heater wire Expired - Lifetime JP4059495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104016A JP4059495B2 (en) 2003-04-08 2003-04-08 Heater wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104016A JP4059495B2 (en) 2003-04-08 2003-04-08 Heater wire

Publications (3)

Publication Number Publication Date
JP2004311238A JP2004311238A (en) 2004-11-04
JP2004311238A5 JP2004311238A5 (en) 2006-05-25
JP4059495B2 true JP4059495B2 (en) 2008-03-12

Family

ID=33466965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104016A Expired - Lifetime JP4059495B2 (en) 2003-04-08 2003-04-08 Heater wire

Country Status (1)

Country Link
JP (1) JP4059495B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898504B2 (en) * 2007-03-19 2012-03-14 香港塔祈巴那電器有限公司 Fever code
JP2009287871A (en) * 2008-05-30 2009-12-10 Eidai Co Ltd Electric floor heating panel and electric floor heating floor using it

Also Published As

Publication number Publication date
JP2004311238A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR100553815B1 (en) Temperature controller and temperature control method, and heating wire therefor
US20130156071A1 (en) Electric Machine Including Insulated Slot Liner With Temperature Sensor
JPH0622909B2 (en) Electric heating element for electrically welding a thermoplastic material and apparatus for producing said heating element
JP4448796B2 (en) Electromagnetic wave blocking controller
JP2008235267A (en) Electromagnet heating wire and heating mat provided with the same
WO2009064057A1 (en) Three-wire temperature detection and control circuit for electromagnetic shielding
JP4059495B2 (en) Heater wire
JP2011171255A (en) Heat sensitive wire and method of manufacturing the same
EP1645167B2 (en) Heating blanket
JP2001355865A (en) Electric heater
US7033073B2 (en) Device and method for measuring the temperature of an electric motor
KR200395342Y1 (en) Temperature controller and heating wire therefor
JP4118765B2 (en) Electric warmer
JP3312331B2 (en) Heater wire
WO2007081090A1 (en) Safety device for magnetic field-free heating cable
JP2896941B2 (en) Electric warmer
JP2010003569A (en) Heater wire
JPH076867A (en) Melting type triple control one line type insulating heater wire
JP2632128B2 (en) Method for detecting falling off of magnetic core attached to high frequency induction heating coil
JP2000030846A (en) Electromagnetic wave suppression type heating wire with dummy wire
JP2009158147A (en) Induction heating coil
JP2005285420A (en) Current control method of electric heating device and electric heating device
JP2011171254A (en) Cord-like heater with temperature detection function and surface heater
JPS61239582A (en) Heat sensitive wire
EP0570246A1 (en) Improvements in or relating to electrically-powered heating panels

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4059495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term