JP4057811B2 - Engine exhaust gas purification catalyst - Google Patents

Engine exhaust gas purification catalyst Download PDF

Info

Publication number
JP4057811B2
JP4057811B2 JP2001399571A JP2001399571A JP4057811B2 JP 4057811 B2 JP4057811 B2 JP 4057811B2 JP 2001399571 A JP2001399571 A JP 2001399571A JP 2001399571 A JP2001399571 A JP 2001399571A JP 4057811 B2 JP4057811 B2 JP 4057811B2
Authority
JP
Japan
Prior art keywords
catalyst
terms
aqueous solution
solution containing
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001399571A
Other languages
Japanese (ja)
Other versions
JP2003190787A (en
Inventor
秀雄 細野
克郎 林
正浩 平野
啓 磯崎
聰 田中
猛 福本
国生 小森
千尋 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Japan Science and Technology Agency
Futaba Industrial Co Ltd
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Denki Kagaku Kogyo KK
Futaba Industrial Co Ltd
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Denki Kagaku Kogyo KK, Futaba Industrial Co Ltd, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2001399571A priority Critical patent/JP4057811B2/en
Publication of JP2003190787A publication Critical patent/JP2003190787A/en
Application granted granted Critical
Publication of JP4057811B2 publication Critical patent/JP4057811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの排ガス中に含まれる有害成分を浄化する触媒に関するものである。
【0002】
【従来の技術】
近年、ディーゼルエンジンから排出される微粒子物質(PM:particulate matter)が環境衛生上の大きな問題となっている。PMは主に固体状の炭素微粒子(SOOT)と液体状の炭化水素微粒子(SOF:soluble organic fraction)からなっている。
PMの浄化方法の代表的なものとして、交互再生方式と呼ばれ、耐熱性のハニカムフィルタ(以下、フィルタという。)を2個使用し、一方のフィルタでPMを捕集しながら、圧力損失が上昇した他方のフィルタをバーナーや電気ヒーター等で600℃以上に加熱しPMを燃焼させることによってフィルタを再生し、繰り返し使用する方法や、逆洗方式と呼ばれ、フィルタに堆積したPMをエアーで吹き飛ばしてフィルタから放出した後、バーナーや電気ヒーター等で600℃以上に加熱しPMを燃焼させる方法等が検討されてきた。
しかしながら、これらの方法では、PMの燃焼によりフィルタの温度が急激に上昇するとフィルタが割れたり溶損したりする問題や、装置が大がかりになり車に容易に装着出来ない等の問題があった。
そのため、Pt系酸化触媒により低温で定常的にPMを燃焼させる技術が開発されている。例えば、排ガス中のNOをNO2に酸化し、このNO2がPMを酸化燃焼させる技術(特開平10−159552号公報)や、白金族金属とアルカリ土類金属酸化物の混合物を燃焼触媒とする技術(特公平7−106290号公報)等が提案されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のPt系の酸化触媒は、何れも排ガス温度が高温でなければPM特にSOOT成分が燃焼し難く、ディーゼルエンジン車が低速走行やアイドリング時の排ガス温度ではPMがフィルタ内に堆積し、この間にフィルタの圧力損失の上昇が避けられなかった。
【0004】
【課題を解決するための手段】
本発明者らは、この点について鋭意検討を重ねたところ、特定の酸化物を使用することにより前記課題を解消できるとの知見を得て発明を完成するに至った。すなわち、12CaO・7Alを主成分とし、酸素ラジカルを4x10 20 /cm 以上含有してなることを特徴とするエンジン排ガス浄化用触媒であり、金属成分を担持した該エンジン排ガス浄化用触媒であり、金属成分が金、銀、銅、鉄、亜鉛、マンガン、セリウム及び白金族元素の中から選ばれた1種又は2種以上である該エンジン排ガス浄化用触媒である。また、ガソリンエンジン車の排ガスには、軽油を使用するディーゼルエンジン車の排ガスと同種の未燃焼有害物が含まれており、それらの除去にも本発明の触媒は有効である。
【0005】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の12CaO・7Al23(以下、C127という。)は、カルシウムアルミネート化合物の一種であり、12CaO・7Al23の他に、3CaO・Al23(C3A)CaO・Al23(CA)、CaO・2Al23(CA2)、CaO・6Al23(CA6)等が知られている。これらはアルミナセメントの成分である。本発明のエンジン排ガス浄化用触媒としては、C127を主成分とするものが好ましい。
【0006】
127は、アルカリ金属、アルカリ土類金属やその他の元素を不純物として含有する場合があるが、本発明の効果を妨げない範囲であれば特に問題はない。
また、C127はセメント鉱物であり、水分が存在すると水和反応を起こしカルシウムアルミネート水和物を生成するが、本発明の効果を妨げない範囲であれば特に問題はない。
しかしながら、C127作製中に、水を用いたり、合成・焼成雰囲気中に水分が存在すると、OH-イオンがC127中に包接され、フリー酸素イオン(O2-)が減少し、酸素ラジカルが有効に生成しないため、可能な限り水分を除くことが好ましい。
【0007】
127は、一般にCaO原料(炭酸カルシウム、水酸化カルシウム等)とAl23原料(アルミナ、水酸化アルミナ等)を混合した後、大気中で1200〜1350℃程度の温度で焼成することにより合成され、酸素ラジカルの含有量は1018/cm3 程度である。
一方、雰囲気中に乾燥酸素ガスをフローしながら合成すると酸素ラジカルの含有量は、1019/cm3 以上と、通常の条件と比べ顕著に増やすことができる。
酸素ラジカルとは、(O-、O2-及びO3-)で表される原子状及び分子状の酸素ラジカルであり、その含有量はESR、ラマンスペクトル測定から定量される。
本発明では、エンジンから排出される微粒子物質であるPMの燃焼にC127に含有される酸素ラジカル、特にO- が多いほど好ましい。
【0008】
127の粒度は、特に限定されるものではないが、PMの燃焼を効率的に行うため比表面積が1m2/g以上であることが好ましく、3m2/g以上であることがさらに好ましい。
【0009】
本発明では、C127に金属成分を担持すると、エンジンから排出される微粒子物質であるPMの燃焼にさらに有効である。その作用機構については充分解明されていないが、PMと酸素ラジカルの酸化反応を促進する役割を果たしていると推察される。
金属成分としては、特に限定されるものではないが、金、銀、銅、鉄、亜鉛、マンガン、セリウム及び白金、並びにイリジウム、オスミウム、パラジウム、ロジウム、ルテニウム等の白金族元素の中から選ばれた1種又は2種以上であることが好ましい。
また、金属成分の存在形態は、特に限定されるものではない。
【0010】
本発明の触媒担体としては、特に限定されるものではないが、セラミックフォーム、金属発泡体、ワイヤーメッシュ、セラミック又は金属のハニカム、目封じタイプのセラミックハニカム(以下、セラミックフィルタという。)等が挙げられる。中でも、ディーゼルエンジンの排ガス中のPMを捕集・燃焼する点でセラミックフィルタが好ましい。
セラミックフィルタとしては、炭化珪素、コーディエライト、ムライト、アルミナ、ジルコニア、チタニア、リン酸チタン、アルミニウムチタネート、アルミノシリケート等が挙げられる。中でも、ディーゼルエンジンの排ガス中のPMを捕集・燃焼する点で炭化珪素やコーディエライトが好ましい。
【0011】
【発明の実施の形態】
以下、実施例に基づき本発明を詳細に説明する。
【0012】
【実施例】
実験例1
ディーゼルエンジンの排ガスから捕集したPMと表1に示す各種触媒を質量比で1:10に物理混合したものを、大気雰囲気中で熱重量示差熱分析装置(TG−DTA)を用いPMの燃焼試験を行った。結果を表1に併記する。
【0013】
<使用材料>
触媒A:試薬の炭酸カルシウムと試薬の酸化アルミニウムを所定のモル比=12:7で混合し、ペレット状に加圧して成形したものをアルミナ管を使用した管状炉内に置き、大気中で1350℃、2時間加熱した後ボールミルで粉砕し、C127 の粉末を得た。酸素ラジカルの含有量は1018/cm3 、比表面積は3m2 /gであった。
触媒B:試薬の炭酸カルシウムと試薬の酸化アルミニウムを所定のモル比で混合し、ペレット状に加圧して成形したものをアルミナ管を使用した管状炉内に置き、酸素ガスをフローしながら1350℃、2時間加熱した後ボールミルで粉砕し、C127 の粉末を得た。酸素ラジカルの含有量は4×1020/cm3 、比表面積は3m2 /gであった。
触媒C:比表面積100m2/gのγ−Al2310gにPtに換算して0.5gの塩化白金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPt担持触媒を得た。
【0014】
<測定方法>
TG−DTA:サンプル量20mg、空気流量100ml/分、昇温速度10℃/分、測定温度範囲は室温〜700℃、PMの燃焼温度は発熱ピーク温度とした。
【0015】
【表1】

Figure 0004057811
【0016】
表1より、本発明のC127は、PMの燃焼温度を顕著に低下させる効果を奏することが判る。
【0017】
実験例2
表2に示すように、C127 、γ−Al23に金属成分を担持した触媒について、実験例1と同様にPMの燃焼試験を行った。結果を表2に併記する。
【0018】
<使用材料>
触媒D1:触媒A10gにAuに換算して0.5gの塩化金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAu担持触媒を得た。
触媒D2:触媒B10gにAuに換算して0.5gの塩化金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で8時間焼成してAu担持触媒を得た。
触媒D3:γ−Al2310gにAuに換算して0.5gの塩化金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAu担持触媒を得た。
【0019】
触媒E1:触媒A10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg担持触媒を得た。
触媒E2:触媒B10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg担持触媒を得た。
触媒E3:γ−Al2310gにAgに換算して0.5gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg担持触媒を得た。
【0020】
触媒F1:触媒A10gにCuに換算して0.5gの硝酸銅を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu担持触媒を得た。
触媒F2:触媒B10gにCuに換算して0.5gの硝酸銅を含む水溶液10m1を加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu担持触媒を得た。
触媒F3:γ−Al2310gにCuに換算して0.5gの硝酸銅を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu担持触媒を得た。
【0021】
触媒G1:触媒A10gにFeに換算して0.5gの硝酸第二鉄を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してFe担持触媒を得た。
触媒G2:触媒B10gにFeに換算して0.5gの硝酸第二鉄を含む水溶液1mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してFe担持触媒を得た。
触媒G3:γ−Al2310gにFeに換算して0.5gの硝酸第二鉄を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してFe担持触媒を得た。
【0022】
触媒H1:触媒A10gにZnに換算して0.5gの酢酸亜鉛を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してZn担持触媒を得た。
触媒H2:触媒B10gにZnに換算して0.5gの酢酸亜鉛を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してZn担持触媒を得た。
触媒H3:γ−Al2310gにZnに換算して0.5gの酢酸亜鉛を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してZn担持触媒を得た。
【0023】
触媒I1:触媒A10gにMnに換算して0.5gの酢酸マンガンを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してMn担持触媒を得た。
触媒I2:触媒B10gにMnに換算して0.5gの酢酸マンガンを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してMn担持触媒を得た。
触媒I3:γ−Al2310gにMnに換算して0.5gの酢酸マンガンを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してMn担持触媒を得た。
【0024】
触媒J1:触媒A10gにCeに換算して0.5gの酢酸セリウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCe担持触媒を得た。
触媒J2:触媒B10gにCeに換算して0.5gの酢酸セリウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCe担持触媒を得た。
触媒J3:γ−Al2310gにCeに換算して0.5gの酢酸セリウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCe担持触媒を得た。
【0025】
触媒K1:触媒A10gにPtに換算して0.5gの塩化白金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPt担持触媒を得た。
触媒K2:触媒B10gにPtに換算して0.5gの塩化白金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPt担持触媒を得た。
触媒K3(触媒C):γ−Al2310gにPtに換算して0.5gの塩化白金酸を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPt担持触媒を得た。
【0026】
触媒L1:触媒A10gにPdに換算して0.5gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPd担持触媒を得た。
触媒L2:触媒B10gにPdに換算して0.5gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPd担持触媒を得た。
触媒L3:γ−Al2310gにPdに換算して0.5gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPd担持触媒を得た。
【0027】
触媒M1:触媒A10gにRhに換算して0.5gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してPd担持触媒を得た。
触媒M2:触媒B10gにRhに換算して0.5gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してRh担持触媒を得た。
触媒M3:γ−Al2310gにRhに換算して0.5gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してRh担持触媒を得た。
【0028】
触媒N1:触媒A10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
触媒N2:触媒B10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
触媒N3:γ−Al2310gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.5gの硝酸ロジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
【0029】
触媒O1:触媒A10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸ルテニウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Ru担持触媒を得た。
触媒O2:触媒B10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸ルテニウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Ru担持触媒を得た。
触媒O3:γ−Al2310gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.5gの硝酸ルテニウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Ru担持触媒を得た。
【0030】
触媒P1:触媒A10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
触媒P2:触媒B10gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.005gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
触媒P3:γ−Al2310gにAgに換算して0.5gの硝酸銀を含む水溶液10mlと、Rhに換算して0.5gの硝酸パラジウムを含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してAg、Rh担持触媒を得た。
【0031】
触媒Q1:触媒A10gにCuに換算して0.5gの硝酸銅を含む水溶液10mlと、Agに換算して0.05gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu、Ag担持触媒を得た。
触媒Q2:触媒B10gにCuに換算して0.5gの硝酸銅を含む水溶液10mlと、Agに換算して0.05gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu、Ag担持触媒を得た。
触媒Q3:γ−Al2310gにCuに換算して0.5gの硝酸銅を含む水溶液10mlと、Agに換算して0.05gの硝酸銀を含む水溶液10mlを加えた。十分混合した後蒸発乾固し、600℃で3時間焼成してCu、Ag担持触媒を得た。
【0032】
【表2】
Figure 0004057811
【0033】
表2より、本発明のC127に金属成分を担持した触媒は、何れもPMの燃焼温度を顕著に低下させる効果を奏することが判る。
【0034】
実験例3
実験例2と同様な条件で調製した種々の触媒2kgを水と湿式粉砕してスラリーを調製し、平均気孔径15μm、気孔率58%、外形寸法100mmφ×140mmL、セル数160cpiの炭化珪素製フィルタをスラリーに浸漬して、フィルタに40g/L担持した。
これらのフィルタをエンジンベンチ試験装置で1.5Lのディーゼルエンジンを使用し、排ガスのフィルタ入り口温度200℃の条件で、捕集開始から90分後のフィルタの圧力損失の変化を表3に示した。
【0035】
【表3】
Figure 0004057811
【0036】
表3より、本発明のC127及びそれに金属成分を担持した触媒は、フィルタの圧力損失の上昇が少なく、排ガス中のPMを燃焼させていることが判る。
【0037】
【発明の効果】
本発明のC127を主成分とするエンジン排ガス浄化用触媒は、従来のものと比ベエンジンの排ガス中のPMを低温で燃焼させる優れた効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst for purifying harmful components contained in engine exhaust gas.
[0002]
[Prior art]
In recent years, particulate matter (PM) discharged from diesel engines has become a major environmental health problem. PM is mainly composed of solid carbon fine particles (SOOT) and liquid hydrocarbon fine particles (SOF: soluble organic fraction).
A typical method for purifying PM is called an alternate regeneration system, which uses two heat-resistant honeycomb filters (hereinafter referred to as filters), and collects PM with one filter while reducing pressure loss. The other filter that has risen is heated to 600 ° C or higher with a burner or electric heater to burn the PM, and the filter is regenerated and used repeatedly. After blowing and discharging from a filter, the method etc. which are heated to 600 degreeC or more with a burner, an electric heater, etc. and burn PM are examined.
However, these methods have a problem that the filter is cracked or melted when the temperature of the filter is suddenly increased due to combustion of PM, and that the apparatus becomes large and cannot be easily attached to a car.
Therefore, a technique for constantly burning PM at a low temperature using a Pt-based oxidation catalyst has been developed. For example, NO in exhaust gas is oxidized to NO 2 , and this NO 2 oxidizes and burns PM (Japanese Patent Laid-Open No. 10-159552), or a mixture of a platinum group metal and an alkaline earth metal oxide as a combustion catalyst. A technique (Japanese Patent Publication No. 7-106290) or the like has been proposed.
[0003]
[Problems to be solved by the invention]
However, in the conventional Pt-based oxidation catalysts, PM, especially the SOOT component, is difficult to burn unless the exhaust gas temperature is high, and PM accumulates in the filter at the exhaust gas temperature when the diesel engine vehicle is running at low speed or idling. During this time, an increase in the pressure loss of the filter was inevitable.
[0004]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies on this point, and have obtained the knowledge that the above-mentioned problems can be solved by using a specific oxide, and have completed the invention. That is, the main component 12CaO · 7Al 2 O 3, oxygen radical is a catalyst for engine exhaust gas purification, characterized by containing 4x10 20 / cm 3 or more, for the engine exhaust gas purifying carrying a metal component It is a catalyst for exhaust gas purification of an engine which is a catalyst and the metal component is one or more selected from gold, silver, copper, iron, zinc, manganese, cerium and platinum group elements. Further, the exhaust gas of gasoline engine vehicles contains unburned harmful substances of the same type as the exhaust gas of diesel engine vehicles that use light oil, and the catalyst of the present invention is also effective in removing them.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
12CaO · 7Al 2 O 3 (hereinafter referred to as C 12 A 7 ) of the present invention is a kind of calcium aluminate compound, and in addition to 12CaO · 7Al 2 O 3 , 3CaO · Al 2 O 3 (C 3 A ) CaO · Al 2 O 3 ( CA), CaO · 2Al 2 O 3 (CA 2), CaO · 6Al 2 O 3 (CA 6) and the like are known. These are components of alumina cement. The engine exhaust gas purification catalyst of the present invention is preferably a catalyst containing C 12 A 7 as a main component.
[0006]
C 12 A 7 may contain an alkali metal, an alkaline earth metal or other element as an impurity, but there is no particular problem as long as it does not hinder the effects of the present invention.
C 12 A 7 is a cement mineral. When water is present, it causes a hydration reaction to produce calcium aluminate hydrate, but there is no particular problem as long as it does not hinder the effects of the present invention.
However, if water is used during the production of C 12 A 7 or if moisture is present in the synthesis / firing atmosphere, OH ions are included in C 12 A 7 and free oxygen ions (O 2− ) are reduced. However, since oxygen radicals are not effectively generated, it is preferable to remove moisture as much as possible.
[0007]
C 12 A 7 is generally calcined in the atmosphere at a temperature of about 1200 to 1350 ° C. after mixing a CaO raw material (calcium carbonate, calcium hydroxide, etc.) and an Al 2 O 3 raw material (alumina, alumina hydroxide, etc.). The oxygen radical content is about 10 18 / cm 3 .
On the other hand, when synthesis is performed while flowing dry oxygen gas in the atmosphere, the content of oxygen radicals can be remarkably increased to 10 19 / cm 3 or more compared to normal conditions.
The oxygen radicals are atomic and molecular oxygen radicals represented by (O , O 2− and O 3− ), and their contents are quantified from ESR and Raman spectrum measurements.
In the present invention, it is preferable that oxygen radicals contained in C 12 A 7 , particularly O 2 −, increase in the combustion of PM, which is a particulate material discharged from the engine.
[0008]
The particle size of the C 12 A 7 is not particularly limited, it is preferable that the specific surface area for causing combustion of the PM efficiently is 1 m 2 / g or more, still be at 3m 2 / g or more preferable.
[0009]
In the present invention, when a metal component is supported on C 12 A 7 , it is more effective for combustion of PM which is a particulate material discharged from the engine. Although its mechanism of action has not been fully elucidated, it is presumed that it plays a role in promoting the oxidation reaction of PM and oxygen radicals.
The metal component is not particularly limited, but is selected from gold, silver, copper, iron, zinc, manganese, cerium and platinum, and platinum group elements such as iridium, osmium, palladium, rhodium and ruthenium. It is preferable that it is 1 type or 2 types or more.
Moreover, the presence form of a metal component is not specifically limited.
[0010]
The catalyst carrier of the present invention is not particularly limited, and examples thereof include ceramic foam, metal foam, wire mesh, ceramic or metal honeycomb, plug-type ceramic honeycomb (hereinafter referred to as ceramic filter), and the like. It is done. Among these, a ceramic filter is preferable in terms of collecting and burning PM in exhaust gas from a diesel engine.
Examples of the ceramic filter include silicon carbide, cordierite, mullite, alumina, zirconia, titania, titanium phosphate, aluminum titanate, and aluminosilicate. Among these, silicon carbide and cordierite are preferable in terms of collecting and burning PM in the exhaust gas of the diesel engine.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on examples.
[0012]
【Example】
Experimental example 1
Combustion of PM using a thermogravimetric differential thermal analyzer (TG-DTA) in which PM collected from exhaust gas from a diesel engine and various catalysts shown in Table 1 are physically mixed at a mass ratio of 1:10 A test was conducted. The results are also shown in Table 1.
[0013]
<Materials used>
Catalyst A: Reagent calcium carbonate and reagent aluminum oxide were mixed at a predetermined molar ratio = 12: 7, pressed into a pellet and molded in a tubular furnace using an alumina tube, and 1350 in the atmosphere. After heating at 0 ° C. for 2 hours, the mixture was pulverized with a ball mill to obtain C 12 A 7 powder. The oxygen radical content was 10 18 / cm 3 and the specific surface area was 3 m 2 / g.
Catalyst B: Calcium carbonate as a reagent and aluminum oxide as a reagent are mixed at a predetermined molar ratio, pressed into a pellet shape, placed in a tubular furnace using an alumina tube, and 1350 ° C. while flowing oxygen gas. After heating for 2 hours, the mixture was pulverized with a ball mill to obtain C 12 A 7 powder. The oxygen radical content was 4 × 10 20 / cm 3 and the specific surface area was 3 m 2 / g.
Catalyst C: 10 g of an aqueous solution containing 0.5 g of chloroplatinic acid in terms of Pt was added to 10 g of γ-Al 2 O 3 having a specific surface area of 100 m 2 / g. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pt-supported catalyst.
[0014]
<Measurement method>
TG-DTA: sample amount 20 mg, air flow rate 100 ml / min, heating rate 10 ° C./min, measurement temperature range was room temperature to 700 ° C., and PM combustion temperature was exothermic peak temperature.
[0015]
[Table 1]
Figure 0004057811
[0016]
From Table 1, it can be seen that C 12 A 7 of the present invention has the effect of significantly reducing the combustion temperature of PM.
[0017]
Experimental example 2
As shown in Table 2, a PM combustion test was conducted in the same manner as in Experimental Example 1 for a catalyst in which a metal component was supported on C 12 A 7 and γ-Al 2 O 3 . The results are also shown in Table 2.
[0018]
<Materials used>
Catalyst D1: 10 ml of an aqueous solution containing 0.5 g of chloroauric acid in terms of Au was added to 10 g of catalyst A. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Au-supported catalyst.
Catalyst D2: 10 ml of an aqueous solution containing 0.5 g of chloroauric acid in terms of Au was added to 10 g of catalyst B. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 8 hours to obtain an Au-supported catalyst.
Catalyst D3: 10 ml of an aqueous solution containing 0.5 g of chloroauric acid in terms of Au was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Au-supported catalyst.
[0019]
Catalyst E1: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag was added to 10 g of catalyst A. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag-supported catalyst.
Catalyst E2: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag was added to 10 g of catalyst B. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag-supported catalyst.
Catalyst E3: adding an aqueous solution 10ml containing silver nitrate 0.5g in terms of γ-Al 2 O 3 10g to Ag. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag-supported catalyst.
[0020]
Catalyst F1: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu was added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu-supported catalyst.
Catalyst F2: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu was added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu-supported catalyst.
Catalyst F3: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu-supported catalyst.
[0021]
Catalyst G1: 10 ml of an aqueous solution containing 0.5 g of ferric nitrate in terms of Fe was added to 10 g of catalyst A. After thoroughly mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Fe-supported catalyst.
Catalyst G2: 1 ml of an aqueous solution containing 0.5 g of ferric nitrate in terms of Fe was added to 10 g of catalyst B. After thoroughly mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Fe-supported catalyst.
Catalyst G3: 10 ml of an aqueous solution containing 0.5 g of ferric nitrate in terms of Fe was added to 10 g of γ-Al 2 O 3 . After thoroughly mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Fe-supported catalyst.
[0022]
Catalyst H1: 10 ml of an aqueous solution containing 0.5 g of zinc acetate in terms of Zn was added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Zn-supported catalyst.
Catalyst H2: 10 ml of an aqueous solution containing 0.5 g of zinc acetate in terms of Zn was added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Zn-supported catalyst.
Catalyst H3: 10 ml of an aqueous solution containing 0.5 g of zinc acetate in terms of Zn was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Zn-supported catalyst.
[0023]
Catalyst I1: 10 ml of an aqueous solution containing 0.5 g of manganese acetate in terms of Mn was added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Mn-supported catalyst.
Catalyst I2: 10 ml of an aqueous solution containing 0.5 g of manganese acetate in terms of Mn was added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Mn-supported catalyst.
Catalyst 13: 10 ml of an aqueous solution containing 0.5 g of manganese acetate in terms of Mn was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Mn-supported catalyst.
[0024]
Catalyst J1: 10 ml of an aqueous solution containing 0.5 g of cerium acetate in terms of Ce was added to 10 g of catalyst A. After thoroughly mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Ce-supported catalyst.
Catalyst J2: 10 ml of an aqueous solution containing 0.5 g of cerium acetate in terms of Ce was added to 10 g of catalyst B. After thoroughly mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Ce-supported catalyst.
Catalyst J3: 10 ml of an aqueous solution containing 0.5 g of cerium acetate in terms of Ce was added to 10 g of γ-Al 2 O 3 . After thoroughly mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Ce-supported catalyst.
[0025]
Catalyst K1: To 10 g of catalyst A, 10 ml of an aqueous solution containing 0.5 g of chloroplatinic acid in terms of Pt was added. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pt-supported catalyst.
Catalyst K2: 10 ml of an aqueous solution containing 0.5 g of chloroplatinic acid in terms of Pt was added to 10 g of catalyst B. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pt-supported catalyst.
Catalyst K3 (Catalyst C): 10 g of an aqueous solution containing 0.5 g of chloroplatinic acid in terms of Pt was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pt-supported catalyst.
[0026]
Catalyst L1: 10 ml of an aqueous solution containing 0.5 g of palladium nitrate in terms of Pd was added to 10 g of catalyst A. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pd-supported catalyst.
Catalyst L2: 10 ml of an aqueous solution containing 0.5 g of palladium nitrate in terms of Pd was added to 10 g of catalyst B. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pd-supported catalyst.
Catalyst L3: 10 ml of an aqueous solution containing 0.5 g of palladium nitrate in terms of Pd was added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pd-supported catalyst.
[0027]
Catalyst M1: 10 ml of an aqueous solution containing 0.5 g of rhodium nitrate in terms of Rh was added to 10 g of catalyst A. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Pd-supported catalyst.
Catalyst M2: 10 ml of an aqueous solution containing 0.5 g of rhodium nitrate in terms of Rh was added to 10 g of catalyst B. After thoroughly mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Rh-supported catalyst.
Catalyst M3: 10 ml of an aqueous solution containing 0.5 g of rhodium nitrate in terms of Rh was added to 10 g of γ-Al 2 O 3 . After thoroughly mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Rh-supported catalyst.
[0028]
Catalyst N1: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of rhodium nitrate in terms of Rh were added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
Catalyst N2: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of rhodium nitrate in terms of Rh were added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
Catalyst N3: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.5 g of rhodium nitrate in terms of Rh were added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
[0029]
Catalyst O1: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of ruthenium nitrate in terms of Rh were added to 10 g of catalyst A. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Ru supported catalyst.
Catalyst O2: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of ruthenium nitrate in terms of Rh were added to 10 g of catalyst B. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Ru supported catalyst.
Catalyst O3: an aqueous solution 10ml containing silver nitrate 0.5g in terms of Ag on γ-Al 2 O 3 10g, was added an aqueous solution 10ml containing ruthenium nitrate of 0.5g in terms of Rh. After sufficiently mixing, the mixture was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Ru supported catalyst.
[0030]
Catalyst P1: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of palladium nitrate in terms of Rh were added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
Catalyst P2: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.005 g of palladium nitrate in terms of Rh were added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
Catalyst P3: 10 ml of an aqueous solution containing 0.5 g of silver nitrate in terms of Ag and 10 ml of an aqueous solution containing 0.5 g of palladium nitrate in terms of Rh were added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain an Ag and Rh supported catalyst.
[0031]
Catalyst Q1: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu and 10 ml of an aqueous solution containing 0.05 g of silver nitrate in terms of Ag were added to 10 g of catalyst A. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu / Ag supported catalyst.
Catalyst Q2: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu and 10 ml of an aqueous solution containing 0.05 g of silver nitrate in terms of Ag were added to 10 g of catalyst B. After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu / Ag supported catalyst.
Catalyst Q3: 10 ml of an aqueous solution containing 0.5 g of copper nitrate in terms of Cu and 10 ml of an aqueous solution containing 0.05 g of silver nitrate in terms of Ag were added to 10 g of γ-Al 2 O 3 . After sufficiently mixing, it was evaporated to dryness and calcined at 600 ° C. for 3 hours to obtain a Cu / Ag supported catalyst.
[0032]
[Table 2]
Figure 0004057811
[0033]
From Table 2, it can be seen that any of the catalysts having a metal component supported on C 12 A 7 of the present invention has an effect of significantly reducing the combustion temperature of PM.
[0034]
Experimental example 3
2 kg of various catalysts prepared under the same conditions as in Experimental Example 2 were wet pulverized with water to prepare a slurry. The slurry was made of silicon carbide having an average pore diameter of 15 μm, a porosity of 58%, an external dimension of 100 mmφ × 140 mmL, and a cell number of 160 cpi 2 The filter was immersed in the slurry, and 40 g / L was supported on the filter.
Table 3 shows changes in the pressure loss of the filter 90 minutes after the start of collection under the condition that the exhaust gas filter inlet temperature is 200 ° C. using a 1.5 L diesel engine with an engine bench test device. .
[0035]
[Table 3]
Figure 0004057811
[0036]
From Table 3, it can be seen that the catalyst supporting C 12 A 7 and the metal component of the present invention has little increase in the pressure loss of the filter and burns PM in the exhaust gas.
[0037]
【The invention's effect】
The catalyst for purifying engine exhaust gas containing C 12 A 7 as a main component of the present invention has an excellent effect of burning PM in exhaust gas of a conventional engine and a comparative engine at a low temperature.

Claims (3)

12CaO・7Alを主成分とし、酸素ラジカルを4x10 20 /cm 以上含有してなることを特徴とするエンジン排ガス浄化用触媒。The 12CaO · 7Al 2 O 3 as a main component, oxygen radicals 4x10 20 / cm 3 or more containing and catalyst for engine exhaust gas purification, characterized by comprising. 前記触媒が金属成分を担持した請求項記載のエンジン排ガス浄化用触媒。Wherein said catalyst is a catalyst for engine exhaust gas purification according to claim 1, wherein carrying the metal components. 前記金属成分が金、銀、銅、鉄、亜鉛、マンガン、セリウム及び白金族元素の中から選ばれた1種又は2種以上である請求項記載のエンジン排ガス浄化用触媒。The engine exhaust gas purification catalyst according to claim 2 , wherein the metal component is one or more selected from gold, silver, copper, iron, zinc, manganese, cerium and platinum group elements.
JP2001399571A 2001-12-28 2001-12-28 Engine exhaust gas purification catalyst Expired - Fee Related JP4057811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399571A JP4057811B2 (en) 2001-12-28 2001-12-28 Engine exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399571A JP4057811B2 (en) 2001-12-28 2001-12-28 Engine exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2003190787A JP2003190787A (en) 2003-07-08
JP4057811B2 true JP4057811B2 (en) 2008-03-05

Family

ID=27604540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399571A Expired - Fee Related JP4057811B2 (en) 2001-12-28 2001-12-28 Engine exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4057811B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4525909B2 (en) * 2004-10-28 2010-08-18 戸田工業株式会社 Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
JP5024917B2 (en) * 2005-10-26 2012-09-12 三井金属鉱業株式会社 Exhaust gas purification catalyst for gasoline engine and method for producing the same
JP5154890B2 (en) * 2007-11-02 2013-02-27 Dowaエレクトロニクス株式会社 Complex oxide for exhaust gas purification and exhaust gas purification filter for diesel engine
JP4901938B2 (en) * 2009-10-23 2012-03-21 トヨタ自動車株式会社 NOx purification catalyst
US9150423B2 (en) 2010-12-07 2015-10-06 Tokyo Institute Of Technology Ammonia synthesis catalyst and ammonia synthesis method
US9084988B2 (en) 2011-02-07 2015-07-21 Toyota Jidosha Kabushiki Kaisha NOX purification catalyst
EP2680952B1 (en) 2011-02-07 2018-07-11 Toyota Jidosha Kabushiki Kaisha Nox purification catalyst
US9079167B2 (en) 2011-02-07 2015-07-14 Toyota Jidosha Kabushiki Kaisha NOx purification catalyst
WO2012108060A1 (en) 2011-02-07 2012-08-16 Toyota Jidosha Kabushiki Kaisha NOx PURIFICATION CATALYST
KR101940777B1 (en) * 2012-08-30 2019-01-22 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Method for producing conductive mayenite compound powder
JP7269562B2 (en) * 2019-03-07 2023-05-09 太平洋マテリアル株式会社 Catalyst carrier and catalyst manufacturing method

Also Published As

Publication number Publication date
JP2003190787A (en) 2003-07-08

Similar Documents

Publication Publication Date Title
KR950002223B1 (en) Catalyst for purification of exhausted gas from diesel engine
EP0494591B1 (en) Diesel engine exhaust gas-purifying catalyst
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
JP2736099B2 (en) Diesel engine exhaust gas purification catalyst
EP1868718A1 (en) Oxydation catalyst on a substrate utilized for the purification of exhaust gases
JP2891609B2 (en) Diesel engine exhaust gas purification catalyst
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
JP4210552B2 (en) Diesel engine exhaust gas purification catalyst and method for producing the same
JP4057811B2 (en) Engine exhaust gas purification catalyst
CN106061586B (en) Improved catalyzed soot filter
KR20070073776A (en) Catalyzed diesel soot filter and process for its use
KR20170018914A (en) Exhaust gas treatment system
JP2004058013A (en) Purification catalyst for exhaust gas
JP2004330118A (en) Filter for clarifying exhaust gas
JPH08266865A (en) Exhaust gas purification catalyst for diesel engine
JP2825420B2 (en) Diesel engine exhaust gas purification catalyst
CN102470350A (en) Particulate combustion catalyst
WO2013114876A1 (en) Exhaust gas component purifying catalyst material, and particulate filter having catalyst material provided with same
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
JP2005007360A (en) Exhaust gas cleaning filter
JP3823528B2 (en) Exhaust gas purification material and exhaust gas purification apparatus using the same
JP3001170B2 (en) Catalyst for the removal of pachychelate in diesel vehicle exhaust
JP7088951B2 (en) Diesel oxidation catalyst containing manganese
JP5328783B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
JPH0568301B2 (en)

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees