JP4058657B2 - Method for inspecting leak of selectively permeable membrane module - Google Patents

Method for inspecting leak of selectively permeable membrane module Download PDF

Info

Publication number
JP4058657B2
JP4058657B2 JP28241098A JP28241098A JP4058657B2 JP 4058657 B2 JP4058657 B2 JP 4058657B2 JP 28241098 A JP28241098 A JP 28241098A JP 28241098 A JP28241098 A JP 28241098A JP 4058657 B2 JP4058657 B2 JP 4058657B2
Authority
JP
Japan
Prior art keywords
membrane module
selectively permeable
permeable membrane
leak
fluorescent dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28241098A
Other languages
Japanese (ja)
Other versions
JP2000107575A (en
Inventor
清司 吉田
淳夫 熊野
英樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP28241098A priority Critical patent/JP4058657B2/en
Publication of JP2000107575A publication Critical patent/JP2000107575A/en
Application granted granted Critical
Publication of JP4058657B2 publication Critical patent/JP4058657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水の精製や排水の浄化に用いられる選択透過性膜モジュール、特に圧力を駆動力として分離、精製、回収を行う膜モジュールの欠陥を検査する方法に関し、特に、逆浸透膜およびナノ濾過膜の膜モジュールのリーク箇所を特定する欠陥部の検出方法に関する。
【0002】
逆浸透膜は海水の淡水化や超純水に利用され、最近では水道水の高度処理や高級浄水器等への応用が検討され、この用途にあう極低操作圧であって、低い脱塩率のナノ濾過膜が開発されてきた。
膜モジュールは膜製造時の欠陥や取扱いに由来する傷や膜と容器との間の接着部に生じるひび割れ等の欠陥が生じることが多々ある。一方では、膜面に生じた欠陥は小さくても分離性能の低下と共に、ウィルスやエンドトキシン等のリークとなって膜モジュールの完全性を損なう。この欠陥部は補修して、完全な膜モジュールとして、供給することがより安価な膜モジュールの生産につながる。欠陥を持つ膜モジュールの補修を行うにはリーク箇所を特定する必要がある。
【0003】
【従来の技術】
リーク検査には気体を用い欠陥からリークする気体を利用する方法や液の透過性の異常値を利用する方法などがある。
気体を用いる方法として特開昭62−140607と特開昭63−84606では水中に発生する気泡を観察し、特開平5−137977では気泡発生相当圧下の圧力変化で、特開昭62−144705では真空度保持性を測定し、特開平1−307409では空気残圧を測定し、リークの有無を判断している。特開昭61−249507の空気通気抵抗からの透過量の測定法もリーク検出に利用できる。特開昭61−220710と特開平3−127614では懸濁微粒子を含むガスの透過流中の微粒子数をパーテイクルカウンターで測定してリークの有無を検出している。その他に空気中に流出する流れを触感で、あるいは屈折率の差、密度の差、温度差を各種測定器を用いて、または、可視化技術を応用して検出する方法が考案されている。
液体の透過性の異常値を利用する方法も考案されており、例えば、特開昭62−213811は濾液の水質を、特開昭59−183807は二次側液体の特性値の変動を、特開昭60−25510は供給液の圧変動を検出して膜リークの有無を検出している。特開平6−182164は透過水中の濁質を後段の精密濾過膜で濾過し通水抵抗の増加で、特開平7−248290は透過水の一部を分岐し、リーク検出用フィルターと圧力計等のリーク検出用計測器を使用して、特開平5−157654は液を封入しガス加圧した場合の濾過室の圧力の上昇を利用してリークの有無を判断している。供給する液体に溶質または懸濁物を添加する方法も考案されており、例えば、特開平7−243959は磁性体とか導電体の懸濁物のリークの有無で、特開昭59−136631は蛍光ラベル化高分子(FITC−Dxt−T−200)の、特開平6−254358は食用色素の、特開平7−132215はウイルスの代替粒子の、透過液物性や濾過性能を測定してリークを検出している。
その他の方法としては、特開平3−174225が封入部分の透過光の光散乱の強弱で、特開平3−174226が反射光の強弱で、特開平3−213129が透過光の偏光の変化で、中空糸封入部の欠陥を検出しており、特開昭62−136225は染料を添加したコート層を作り、特開平7−155567はパーベーパレーション膜に疎水性または親水性ペイントを塗布して、膜の欠陥箇所を特定している。特開平6−170186の膜の両面の電位差の測定を行う方法や、特表平5−502164のウィルスの除去率の測定方法も欠陥の検出に利用できる。
【0004】
【発明が解決しようとする課題】
しかしながら、気体を用いる方法では基本的に精密濾過膜の試験方法であって、気泡の発生を応用した方法を逆浸透膜やナノ濾過膜のリーク検査に使用すると、気泡を発生させるに高圧を要する。このために変形や損傷を受けるので、逆浸透膜やナノ濾過膜のリーク検査には応用できない。気体を用いるその他の方法は本質的にリーク箇所の特定が無理な方法であって応用できない。気体の透過(リーク)を可視化する方法は設備が大きくなるのとピンホールでの検出が困難であって、修復する面積が広くなる欠点を持つので膜モジュールの透過性能を損なう。
溶液または懸濁液を用いる方法は常に膜の閉塞と膜モジュールの汚染を伴い、また各種の溶質を使う場合には、高濃度にしないと検出ができず、リーク箇所の特定ができても、膜モジュールの汚染を伴うので、膜モジュールの透過性能を損なうことが多く、膜モジュールの清潔性と美観と安全性をも損なう。高分子物質溶液を使用する方法では高分子が対象となる膜の孔径より大きく、膜汚染の一因となり易く、リーク検査後の洗浄に手間がかかり、膜性能を損なうことも多い上に、微小なリークを見逃す欠点を持っている。染料や色素の溶液の場合には膜と反応性があって、染料の検知に比較的高濃度を要するために膜やモジュール構成部材を汚染する場合が多い。
以上のように、膜モジュールを補修するためにはリーク箇所の特定が必要であるがこれに適する方法は殆ど無かった。
【0005】
【課題を解決するための手段】
本発明者らは鋭意検討により以下の新規なリーク検査方法を見い出した。即ち、選択透過性膜モジュールのリーク検査に際して、分子量が300から3000である蛍光染料溶液を用いて膜モジュールの欠陥からリークする染料を蛍光で検知してリーク箇所を特定する選択透過性膜モジュールのリーク検査方法であり、更に、蛍光能を有する水溶性食用色素を用いて膜モジュールの欠陥からリークする食用色素を蛍光で検知して、リーク箇所を特定する選択透過性膜モジュールのリーク検査方法である。
【0006】
以下に本発明に関して詳細に説明する。本発明において、選択透過性膜モジュールとは物質を分離、濃縮できる分離膜を分離の主体要素として組み立てられた膜モジュールであれば何でも良く、好ましくは逆浸透膜及びナノ濾過膜である。製膜方法としては流延やコーティング、表面改質、界面重合、湿式紡糸、半湿式紡糸、乾式紡糸等で製造された均質膜と非対称膜と複合膜の何れでも良い。
均質膜や非対称膜および複合膜の支持膜の素材としては特に限定するものでは無く、例として挙げれば、各種ポリオレフィン、酢酸セルロース、三酢酸セルロース、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリスルホン、ポリフルオロエチレン、ポリエーテルスルホンとこれらの誘導体等の高分子及びこれらの共重合物を用いた物が挙げられる。複合膜の分離活性層を構成する膜素材も特に限定するもので無く、例として挙げれば酢酸セルロース、三酢酸セルロース、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホンとこれらの誘導体等の高分子及びこれらの共重合物を用いた物がある。好ましい膜素材としては各種ポリアミドや三酢酸セルロース、酢酸セルロースが挙げられる。
選択透過性膜モジュールはこれらの膜を必要な形状に加工した後に、適当な形状の容器内に収納して、接着剤等で組み立てられた物であって、膜モジュールの型式としては平膜を使用したスパイラルワインド型とか多層積層型等、中空糸型、管状膜型等の何れにでも応用できるが、この中でも中空糸型膜モジュールのリーク検査に一番有効である。
【0007】
本発明における蛍光染料とは溶解できる何らかの溶剤があって、蛍光性を有している物質を言い、この条件を満たす物質であれば何等拘束されるものではない。具体的には染料の分類のカラーインデクスで表されるC.I.Fluorescent Brightenerナンバーを持つ物が総て蛍光染料であり、好ましく、代表的なものとして同ナンバーが20、24、30、32、46、48、54、71、84、85、86、87、152、156、166、225、226、260、351、19、21、22、23、31、33、35、36、37、40、72、90、135である。加えて、一般に染料と分類される中にも蛍光性を持つ物があって、代表的なものはエオシンとローダミンBとこれらの誘導体がこれに相当する。その他に、蛍光性を有する食用色素と天然色素があり、食用赤色3号、食用赤色104号、食用赤色106号、鉄クロロフィリンナトリウム、同カリウム等のポルフィリン誘導体、β−カロチン、ノルビキシン、ビオフラミン誘導体、及び、ビタミンB12誘導体等があって、これらの蛍光性を有する色素も使用できる。
【0008】
この中でもより好ましい物は前述の食用色素、及び、C.I.Fluorescent Brightener 24、C.I.Fluorescent Brightener 86、C.I.Fluorescent Brightener90、C.I.Fluorescent Brightener 260とエオシン及びその誘導体である。
最も好ましい物は食用赤色104号と食用106号、及び、C.I.Fluorescent Brightener 24とC.I.Fluorescent Brightener 86、C.I.Fluorescent Brightener 260の4,4'ージアミノスチルベン-2,2'-ジスルホン酸誘導体系蛍光染料とエオシン及びその誘導体である。
【0009】
膜の蛍光染料阻止能は使用する蛍光染料の分子サイズに依存する。この分子サイズが小さい場合には蛍光染料が膜を透過するので膜モジュールの開口部の全面から透過が見られてリーク検査にはならず、また、これが大きすぎる場合にはリークカ所からの漏れる量が少なくなってリークとして検出ができず、微小な欠陥カ所が検出できなくなる。膜の蛍光染料阻止能を考慮すると、蛍光染料の分子量は300から3000程度が有効であり、好ましくは、450から1800で、最も好ましくは分子量が550から1200である。
【0010】
この蛍光染料の検出は紫外線照射で容易に可視化ができる。即ち、紫外線ランプで発生させた紫外線で、所望の所を照らせば良い。紫外線を照射して発生する蛍光は大変に明るいため、使用する蛍光染料は極微量で良い。
リーク箇所を特定する方法は何れの方法でも良く、流出する流れの中で蛍光染料を蛍光で可視化して目視によって、また、テレビカメラ等で蛍光をとらえて画像処理して、リーク箇所を決定しても良い。簡単にできるのは、特開平6−254358記載の方法を応用することで、膜モジュールの透過水流出部に検出媒体を取り付け、欠陥から流出した蛍光染料が検出媒体を染めた後に、この媒体上の蛍光染料の染着斑が発する蛍光を検出する方法であり、リーク箇所に相当する位置に蛍光染色斑として検出できる。蛍光により検出することで染着で検出するのに比べて250倍検出力が高くなり、例えば、20μg/リットルでも検出とリーク箇所の特定が可能となる。検出用媒体を選定することにより蛍光染料との親和性を高めることで、リーク箇所を特定することが容易となって、膜面の剥離やピンポールの様な微小な欠陥も検出できる。
【0011】
具体的には、酢酸セルロースまたは三酢酸セルロースよりなる選択透過性膜モジュールのリーク検査には、ジアミノスチルベンジスルホン酸誘導体の1種または2種以上の混合物よりなる蛍光染料溶液を用いて、膜モジュールの欠陥からリークする染料を蛍光で検知してリーク箇所を特定するリーク検査方法であり、更に、選択透過性膜の分離活性層が主成分としてピペラジンとトリメシン酸残基よりなる重合体である選択透過性膜モジュールのリーク検査には、食用赤色104号または食用赤色106号の溶液を用いて、または、エオシン及び/またはその誘導体である染料溶液を用いて、膜モジュールの欠陥から漏洩する染料を蛍光で検知してリーク箇所を特定するリーク検査方法である。
【0012】
リーク箇所を特定した欠陥部分の補修方法は膜モジュールの形式によって異なり、何等決まった方法はなく、公知の方法を応用すれば良い。例えば、何れの形式の膜モジュールに対してもリーク部分に接着剤や封止剤等を塗布する、リーク部分に不透過性のシートを張り付ける、中空糸型等に対してはリーク部分に接着性を改善するため削る等の加工を施した後に封止剤で封鎖加工を行う、同じく、中空糸型や管状型の場合に、不透過性部材で開口部を閉栓を行う等があり、何れの方法を使用しても良い。
【0013】
【実施例】
以下に実施例をあげて本発明を説明する。
【0014】
(実施例1)
膜モジュールの性能評価方法I
図1に示す膜モジュール評価装置で透過水と濃縮水を原水槽に返送する循環する評価系を用いた。一定温度に保つために温調装置を取り付け、規定した温度にコントロールした。操作条件は食塩1500mg/リットル水溶液を、25℃で、30kg/cm2で供給し、回収率RCが75%になるようにバルブを調整した。原則として加圧後2時間後に透水量と水質を測定した。水質の測定には電気伝導度を測定して、食塩濃度として求めた。
膜モジュールの透水量FRと脱塩率RJを次式で定義した。
(式1) RC=Qp /Qf ×100 (%)
(式2) FR=Qp ×1.44 (m3 /日)
(式3) RJ=(Cf −Cp )/Cf ×100 (%)
ここで、Qf (=Qp +Qb )は膜モジュールへの供給水量(リットル/分)、Qp は透過水量(リットル/分)、Qb は濃縮水量(リットル/分)であって、Cf は供給水の食塩濃度(mg/リットル)、Cp は透過水の食塩濃度(mg/リットル)である。
【0015】
膜モジュールの性能評価方法II
上記の評価方法に準じて、操作条件を硫酸マグネシウム500mg/リットル水溶液、25℃、5kg/cm2、回収率RCを50%に変更して実施した。
【0016】
大腸菌除去性テスト
装置と操作条件は膜モジュール性能評価方法に準じて実施した。運転が安定化に要する時間:2時間が経過後に予め培養、保存して置いた大腸菌培養液を加え、更に、その20時間経過後に等量を加えた、その後2時間が経過した後、透過水と供給水を採取した。大腸菌培養液はEscherichia coli、K−12株(IFO3206)をBHI液体培地中で36℃、2日以上培養を行った。添加は300リットルの原水に対して20ミリリットルずつ2回、前述の時刻に行った。
【0017】
大腸菌数の測定
採取した試料は、できれば直ちに、できない時は5℃以下で冷蔵保存後24時間以内に測定を行った。この測定はJIS K0102-1993 工場排水の試験方法の大腸菌群数に準じて行った。
【0018】
逆浸透膜として三酢酸セルロース中空糸膜モジュール(商品名HOLLOSEP HA5330、東洋紡製)を製造し、膜特性が規格外のものを選定し、リーク検査に使用した。この膜モジュールの透過性能は膜モジュールの評価方法Iでの評価でFR28.4m3 /日、RJ90.2%で大腸菌の除去性テストの結果は原水300万個/cm3 以上に対して、透過水1200個/cm3 であった。蛍光染料、C.I.Fluorescent Brightener 24の1g/リットル水溶液20cm3 を500リットルの原水槽に溶解し(蛍光染料濃度は0.04mg/リットル)、この膜モジュールの開口面にリーク検出媒体として定性濾紙を挿入して、10kg/cm2、20から25℃で1時間運転した。運転終了後、この濾紙を取り出し、蛍光ランプで照らし蛍光を発生させてリーク箇所を調べた。蛍光染着斑、即ち、リーク箇所数は43箇所が確認できた。リーク箇所に相当する膜モジュールの開口面をドリルで削り、エポキシ系封止剤で封じた。
封止剤が硬化した後に膜モジュールを再度評価して、FR24.8m3/日、RJ93.1%で、大腸菌の除去性は原水300万個/cm3 以上に対して、透過水0個/cm3 になった。この後、膜モジュールを解体してみたが膜が染着された場所や汚れは見られ無かった。
【0019】
(実施例2)
蛍光染料にC.I.Fluorescent Brightener 86を用いた以外は実施例1と同様に実施した。結果を表1に示す。
【0020】
(実施例3)
蛍光染料にC.I.Fluorescent Brightener 260を用いた以外は実施例1と同様に実施した。結果を表1に示す。
【0021】
(比較例1)
蛍光染料に食用青色2号5mg/リットルを用い、検出媒体にイオン交換濾紙DEAE(東洋濾紙製)を用い、蛍光ではなく染着斑を目視で、それ以外は実施例1と同様に実施した。結果を表1に示す。この方法では透水量FRの大きな減少と解体した中空糸膜に顕著な暗青色の着色がみられた。
【0022】
(比較例2)
蛍光染料に特開昭59−136631の方法で合成した蛍光ラベル化高分子(FITC−Dxt−T−200)を合成したものを用い、検出媒体にイオン交換濾紙CM(東洋濾紙製)を用いた以外は実施例1と同様に実施した。結果を表1に示す。蛍光染着斑の検出が良くないため、デキストランの濃度として200mg/リットルとなり、透水量FRのかなり大きな減少が見られた。
【0023】
(実施例4)
比較例2で使用した膜モジュールを用いて、蛍光染料をC.I.Fluorescent Brightener 86、0.04mg/リットル水溶液を使用して、それ以外は実施例1と同様に実施した。微小な蛍光染色斑が13カ所が残っており、比較例2では検出力が不足である事が分かり、再度の補修を実施した。結果を表1に示す。
【0024】
【表1】

Figure 0004058657
【0025】
(実施例5)
ナノ濾過膜としてポリスルホン中空糸多孔膜(内径200μm、外径300μm)上にアミン成分としてピペラジンとトリエチレンジアミン(モル比99:1)、酸成分としてトリメシン酸クロライドを使用して界面重合を行い複合中空糸選択透過性膜を製造し、有効長さ185mmで中空糸本数6000本の複合中空糸選択透過性膜モジュールを組み立てた。膜モジュールの評価方法IIを用いて評価を行った。この中より透過性能が良くない膜モジュール(予想性能FR:250リットル/日、RJ:70%に対して、FR:270リットル/日以上、RJ:55%以下)を選定した。リーク検査前の透過性能等はFR:285リットル/日、RJ:44.0%、大腸菌数は原水300万個/cm3 以上、透過水2800/cm3 個の物を使用し、染料として食用赤色106号を用い、リーク検出媒体としてイオン交換濾紙DEAE(東洋濾紙製)を用い、それ以外は実施例1と同様に実施した。結果は表2に示す。
【0026】
(実施例6)
染料を食用赤色104号を用い、それ以外は実施例5と同様に実施した。結果を表2に示す。
【0027】
(比較例3)
染料を食用赤色3号を用い、それ以外は実施例5と同様に実施した。結果を表2に示す。食用赤色3号は検出力が不足であり、膜モジュールを汚染した。
【0028】
(実施例7)
染料をエオシンを用い、それ以外は実施例5と同様に実施した。結果を表2に示す。
【0029】
【表2】
Figure 0004058657
【0030】
【作用】
染料を蛍光で検出することで検出が容易になり、使用する染料が低濃度でも良くなる。検査した選択透過性膜モジュールの膜とか部材とかの汚染が減少し、皆無にできる。
【0031】
【発明の効果】
このために、リーク検査を行った、選択透過性膜モジュールの透水量が低下することも無く、選択透過性膜モジュールの美観が保たれ、更に、この選択透過性膜モジュールを使った時、汚染した染料が残留することが無く、衛生的で安全な透過水を得ることができる様になる。膜モジュールの透水性が損なわれることが無く修復を行えるので、欠陥が無い高透水性の膜モジュールを安価に製造できる様になる。
【図面の簡単な説明】
【図1】 本発明の評価装置のフローシートを示す。
【符号の説明】
1 膜モジュール
2 供給水配管
3 透過水配管
4 濃縮水配管
11 原水槽
12 ポンプ
13 バルブ類[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permselective membrane module used for water purification and wastewater purification, particularly a method for inspecting defects in a membrane module that performs separation, purification, and recovery using pressure as a driving force. The present invention relates to a method for detecting a defective portion that identifies a leak location of a membrane module of a filtration membrane.
[0002]
Reverse osmosis membranes are used for desalination of seawater and ultrapure water, and recently applications for advanced treatment of tap water and high-quality water purifiers have been studied. Rate nanofiltration membranes have been developed.
Membrane modules often have defects such as defects at the time of membrane production, scratches resulting from handling, and cracks that occur in the adhesion between the membrane and the container. On the other hand, even if the defects generated on the membrane surface are small, the separation performance deteriorates and leaks such as viruses and endotoxins impair the integrity of the membrane module. Repairing this defective part and supplying it as a complete membrane module leads to the production of a cheaper membrane module. In order to repair a defective membrane module, it is necessary to identify the leak location.
[0003]
[Prior art]
The leak inspection includes a method using gas and using a gas leaking from a defect and a method using an abnormal value of liquid permeability.
As a method using gas, Japanese Patent Application Laid-Open Nos. 62-140607 and 63-84606 observe bubbles generated in water, Japanese Patent Application Laid-Open No. 5-137977 is a pressure change under the bubble generation equivalent pressure, and Japanese Patent Application Laid-Open No. 62-144705 is a method. The degree of vacuum retention is measured, and in Japanese Patent Laid-Open No. 1-307409, the residual air pressure is measured to determine whether there is a leak. The method for measuring the amount of permeation from the air ventilation resistance disclosed in Japanese Patent Laid-Open No. 61-249507 can also be used for leak detection. In JP-A-61-220710 and JP-A-3-127614, the number of fine particles in a permeate flow of gas containing suspended fine particles is measured with a particle counter to detect the presence or absence of a leak. In addition, a method has been devised for detecting a flow flowing out into the air with a tactile sensation, a difference in refractive index, a difference in density, or a temperature difference using various measuring instruments or applying a visualization technique.
A method using an abnormal value of liquid permeability has also been devised. For example, JP-A-62-213811 discloses the water quality of the filtrate, and JP-A-59-183807 describes fluctuations in the characteristic value of the secondary liquid. Japanese Utility Model Laid-Open No. 60-25510 detects the presence or absence of a membrane leak by detecting the pressure fluctuation of the supply liquid. Japanese Patent Laid-Open No. 6-182164 increases the water resistance by filtering the turbidity in the permeated water through a subsequent microfiltration membrane. Japanese Patent Laid-Open No. 7-248290 branches a part of the permeated water, and a leak detection filter, a pressure gauge, etc. Japanese Patent Application Laid-Open No. 5-157654 uses the increase in the pressure in the filtration chamber when the liquid is sealed and the gas is pressurized. A method of adding a solute or a suspension to the liquid to be supplied has been devised. For example, JP-A-7-243959 discloses whether there is a leakage of a suspension of a magnetic material or a conductor, and JP-A-59-136931 describes fluorescence. Leakage is detected by measuring the permeate properties and filtration performance of labeled polymer (FITC-Dxt-T-200), JP-A-6-254358 for food coloring, and JP-A-7-132215 for virus substitute particles. is doing.
As other methods, Japanese Patent Laid-Open No. 3-174225 is the intensity of light scattering of the transmitted light in the encapsulated portion, Japanese Patent Laid-Open No. 3-174226 is the intensity of the reflected light, and Japanese Patent Laid-Open No. 3-213129 is a change in the polarization of the transmitted light. Detecting defects in the hollow fiber enclosing part, JP-A-62-136225 makes a coat layer added with a dye, JP-A-7-155567 applies a hydrophobic or hydrophilic paint to a pervaporation film, The defective part of the film is specified. The method for measuring the potential difference between both sides of the film disclosed in JP-A-6-170186 and the method for measuring the virus removal rate disclosed in JP-A-5-502164 can also be used for detecting defects.
[0004]
[Problems to be solved by the invention]
However, the method using gas is basically a test method for microfiltration membranes, and if a method applying bubble generation is used for leak inspection of reverse osmosis membranes or nanofiltration membranes, high pressure is required to generate bubbles. . For this reason, since it is deformed or damaged, it cannot be applied to leak inspection of reverse osmosis membranes or nanofiltration membranes. Other methods using gas are essentially methods in which the location of the leak is impossible and cannot be applied. The method of visualizing the permeation (leakage) of gas is difficult to detect with a pinhole if the equipment is large, and has the disadvantage that the area to be repaired is widened, so the permeation performance of the membrane module is impaired.
The method using a solution or suspension always involves clogging of the membrane and contamination of the membrane module, and when various solutes are used, detection is not possible unless the concentration is high, and the location of the leak can be identified. Since the membrane module is contaminated, the permeability performance of the membrane module is often impaired, and the cleanliness, aesthetics and safety of the membrane module are also impaired. In the method using a polymer solution, the polymer is larger than the pore size of the target membrane, which is likely to contribute to membrane contamination, which requires time and effort for cleaning after leak inspection, and often impairs membrane performance. Has the disadvantage of overlooking leaks. In the case of a solution of a dye or a pigment, it is reactive with the film, and a relatively high concentration is required for detecting the dye. Therefore, the film and module components are often contaminated.
As described above, in order to repair the membrane module, it is necessary to identify the leak location, but there are few methods suitable for this.
[0005]
[Means for Solving the Problems]
The inventors of the present invention have found the following novel leak inspection method through intensive studies. That is, in the leak inspection of a selectively permeable membrane module, a selective permeable membrane module that uses a fluorescent dye solution having a molecular weight of 300 to 3000 to detect a leaking dye from a defect in the membrane module by fluorescence and identify a leak portion. This is a leak inspection method, and further uses a water-soluble food dye having fluorescence ability to detect a food dye that leaks from a defect in the membrane module with fluorescence, and specifies a leak location by a leak inspection method for a selectively permeable membrane module is there.
[0006]
The present invention will be described in detail below. In the present invention, the permselective membrane module may be any membrane module assembled with a separation membrane capable of separating and concentrating substances as a main component of separation, and preferably a reverse osmosis membrane and a nanofiltration membrane. The film forming method may be any of a homogeneous film, an asymmetric film, and a composite film manufactured by casting, coating, surface modification, interfacial polymerization, wet spinning, semi-wet spinning, dry spinning and the like.
The material of the support membrane of the homogeneous membrane, the asymmetric membrane and the composite membrane is not particularly limited. For example, various polyolefins, cellulose acetate, cellulose triacetate, polyamide, polyimide, polyacrylonitrile, polysulfone, polyfluoroethylene, The thing using polymers, such as polyether sulfone and these derivatives, and these copolymers is mentioned. The membrane material constituting the separation active layer of the composite membrane is not particularly limited, and examples include polymers such as cellulose acetate, cellulose triacetate, polyamide, polyimide, polyacrylonitrile, polysulfone, polyethersulfone and derivatives thereof. There are also products using these copolymers. Preferable membrane materials include various polyamides, cellulose triacetate, and cellulose acetate.
A permselective membrane module is a product in which these membranes are processed into a required shape and then housed in a container of an appropriate shape and assembled with an adhesive or the like. The type of membrane module is a flat membrane. Although it can be applied to any of the used spiral wind type, multilayer laminated type, hollow fiber type, tubular membrane type, etc., it is most effective for leak inspection of hollow fiber type membrane modules.
[0007]
The fluorescent dye in the present invention refers to a substance having a certain solvent that can be dissolved and having fluorescence, and is not restricted as long as the substance satisfies this condition. Specifically, those having CI Fluorescent Brightener numbers represented by the color index of the dye classification are all fluorescent dyes, and the typical numbers are 20, 24, 30, 32, 46, 48, 54, 71, 84, 85, 86, 87, 152, 156, 166, 225, 226, 260, 351, 19, 21, 22, 23, 31, 33, 35, 36, 37, 40, 72, 90, 135. In addition, there are fluorescent substances that are generally classified as dyes, and representative ones include eosin, rhodamine B, and derivatives thereof. In addition, there are edible pigments and natural pigments having fluorescence, edible red No. 3, edible red No. 104, edible red No. 106, porphyrin derivatives such as iron chlorophyllin sodium and potassium, β-carotene, norbixin, biophramin derivatives, There are vitamin B12 derivatives and the like, and these fluorescent dyes can also be used.
[0008]
Among these, more preferred are the aforementioned food dyes, CI Fluorescent Brightener 24, CI Fluorescent Brightener 86, CI Fluorescent Brightener 90, CI Fluorescent Brightener 260 and eosin and its derivatives.
Most preferred are edible red No. 104 and edible No. 106, and CI Fluorescent Brightener 24, CI Fluorescent Brightener 86, CI Fluorescent Brightener 260, 4,4′-diaminostilbene-2,2′-disulfonic acid derivative-based fluorescent dye and eosin and its Is a derivative.
[0009]
The fluorescent dye blocking ability of the film depends on the molecular size of the fluorescent dye used. If this molecular size is small, the fluorescent dye will pass through the membrane, so transmission will be seen from the entire surface of the membrane module opening, and this will not be a leak test, and if this is too large, the amount of leakage from the leak location As a result, the number of defects is reduced and cannot be detected as a leak, and a minute defect location cannot be detected. In consideration of the fluorescent dye blocking ability of the film, the molecular weight of the fluorescent dye is effectively about 300 to 3000, preferably 450 to 1800, and most preferably 550 to 1200.
[0010]
Detection of this fluorescent dye can be easily visualized by ultraviolet irradiation. That is, a desired place may be illuminated with ultraviolet rays generated by an ultraviolet lamp. Since the fluorescence generated by irradiating ultraviolet rays is very bright, a very small amount of fluorescent dye may be used.
Any method can be used to identify the leak location, and the fluorescent dye is visualized with fluorescence in the flowing out flow, and the leak location is determined by visual observation or image processing by capturing the fluorescence with a TV camera or the like. May be. A simple method is to apply the method described in JP-A-6-254358 to attach a detection medium to the permeate outflow part of the membrane module, and after the fluorescent dye that has flowed out of the defect has dyed the detection medium, This is a method for detecting the fluorescence emitted by the dyed spots of the fluorescent dye, and can be detected as a fluorescent dyed spot at a position corresponding to the leaked part. Detection by fluorescence increases the detection power by 250 times compared to detection by dyeing. For example, even at 20 μg / liter, detection and the location of a leak can be specified. By selecting the detection medium and increasing the affinity with the fluorescent dye, it becomes easy to identify the leak location, and minute defects such as peeling of the film surface and pin pole can be detected.
[0011]
Specifically, for a leak test of a selectively permeable membrane module made of cellulose acetate or cellulose triacetate, a fluorescent dye solution made of one kind or a mixture of two or more kinds of diaminostilbene disulfonic acid derivatives is used. This is a leak inspection method in which a dye leaking from a defect is detected by fluorescence to identify the leak location, and the selective permeation is a polymer composed of piperazine and a trimesic acid residue as a main component of the separation active layer of the selectively permeable membrane. In order to inspect the leak of the membrane module, the dye leaking from the defect of the membrane module is fluorescent using a solution of Edible Red No. 104 or Edible Red No. 106 or a dye solution which is eosin and / or a derivative thereof. This is a leak inspection method in which a leak point is detected and identified.
[0012]
The method for repairing the defective portion specifying the leak location differs depending on the type of the membrane module, there is no fixed method, and a known method may be applied. For example, for any type of membrane module, apply adhesive or sealant to the leak part, stick an impermeable sheet to the leak part, and adhere to the leak part for hollow fiber type In order to improve the workability, the sealing is performed with a sealant after processing such as shaving. Similarly, in the case of a hollow fiber type or a tubular type, the opening is plugged with an impermeable member. The method may be used.
[0013]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0014]
Example 1
Membrane module performance evaluation method I
In the membrane module evaluation apparatus shown in FIG. 1, a circulating evaluation system for returning permeated water and concentrated water to the raw water tank was used. In order to maintain a constant temperature, a temperature control device was attached and controlled to a specified temperature. The operating conditions were an aqueous solution of 1500 mg / liter of sodium chloride at 25 ° C. and 30 kg / cm 2 , and the valve was adjusted so that the recovery rate RC was 75%. In principle, the water permeability and water quality were measured 2 hours after pressurization. For the measurement of water quality, the electrical conductivity was measured and determined as the salt concentration.
The water permeability FR and the desalting rate RJ of the membrane module were defined by the following equations.
(Formula 1) RC = Qp / Qf × 100 (%)
(Formula 2) FR = Qp × 1.44 (m 3 / day)
(Formula 3) RJ = (Cf−Cp) / Cf × 100 (%)
Here, Qf (= Qp + Qb) is the amount of water supplied to the membrane module (liter / minute), Qp is the amount of permeated water (liter / minute), Qb is the amount of concentrated water (liter / minute), and Cf is the amount of water supplied Salt concentration (mg / liter), Cp is the salt concentration (mg / liter) of permeated water.
[0015]
Membrane module performance evaluation method II
According to the above evaluation method, the operating conditions were changed to magnesium sulfate 500 mg / liter aqueous solution, 25 ° C., 5 kg / cm 2 , and the recovery rate RC was changed to 50%.
[0016]
The Escherichia coli removability test apparatus and operating conditions were carried out according to the membrane module performance evaluation method. Time required for stabilization of operation: E. coli culture solution that has been cultured and stored in advance after 2 hours has been added, and then an equal amount has been added after 20 hours. And feed water was collected. Escherichia coli K-12 (IFO3206) was cultured in a BHI liquid medium at 36 ° C. for 2 days or longer. The addition was performed twice for 20 milliliters per 300 liters of raw water at the aforementioned time.
[0017]
Measurement of the number of E. coli The sample collected was immediately measured if possible, and when it was not possible, the measurement was performed within 5 hours at 5 ° C. or less and after refrigerated storage. This measurement was performed in accordance with the number of coliforms in the JIS K0102-1993 factory wastewater test method.
[0018]
A cellulose triacetate hollow fiber membrane module (trade name HOLLOSEP HA5330, manufactured by Toyobo Co., Ltd.) was manufactured as a reverse osmosis membrane, and a membrane having non-standard membrane characteristics was selected and used for leak inspection. The permeability of this membrane module was FR28.4m 3 / day as evaluated by the evaluation method I of membrane module, and the result of E. coli removability test was RJ 90.2% for raw water of 3 million pieces / cm 3 or more. It was 1200 water / cm 3 . Dissolve 20cm 3 of 1g / liter aqueous solution of fluorescent dye, CIFluorescent Brightener 24 in 500 liter raw water tank (fluorescent dye concentration is 0.04mg / liter), and insert qualitative filter paper as a leak detection medium into the opening surface of this membrane module. And operated at 10 kg / cm 2 at 20 to 25 ° C. for 1 hour. After completion of the operation, the filter paper was taken out and illuminated with a fluorescent lamp to generate fluorescence, and the leaked portion was examined. Fluorescent dyeing spots, that is, 43 leak points were confirmed. The opening surface of the membrane module corresponding to the leak location was shaved with a drill and sealed with an epoxy sealant.
After the sealant is cured, the membrane module is evaluated again. FR 24.8 m 3 / day, RJ 93.1%, E. coli removability is 3 million pieces / cm 3 or more of raw water, 0 permeated water / cm 3 After this, the membrane module was disassembled, but there was no spot or stain where the membrane was dyed.
[0019]
(Example 2)
The same procedure as in Example 1 was performed except that CI Fluorescent Brightener 86 was used as the fluorescent dye. The results are shown in Table 1.
[0020]
(Example 3)
The same procedure as in Example 1 was performed except that CI Fluorescent Brightener 260 was used as the fluorescent dye. The results are shown in Table 1.
[0021]
(Comparative Example 1)
Edible blue No. 2 5 mg / liter was used as a fluorescent dye, ion exchange filter paper DEAE (manufactured by Toyo Filter Paper) was used as a detection medium, and dyeing spots were observed visually instead of fluorescence. Otherwise, the same procedure as in Example 1 was performed. The results are shown in Table 1. In this method, the water permeability FR was greatly reduced and the disassembled hollow fiber membrane was noticeably dark blue.
[0022]
(Comparative Example 2)
A fluorescent dye synthesized with a fluorescent labeled polymer (FITC-Dxt-T-200) synthesized by the method of JP-A-59-136431 was used, and an ion exchange filter paper CM (manufactured by Toyo Roshi) was used as a detection medium. Except for this, the same procedure as in Example 1 was performed. The results are shown in Table 1. Since detection of fluorescent dyeing spots was not good, the concentration of dextran was 200 mg / liter, and the water permeability FR was considerably reduced.
[0023]
Example 4
The membrane module used in Comparative Example 2 was used in the same manner as in Example 1 except that the fluorescent dye was CI Fluorescent Brightener 86, 0.04 mg / liter aqueous solution. Thirteen fine fluorescent staining spots remained, and it was found that the detection power was insufficient in Comparative Example 2, and repair was performed again. The results are shown in Table 1.
[0024]
[Table 1]
Figure 0004058657
[0025]
(Example 5)
A composite hollow fiber is obtained by interfacial polymerization using piperazine and triethylenediamine (molar ratio 99: 1) as amine components and trimesic acid chloride as an acid component on a polysulfone hollow fiber porous membrane (inner diameter 200 μm, outer diameter 300 μm) as a nanofiltration membrane. A thread selective permeable membrane was manufactured, and a composite hollow fiber selective permeable membrane module having an effective length of 185 mm and 6000 hollow fibers was assembled. Evaluation was carried out using the evaluation method II of the membrane module. Among these, a membrane module having poorer permeation performance (expected performance FR: 250 liters / day, RJ: 70%, FR: 270 liters / day or more, RJ: 55% or less) was selected. Permeation performance before leak inspection is FR: 285 liters / day, RJ: 44.0%, E. coli count is more than 3 million raw water / cm 3 and permeated water 2800 / cm 3 Red 106 was used, and ion exchange filter paper DEAE (manufactured by Toyo Filter Paper) was used as a leak detection medium. The results are shown in Table 2.
[0026]
(Example 6)
The same procedure as in Example 5 was conducted except that food red No. 104 was used as the dye. The results are shown in Table 2.
[0027]
(Comparative Example 3)
The procedure was the same as in Example 5 except that food red No. 3 was used as the dye. The results are shown in Table 2. Edible Red No. 3 lacked detection power and contaminated the membrane module.
[0028]
(Example 7)
The same procedure as in Example 5 was performed except that eosin was used as the dye. The results are shown in Table 2.
[0029]
[Table 2]
Figure 0004058657
[0030]
[Action]
Detection is facilitated by detecting the dye with fluorescence, and the dye used can be of low concentration. Contamination of the membrane and members of the selectively permeable membrane module that has been inspected is reduced and can be eliminated.
[0031]
【The invention's effect】
For this reason, the permeation amount of the selectively permeable membrane module, which has been subjected to leak inspection, is not reduced, and the aesthetic appearance of the selectively permeable membrane module is maintained. As a result, hygienic and safe permeated water can be obtained. Since the water permeability of the membrane module can be repaired without being damaged, a highly water-permeable membrane module free from defects can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 shows a flow sheet of an evaluation apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Membrane module 2 Supply water piping 3 Permeated water piping 4 Concentrated water piping 11 Raw water tank 12 Pump 13 Valves

Claims (8)

選択透過性膜モジュールのリーク検査に際して、分子量が300から3000である蛍光染料溶液を用いて膜モジュールの欠陥からリークする染料を蛍光で検知してリーク箇所を特定する選択透過性膜モジュールのリーク検査方法であり、選択透過性膜モジュールが酢酸セルロースまたは三酢酸セルロースよりなり、蛍光染料がジアミノスチルベンジスルホン酸誘導体の1種または2種以上の混合物である選択透過性膜モジュールのリーク検査方法In the leak inspection of the selectively permeable membrane module, the leak inspection of the selectively permeable membrane module that uses a fluorescent dye solution having a molecular weight of 300 to 3000 to detect the leaking dye from the defect of the membrane module by fluorescence and identifies the leak location A method for inspecting a leak of a selectively permeable membrane module, wherein the selectively permeable membrane module is made of cellulose acetate or cellulose triacetate, and the fluorescent dye is one or a mixture of two or more diaminostilbene disulfonic acid derivatives . 前記ジアミノスチルベンジスルホン酸誘導体がThe diaminostilbene disulfonic acid derivative is C. I. Fluorescent Brightener 24C. I. Fluorescent Brightener 24 , C. I. Fluorescent Brightener 86C. I. Fluorescent Brightener 86 , C. I. Fluorescent Brightener 260C. I. Fluorescent Brightener 260 である請求項1の方法。The method of claim 1 wherein 選択透過性膜モジュールのリーク検査に際して、分子量が300から3000である蛍光染料溶液を用いて膜モジュールの欠陥からリークする染料を蛍光で検知してリーク箇所を特定する選択透過性膜モジュールのリーク検査方法であり、選択透過性膜の分離活性層が主成分としてピペラジンとトリメシン酸残基よりなる重合体であり、蛍光染料が食用赤色104号及び/または食用赤色106号である選択透過性膜モジュールのリーク検査方法In the leak inspection of the selectively permeable membrane module, the leak inspection of the selectively permeable membrane module that uses a fluorescent dye solution having a molecular weight of 300 to 3000 to detect the leaking dye from the defect of the membrane module by fluorescence and identifies the leak location A selectively permeable membrane module in which the separation active layer of the permselective membrane is a polymer composed of piperazine and a trimesic acid residue as main components, and the fluorescent dye is food red 104 and / or food red 106 Leak inspection method . 選択透過性膜モジュールのリーク検査に際して、分子量が300から3000である蛍光染料溶液を用いて膜モジュールの欠陥からリークする染料を蛍光で検知してリーク箇所を特定する選択透過性膜モジュールのリーク検査方法であり、選択透過性膜の分離活性層が主成分としてピペラジンとトリメシン酸残基よりなる重合体であり、蛍光染料がエオシン及び/またはその誘導体である選択透過性膜モジュールのリーク検査方法In the leak inspection of the selectively permeable membrane module, the leak inspection of the selectively permeable membrane module that uses a fluorescent dye solution having a molecular weight of 300 to 3000 to detect the leaking dye from the defect of the membrane module by fluorescence and identifies the leak location A method for inspecting a leak of a selectively permeable membrane module, wherein the separation active layer of the selectively permeable membrane is a polymer composed of piperazine and a trimesic acid residue as main components, and the fluorescent dye is eosin and / or a derivative thereof . 選択透過性膜モジュールが中空糸選択透過性膜モジュールである請求項1から4いずれかに記載の方法。The method according to any one of claims 1 to 4 , wherein the selectively permeable membrane module is a hollow fiber selectively permeable membrane module. 蛍光染料が蛍光能を有する水溶性食用色素である請求項1から5いずれかに記載の方法。The method according to any one of claims 1 to 5 , wherein the fluorescent dye is a water-soluble food colorant having fluorescence ability. 膜モジュールの開口部から流出する流れに紫外線を照射して蛍光染料を蛍光で可視化しリーク箇所を特定する請求項1から6いずれかに記載の方法。The method according to any one of claims 1 to 6, wherein the leaking portion is identified by irradiating the flow flowing out from the opening of the membrane module with ultraviolet rays to visualize the fluorescent dye with fluorescence. 膜モジュールの透過水流出部に検出媒体を取り付け、欠陥から流出した蛍光染料が検出媒体を染めた後に、この媒体上の蛍光染料の染着斑が発する蛍光を検出しリーク箇所を特定する請求項1から6いずれかに記載の方法。A detection medium is attached to the permeate outflow portion of the membrane module, and after the fluorescent dye that has flowed out of the defect has dyed the detection medium, the fluorescence emitted from the stained spots of the fluorescent dye on the medium is detected to identify the leak location. The method according to any one of 1 to 6.
JP28241098A 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module Expired - Fee Related JP4058657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28241098A JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28241098A JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Publications (2)

Publication Number Publication Date
JP2000107575A JP2000107575A (en) 2000-04-18
JP4058657B2 true JP4058657B2 (en) 2008-03-12

Family

ID=17652056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28241098A Expired - Fee Related JP4058657B2 (en) 1998-10-05 1998-10-05 Method for inspecting leak of selectively permeable membrane module

Country Status (1)

Country Link
JP (1) JP4058657B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352751A1 (en) * 2013-01-16 2015-12-10 General Electric Company An integrated apparatus and method for continuous ion exchange membrane casting and processing
US10532327B2 (en) 2015-07-20 2020-01-14 Ecolab Usa Inc. Methods of conditioning membranes

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809636B1 (en) * 2000-06-02 2003-01-24 Vivendi METHOD FOR MONITORING THE INTEGRITY OF A MODULE, OR A MODULE SYSTEM, NANOFILTRATION OR REVERSE OSMOSIS
US6821428B1 (en) 2002-03-28 2004-11-23 Nalco Company Method of monitoring membrane separation processes
US6730227B2 (en) * 2002-03-28 2004-05-04 Nalco Company Method of monitoring membrane separation processes
JP4538732B2 (en) * 2005-02-28 2010-09-08 東洋紡績株式会社 Hollow fiber membrane module leak detection method and leak detection device
JP4586977B2 (en) * 2005-03-18 2010-11-24 栗田工業株式会社 Separation membrane leak inspection method
JP4816611B2 (en) * 2007-09-27 2011-11-16 東レ株式会社 Method for identifying damaged membrane in submerged hollow fiber membrane module
US7715008B2 (en) * 2008-03-21 2010-05-11 Xerox Corporation System and method of optically monitoring contamination of a machine component
JP5293495B2 (en) * 2009-08-13 2013-09-18 富士通株式会社 Liquid supply system
DE102012001591B4 (en) * 2012-01-27 2018-10-18 Sartorius Stedim Biotech Gmbh Method for detecting defects in an ultrafiltration membrane
EP2886187B1 (en) * 2012-11-21 2017-04-05 LG Chem, Ltd. Outstandingly chlorine resistant high-flow-rate water-treatment separation membrane and production method for same
US9810596B2 (en) * 2013-10-01 2017-11-07 The Boeing Company Leak detection in composite structures
KR101555681B1 (en) * 2014-07-25 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
KR101555682B1 (en) * 2014-12-09 2015-10-01 (주)가온인더스트리 Leakage detecting apparatus
IL257782B1 (en) 2015-08-31 2024-01-01 Porifera Inc Water purification systems and methods having pressurized draw stream with higher hydrostatic and osmotic pressures than a feed stream
KR102212128B1 (en) * 2018-05-10 2021-02-17 주식회사 엘지화학 Reverse osmosis membrane, method for preparing reverse osmosis membrane, and water treatment module
JP7217163B2 (en) * 2019-02-05 2023-02-02 三菱ケミカル・クリンスイ株式会社 Display method of water purifier
CN110639367B (en) * 2019-10-25 2023-10-13 华南理工大学 Method and device for measuring permeation quantity of non-contact hollow fiber membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150352751A1 (en) * 2013-01-16 2015-12-10 General Electric Company An integrated apparatus and method for continuous ion exchange membrane casting and processing
US10532327B2 (en) 2015-07-20 2020-01-14 Ecolab Usa Inc. Methods of conditioning membranes

Also Published As

Publication number Publication date
JP2000107575A (en) 2000-04-18

Similar Documents

Publication Publication Date Title
JP4058657B2 (en) Method for inspecting leak of selectively permeable membrane module
Korenak et al. Efficiency and economic feasibility of forward osmosis in textile wastewater treatment
JP5101284B2 (en) How to test the separation module
TWI790987B (en) Method and apparatus for monitoring deposit formation in a process comprising an aequeous flow
AU2003203014B2 (en) Method of monitoring membrane separation processes
JP5464989B2 (en) Membrane separation process monitoring system
Eykamp Microfiltration and ultrafiltration
JP5079372B2 (en) Membrane separation method and membrane separation apparatus
Krahnstöver et al. Comparison of methods to assess the integrity and separation efficiency of ultrafiltration membranes in wastewater reclamation processes
Kramer et al. Quantifying defects in ceramic tight ultra-and nanofiltration membranes and investigating their robustness
JP4538732B2 (en) Hollow fiber membrane module leak detection method and leak detection device
Kim et al. Optimization of backflushing conditions for ceramic ultrafiltration membrane of disperse dye solutions
JPH06254358A (en) Detection of defect of reverse osmosis membrane
Perona et al. Hyperfiltration. Processing of pulp mill sulfite wastes with a membrane dynamically formed from feed constituents
CN104399374B (en) A kind of method detecting complex reverse osmosis membrane desalination layer integrity and detection device thereof
WO2023127810A1 (en) Diagnosis method for separation membrane module and deterioration diagnosis device for separation membrane module
JP5089414B2 (en) Hollow fiber membrane module leak inspection method
JPH11165046A (en) Defect detecting method of hollow fiber membrane module
Patel et al. Separation of ternary sodium chloride/Reactive Black-5 aqueous solutions using two different modules in a nanofiltration pilot plant
EP4316631A1 (en) Method for inspecting damage in reverse osmosis membrane
US20240159687A1 (en) Method for inspecting damage in reverse osmosis membrane
Sim Crossflow sampler-modified fouling index ultrafiltration (CFS-MFIUF) as a potential fouling indicator for reverse osmosis filtration system
JPH06182164A (en) Membrane separation device
Wilf Membrane-Based Desalination Processes: Challenges and Solutions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees