JP4055834B2 - Cylindrical equipment for concrete members - Google Patents

Cylindrical equipment for concrete members Download PDF

Info

Publication number
JP4055834B2
JP4055834B2 JP07913198A JP7913198A JP4055834B2 JP 4055834 B2 JP4055834 B2 JP 4055834B2 JP 07913198 A JP07913198 A JP 07913198A JP 7913198 A JP7913198 A JP 7913198A JP 4055834 B2 JP4055834 B2 JP 4055834B2
Authority
JP
Japan
Prior art keywords
polyamide resin
cylindrical
main body
tubular
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07913198A
Other languages
Japanese (ja)
Other versions
JPH11270291A (en
Inventor
雅之 溝下
勝 岡本
義秋 後藤
博英 橋本
一博 小林
順 桧山
武 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui and Co Ltd
Toray Industries Inc
Original Assignee
Mitsui and Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui and Co Ltd, Toray Industries Inc filed Critical Mitsui and Co Ltd
Priority to JP07913198A priority Critical patent/JP4055834B2/en
Publication of JPH11270291A publication Critical patent/JPH11270291A/en
Application granted granted Critical
Publication of JP4055834B2 publication Critical patent/JP4055834B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Load-Engaging Elements For Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はコンクリート部材用筒状器材に関し、さらに詳しくはコンクリート製パネルセグメントに吊り金具の連結部として埋設される筒状材に関する。
【0002】
【従来の技術】
例えば、トンネル掘削後の岩肌が露出した壁面の表面には、覆壁としてコンクリート製パネルセグメントが多数組み付けられる。このコンクリート製パネルセグメントの施工に当たっては、コンクリート製パネルセグメントが非常に重量物であるため、クレーンやリフト等の吊り上げ機械を使用して行われるが、一般にその吊り上げ機械の吊り金具を連結する部分として、パネルセグメントの中央部に筒状材が埋設されるようになっている。
【0003】
従来、上記の筒状材として、図4に示すように、鋼管から切り出された筒状本体11の内周に吊り金具を螺合連結するためのメネジ部13を加工すると共に、その下端部にアンカー効果を得るために鋼板から切り出した1枚のフランジ12を溶接するようにしたものが使用されていた。しかし、この鋼製の筒状材Pは、コンクリート製パネルセグメントに埋設された状態で多湿下に長期間放置されると、筒状本体やフランジとの溶接部などが酸化腐蝕し、そのためコンクリート製パネルセグメントに対する引き抜き荷重が低下して、やがて使用不能になってしまうという欠点があった。
【0004】
また、従来の鋼製筒状材は、製作に当たっては、鋼材の切削や溶接などの多数の面倒な工程を必要とするため、筒状材自体の製作コストが高くなってしまうという欠点があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、耐腐蝕性に優れると共に、従来の鋼製筒状材に匹敵する引き抜き荷重を発揮するようにするコンクリート部材用筒状器材を提供することにある。
本発明の他の目的は、従来の鋼製筒状材に比べて低コストで製作が可能なコンクリート部材用筒状器材を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明のコンクリート部材用筒状器材は、筒状本体の外周に周方向にリング状または螺旋状に延びる断面が半円形状の突条を一体に有し、前記筒状本体の外周から径方向に延びるフランジおよび、筒状本体の外周に末広がり状に前記断面が半円形状の突条をまたぐように形成されたリブを有するとともに、該筒状本体を短繊維状のガラス繊維を15〜45重量%含有する繊維強化ポリアミド樹脂から成形したことを特徴とするものである。
【0007】
本発明のコンクリート部材用筒状器材(以下、単に筒状材と称する)は、筒状本体が短繊維状のガラス繊維を含有する繊維強化ポリアミド樹脂から成形されたものであるため耐腐蝕性に優れており、長期間にわたり高い引き抜き荷重を維持することができる。しかも、素材がガラス繊維を15〜45重量%含有する繊維強化ポリアミド樹脂であることに加え、筒状本体の外周に周方向にリング状または螺旋状に延びる断面が半円形状の突条を一体に有し、前記筒状本体の外周から径方向に延びるフランジおよび、筒状本体の外周に末広がり状に前記断面が半円形状の突条をまたぐように形成されたリブを有するようにした構造体であるため、コンクリート部材に埋め込んだときの引き抜き荷重を従来の鋼製筒状材に匹敵するか或いはそれ以上にすることができる。
【0008】
また、本発明の筒状材は、ガラス繊維を含有する繊維強化ポリアミド樹脂からなるため、射出成形によって簡単に成形することができ、そのため多数の製作工程を必要とする従来の鋼材製筒状材に比べ低コストで製作することができる。
【0009】
【発明の実施の形態】
図1は、本発明に対して比較例に該当するものであるが、コンクリート部材に埋設するための筒状材を示す。図1に示す筒状材Pは、その筒状本体1が外周壁に断面が半円形状の突起部2としてリング状の突条2aを多段に設けると共に、それら突条2a,2a間にリング状の凹部4を形成するように、ガラス繊維を含有する繊維強化ポリアミド樹脂から一体成形されている。また、筒状本体1の内周壁には、クレーン等の吊り上げ機械の吊り金具(図示せず)を螺合する連結部としてメネジ部3が設けられている。
【0010】
上記筒状材Pは、例えば図2に示すように、コンクリート製パネルセグメントSの略中央部に対し、内側のメネジ部3を空洞状態にするように一体に埋設されるように使用される。このようにコンクリート製パネルセグメントSの中央部に埋設された筒状材Pは、外周壁の多段の突条2aを有するためコンクリート製パネルセグメントSに対してアンカー効果を生じ、軸方向の引張り力に対して強い引き抜き荷重を発揮する。
【0011】
本発明において、筒状本体1の外周に形成される断面が半円形状の突起部2としては、上記のように互いに独立した多数のリング状の突条2aとして形成するほか、これを連続した螺旋状に形成するようにしてもよい。また、突起部2としては、図3に示す筒状本体1のように、端部(下端部)から径方向外側に張り出すフランジ2bとして形成し、また外周壁の周方向の数カ所(図3では4箇所)に、軸方向に末広がり状に拡大するリブ2cとして形成をする。
【0012】
また、これら突起部2を形成する突条2a、フランジ2b、リブ2cなどは、図1のように突条2aだけを設けたのでは効果が弱く、本発明では図3のように複数種類を組み合わせるように設ける。本発明において、筒状本体を構成する繊維強化ポリアミド樹脂は、ガラス繊維は短繊維状であり、かつこのガラス繊維がポリアミド樹脂中に15〜45重量%含有されるようにする。ガラス繊維が配合されることによって筒状材の引張り強度及び引張り弾性率が増大し、外周壁に形成した断面が半円形の突起部(突条部)の構造要件と相まって、筒状材のコンクリート製パネルセグメントSに対する引き抜き荷重を従来の鋼製筒状材に匹敵する大きさか或いはそれ以上にすることができる。
【0013】
ガラス繊維の含有量が15重量%未満であっては、鋼製筒状材に匹敵する引き抜き荷重を得ることが困難になり、また45重量%を超えるほどに多量になると、射出成形することが難しくなるため生産性が低下し、また引き抜き荷重の向上効果もほぼ飽和状態になる。このような補強効果の向上と共に、射出成形性を良好にするため、短繊維状のガラス繊維の長さは、0.01〜3mmの範囲にすることが好ましい。
【0014】
上記繊維強化ポリアミド樹脂のマトリックスとして使用するポリアミド樹脂としては、エンジニアリング樹脂として優れた引張り強度、引張り弾性率を有するナイロン6、ナイロン66を使用することが好ましい。
繊維強化ポリアミド樹脂が含有する補強材としては、上記ガラス繊維のほかに、必要により2〜30重量%程度の無機充填剤を配合してもよい。その無機充填剤としては、例えば、タルク、ワラステナイト、ケイ酸カルシウム、カルサイト、アラゴナイト、ドロマイト、カオリン、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、硫酸カルシウム、クレー、マイカ、シリカ、セリサイト、ガラスビーズ、ガラスフレーク、ガラスバルーン、ガラスパウダーなどを例示することができる。
【0015】
また、本発明の筒状材には、本発明の特徴である耐腐蝕性などの特性を損なわない限り、金属インサート材を補強材として埋設してもよい。この金属インサート材によって筒状材の引張り強度や引張り弾性率を向上させることができる。上述したように本発明の筒状材は、ガラス繊維強化ポリアミド樹脂から成形されているため耐腐蝕性に優れ、コンクリート材に対する引き抜き荷重を長期に維持することができる。また、繊維強化ポリアミド樹脂におけるガラス繊維の含有量が15〜45重量%であること、及び筒状本体の外周に断面が半円形の突起部(突条部)を一体形成していることにより、コンクリート材に対する引き抜き荷重を鋼製筒状材に匹敵或いはそれ以上にすることができる。
【0016】
また、本発明の筒状材は繊維強化ポリアミド樹脂から構成されているので、射出成形により簡単に成形することができ、鋼性筒状材のように鋼材の切削や溶接などの面倒な工程を必要としないので、鋼製筒状材に比べて低コストで製作することができる。
【0017】
【実施例】
実施例1
ナイロン66に平均長0.31mmのガラス繊維を30重量%含有させたポリアミド樹脂組成物を使用し、図3に示す構成からなる筒状材(筒状本体の外径80mm、筒状本体の高さ70mm、幅10mmで外径80mmの突状が3段、フランジの外径100mm、リブが4枚)を射出成形法により一体成形した。
【0018】
この筒状材を、図2に示すようなトンネル施工用のパネルセグメントSの中央部に埋設するように成形し、重量20kNのパネルセグメントSを得た。このコンクリート製パネルセグメントSに埋設された筒状材Pの引き抜き荷重を引き抜き強度試験機により測定したところ、340kNであった。
比較例1
ナイロン66に平均長0.31mmのガラス繊維を30重量%含有させたポリアミド樹脂組成物を使用し、図1に示す構成からなる筒状材(筒状本体の外径60mm、筒状本体の高さ70mm、幅10mmで外径80mmの突状を3段)を射出成形法により一体成形した。
【0019】
この筒状材を使用し、実施例1と同様の構造からなる重量20kNのコンクリート製パネルセグメントSを成形し、このコンクリート製パネルセグメントSに埋設された筒状材Pの引き抜き荷重を実施例1と同様に引き抜き強度試験機により測定したところ、300kNであった。
実施例
ナイロン66に平均長0.31mmのガラス繊維を45重量%含有させたポリアミド樹脂組成物を使用し、実施例1と同一寸法の図3に示す構成からなる筒状材を射出成形法により一体成形した。
【0020】
この筒状材を使用し、実施例1と同様の構造からなる重量20kNのコンクリート製パネルセグメントSを成形し、これに埋設された筒状材Pの引き抜き荷重を実施例1と同様に引き抜き強度試験機により測定したところ、420kNであった。
実施例
ナイロン66に平均長0.31mmのガラス繊維を45重量%含有させたポリアミド樹脂組成物を使用し、比較例1と同一寸法の図3に示す構成からなる筒状材を射出成形法により一体成形した。
【0021】
この筒状材を使用し、実施例1と同様の構造からなる重量20kNのコンクリート製パネルセグメントSを成形し、これに埋設された筒状材Pの引き抜き荷重を実施例1と同様に引き抜き強度試験機により測定したところ、380kNであった。
比較例
鋼材(STKM13A)を切削および溶接などの機械加工により、図4に示す構造の筒状材(筒状本体の外径70mm及び高さ70mm、フランジの外径100mm)を製作した。
【0022】
この筒状材を使用し、実施例1と同様の構造からなる重量20kNのコンクリート製パネルセグメントSを成形し、これに埋設された筒状材Pの引き抜き荷重を実施例1と同様に引き抜き強度試験機により測定したところ、300kNであった。この比較例の結果から明らかなように、本発明からなる実施例1〜の筒状材は、コンクリート製パネルセグメントSに埋設したときの引き抜き荷重が、従来の鋼製筒状材や比較例1のものよりも優れていることがわかる。
【0023】
【発明の効果】
上述したように、本発明のコンクリート部材用筒状器材は、筒状本体が短繊維状のガラス繊維を含有する繊維強化ポリアミド樹脂から成形されているので耐腐蝕性に優れ、コンクリート材に埋設して得られる初期の引き抜き荷重を長期間にわたり維持することができる。また、ガラス繊維を15〜45重量%含有する繊維強化ポリアミド樹脂から成形されていることと、外周に断面が半円形の突起部(突条部)を一体成形した構造体であることとが相まって、コンクリート材に対する引き抜き荷重を従来の鋼製筒状材に匹敵するか又はそれ以上にすることができる。
【0024】
また、本発明のコンクリート部材用筒状器材はガラス繊維強化ポリアミド樹脂の成形体からなり、射出成形法により簡単に成形することができるので、低コストで製作することができる。
【図面の簡単な説明】
【図1】 本発明に対する比較例に該当するコンクリート部材用筒状器材を一部切り欠いて示す斜視図である。
【図2】同筒状器材を埋設したコンクリート製パネルセグメントを示す斜視図である。
【図3】 本発明のコンクリート部材用筒状器材の一実施形態を示す斜視図である。
【図4】従来のコンクリート部材用筒状器材を示す斜視図である。
【符号の説明】
1 筒状本体
2 突起部
2a 突条
2b フランジ
2c リブ
3 メネジ部
4 凹部
P コンクリート部材用筒状器材(筒状材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tubular device for a concrete member, and more particularly to a tubular material embedded in a concrete panel segment as a connecting portion of a suspension fitting.
[0002]
[Prior art]
For example, a large number of concrete panel segments are assembled as cover walls on the surface of the wall surface where the rock surface after tunnel excavation is exposed. In the construction of the concrete panel segment, since the concrete panel segment is very heavy, it is carried out using a lifting machine such as a crane or a lift. Generally, as a part to connect the lifting bracket of the lifting machine. A tubular material is embedded in the center of the panel segment.
[0003]
Conventionally, as shown in FIG. 4, as the above-described tubular material, a female thread portion 13 for screwing and connecting a hanging metal fitting to the inner periphery of a tubular main body 11 cut out from a steel pipe is processed, and at its lower end portion. In order to obtain the anchor effect, one in which one flange 12 cut out from a steel plate is welded has been used. However, when the steel tubular material P is embedded in a concrete panel segment and left for a long time under high humidity, the welded portion of the tubular body and the flange and the like are oxidized and corroded. There was a drawback that the pull-out load on the panel segment was reduced, and eventually it became unusable.
[0004]
In addition, the conventional steel tubular material has a drawback in that the production cost of the tubular material itself is increased because many troublesome processes such as cutting and welding of the steel material are required for production. .
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a cylindrical member for a concrete member that has excellent corrosion resistance and exhibits a pulling load comparable to that of a conventional steel tubular material.
Another object of the present invention is to provide a tubular member for a concrete member that can be manufactured at a lower cost than conventional steel tubular members.
[0006]
[Means for Solving the Problems]
The tubular member for a concrete member of the present invention that achieves the above object integrally has a semi-circular protrusion extending in a ring shape or a spiral shape in the circumferential direction on the outer periphery of the tubular body, and the tubular body. A flange extending in the radial direction from the outer periphery of the tube, and a rib formed on the outer periphery of the cylindrical main body so as to extend in a divergent shape so as to straddle the semicircular ridge, and the cylindrical main body is made of short fiber glass It is formed from a fiber reinforced polyamide resin containing 15 to 45% by weight of fibers.
[0007]
The tubular member for concrete members of the present invention (hereinafter simply referred to as a tubular member) is made of a fiber reinforced polyamide resin containing a short fiber glass fiber and is therefore corrosion resistant. It is excellent and can maintain a high pull-out load over a long period of time. Moreover, in addition to the fiber reinforced polyamide resin containing 15 to 45% by weight of the glass fiber, a protrusion having a semicircular cross section extending in a ring shape or a spiral shape in the circumferential direction is integrated with the outer periphery of the cylindrical main body. And a flange extending radially from the outer periphery of the cylindrical main body, and a rib formed so as to extend over the outer periphery of the cylindrical main body so as to straddle the semicircular ridge. Since it is a body, the pull-out load when it is embedded in a concrete member can be comparable to or higher than that of a conventional steel tubular material.
[0008]
In addition, since the cylindrical material of the present invention is made of a fiber reinforced polyamide resin containing glass fiber, it can be easily formed by injection molding, and therefore requires a number of manufacturing steps. Can be manufactured at low cost.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 corresponds to a comparative example with respect to the present invention, but shows a tubular material for embedding in a concrete member. The cylindrical member P shown in FIG. 1 is provided with a ring-shaped protrusion 2a in a multistage manner as a protrusion 2 having a semicircular cross section on the outer peripheral wall of the cylindrical main body 1 and a ring between the protrusions 2a and 2a. It is integrally molded from a fiber reinforced polyamide resin containing glass fibers so as to form a concave portion 4. Moreover, the internal thread of the cylindrical main body 1 is provided with the internal thread part 3 as a connection part which screw-fits the lifting fixture (not shown) of lifting machines, such as a crane.
[0010]
For example, as shown in FIG. 2, the tubular material P is used so as to be embedded integrally with a substantially central portion of the concrete panel segment S so that the inner female screw portion 3 is in a hollow state. Since the cylindrical material P buried in the center of the concrete panel segment S in this way has the multi-stage ridges 2a on the outer peripheral wall, an anchor effect is produced on the concrete panel segment S, and the axial tensile force is increased. Exhibits a strong pull-out load.
[0011]
In the present invention, the projecting portion 2 having a semicircular cross section formed on the outer periphery of the cylindrical main body 1 is formed as a plurality of ring-shaped protrusions 2a independent from each other as described above, and is continuous. You may make it form in a spiral. Moreover, as the projection part 2, like the cylindrical main body 1 shown in FIG. 3, it forms as the flange 2b which protrudes to a radial direction outer side from an edge part (lower end part), and is several places (FIG. 3) of the circumferential direction of an outer peripheral wall. The four ribs are formed as ribs 2c that expand in the axial direction.
[0012]
Further, the protrusions 2a, flanges 2b, ribs 2c, and the like forming the protrusions 2 are not effective when only the protrusions 2a are provided as shown in FIG. 1, and in the present invention, a plurality of types are used as shown in FIG. Provide to combine. In the present invention, the fiber reinforced polyamide resin constituting the cylindrical body is such that the glass fibers are short fibers, and the glass fibers are contained in the polyamide resin in an amount of 15 to 45% by weight. By blending glass fibers, the tensile strength and tensile modulus of the cylindrical material increase, and the cross-section formed on the outer peripheral wall is coupled with the structural requirements of the semicircular protrusion (projection) , making the concrete of the cylindrical material The pull-out load on the panel segment S can be set to a size comparable to or higher than that of a conventional steel tubular material.
[0013]
When the glass fiber content is less than 15% by weight, it becomes difficult to obtain a pulling load comparable to that of a steel tubular material, and when the amount exceeds 45% by weight, injection molding can be performed. Since it becomes difficult, productivity will fall and the improvement effect of a drawing load will also be almost saturated. In order to improve the reinforcing effect and improve the injection moldability, the length of the short glass fiber is preferably in the range of 0.01 to 3 mm.
[0014]
As the polyamide resin used as the matrix of the fiber reinforced polyamide resin, it is preferable to use nylon 6 and nylon 66 having excellent tensile strength and tensile elastic modulus as engineering resins.
As the reinforcing material contained in the fiber reinforced polyamide resin, in addition to the glass fiber, an inorganic filler of about 2 to 30% by weight may be blended if necessary. Examples of the inorganic filler include talc, wollastonite, calcium silicate, calcite, aragonite, dolomite, kaolin, aluminum hydroxide, magnesium hydroxide, calcium carbonate, calcium sulfate, clay, mica, silica, sericite, Examples thereof include glass beads, glass flakes, glass balloons, and glass powders.
[0015]
In addition, a metal insert material may be embedded in the cylindrical material of the present invention as a reinforcing material as long as the characteristics such as corrosion resistance that are the characteristics of the present invention are not impaired. This metal insert material can improve the tensile strength and tensile elastic modulus of the tubular material. As described above, since the cylindrical material of the present invention is molded from a glass fiber reinforced polyamide resin, it has excellent corrosion resistance and can maintain a pulling load on the concrete material for a long time. Further, the content of the glass fiber in the fiber reinforced polyamide resin is 15 to 45% by weight, and the protrusion (protrusion) having a semicircular cross section is integrally formed on the outer periphery of the cylindrical main body. The pulling load on the concrete material can be made equal to or higher than that of the steel tubular material.
[0016]
In addition, since the tubular material of the present invention is made of a fiber reinforced polyamide resin, it can be easily formed by injection molding, and troublesome processes such as cutting and welding of a steel material like a steel tubular material are performed. Since it is not necessary, it can be manufactured at a lower cost than a steel tubular material.
[0017]
【Example】
Example 1
Using a polyamide resin composition containing 30% by weight of glass fiber having an average length of 0.31 mm in nylon 66, a cylindrical material (outer diameter of the cylindrical main body is 80 mm, the height of the cylindrical main body is high). A projection having a length of 70 mm, a width of 10 mm, and an outer diameter of 80 mm, three steps, an outer diameter of the flange of 100 mm, and four ribs) was integrally molded by an injection molding method.
[0018]
This tubular material was molded so as to be embedded in the center portion of the panel segment S for tunnel construction as shown in FIG. 2 to obtain a panel segment S having a weight of 20 kN. It was 340 kN when the pulling-out load of the cylindrical material P embed | buried under this concrete panel segment S was measured with the pulling strength tester.
Comparative Example 1
A polyamide resin composition containing 30% by weight of glass fiber having an average length of 0.31 mm in nylon 66 is used, and a cylindrical material (outer diameter of the cylindrical main body of 60 mm, high height of the cylindrical main body is shown in FIG. 1). A protrusion having a length of 70 mm, a width of 10 mm, and an outer diameter of 80 mm was integrally formed by an injection molding method.
[0019]
Using this cylindrical material, a concrete panel segment S having a structure similar to that of Example 1 and having a weight of 20 kN was formed, and the pulling load of the cylindrical material P embedded in the concrete panel segment S was determined as Example 1. It was 300 kN when it measured with the pull-out strength test machine similarly to.
Example 2
Using a polyamide resin composition containing 45% by weight of glass fiber having an average length of 0.31 mm in nylon 66, a cylindrical material having the same dimensions as in Example 1 and having the structure shown in FIG. did.
[0020]
Using this cylindrical material, a concrete panel segment S with a weight of 20 kN having the same structure as that of Example 1 was formed, and the pulling strength of the cylindrical material P embedded in the same was extracted as in Example 1. It was 420 kN when measured with a testing machine.
Example 3
A polyamide resin composition containing 45% by weight of glass fibers having an average length of 0.31 mm in nylon 66 is used, and a cylindrical material having the same dimensions as in Comparative Example 1 and having the structure shown in FIG. did.
[0021]
Using this cylindrical material, a concrete panel segment S with a weight of 20 kN having the same structure as that of Example 1 was formed, and the pulling strength of the cylindrical material P embedded in the same was extracted as in Example 1. It was 380 kN when measured with a testing machine.
Comparative Example 2
A tubular material (outer diameter 70 mm and height 70 mm, flange outer diameter 100 mm of the cylindrical main body) having the structure shown in FIG. 4 was manufactured by machining such as cutting and welding of steel (STKM13A).
[0022]
Using this cylindrical material, a concrete panel segment S with a weight of 20 kN having the same structure as that of Example 1 was formed, and the pulling strength of the cylindrical material P embedded in the same was extracted as in Example 1. It was 300 kN as measured by a testing machine. As is clear from the results of Comparative Example 2 , the tubular materials of Examples 1 to 3 according to the present invention have a pull-out load when embedded in a concrete panel segment S, compared with conventional steel tubular materials and comparisons. It can be seen that it is superior to that of Example 1 .
[0023]
【The invention's effect】
As described above, the tubular device for a concrete member of the present invention is excellent in corrosion resistance because the tubular body is formed from a fiber reinforced polyamide resin containing short fiber glass fibers, and is embedded in a concrete material. The initial pull-out load obtained in this way can be maintained over a long period of time. Further, it is combined with being molded from a fiber reinforced polyamide resin containing 15 to 45% by weight of glass fiber and being a structure in which a protrusion having a semicircular cross section (projection) is integrally formed on the outer periphery. The pull-out load on the concrete material can be comparable to or higher than that of a conventional steel tubular material.
[0024]
Further, the tubular device for a concrete member of the present invention comprises a molded body of glass fiber reinforced polyamide resin and can be easily formed by an injection molding method, so that it can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a tubular member for a concrete member corresponding to a comparative example for the present invention with a part cut away.
FIG. 2 is a perspective view showing a concrete panel segment in which the cylindrical device is embedded.
FIG. 3 is a perspective view showing an embodiment of the tubular device for a concrete member of the present invention.
FIG. 4 is a perspective view showing a conventional tubular device for a concrete member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tubular main body 2 Protrusion part 2a Rib 2b Flange 2c Rib 3 Female thread part 4 Recessed part P Concrete equipment cylindrical equipment (cylindrical material)

Claims (3)

筒状本体の外周に周方向にリング状または螺旋状に延びる断面が半円形状の突条を一体に有し、前記筒状本体の外周から径方向に延びるフランジおよび、筒状本体の外周に末広がり状に前記断面が半円形状の突条をまたぐように形成されたリブを有するとともに、該筒状本体を短繊維状のガラス繊維を15〜45重量%含有する繊維強化ポリアミド樹脂から成形したコンクリート部材用筒状器材。A flange having a semicircular cross section extending in a ring shape or a spiral shape in the circumferential direction is integrally formed on an outer periphery of the cylindrical main body, a flange extending in a radial direction from the outer periphery of the cylindrical main body, and an outer periphery of the cylindrical main body The cylindrical main body was molded from a fiber reinforced polyamide resin containing 15 to 45% by weight of a short fiber glass fiber, having a rib formed so as to straddle a semicircular ridge having a cross section extending in a divergent shape. Cylindrical equipment for concrete members. 繊維強化ポリアミド樹脂のマトリックスとして使用するポリアミド樹脂が、ナイロン6またはナイロン66である請求項1に記載のコンクリート部材用筒状器材。  The tubular device for a concrete member according to claim 1, wherein the polyamide resin used as a matrix of the fiber reinforced polyamide resin is nylon 6 or nylon 66. 繊維強化ポリアミド樹脂のマトリックスとして使用するポリアミド樹脂が、ナイロン66である請求項2に記載のコンクリート部材用筒状器材。  The tubular device for a concrete member according to claim 2, wherein the polyamide resin used as a matrix of the fiber reinforced polyamide resin is nylon 66.
JP07913198A 1998-03-26 1998-03-26 Cylindrical equipment for concrete members Expired - Lifetime JP4055834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07913198A JP4055834B2 (en) 1998-03-26 1998-03-26 Cylindrical equipment for concrete members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07913198A JP4055834B2 (en) 1998-03-26 1998-03-26 Cylindrical equipment for concrete members

Publications (2)

Publication Number Publication Date
JPH11270291A JPH11270291A (en) 1999-10-05
JP4055834B2 true JP4055834B2 (en) 2008-03-05

Family

ID=13681406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07913198A Expired - Lifetime JP4055834B2 (en) 1998-03-26 1998-03-26 Cylindrical equipment for concrete members

Country Status (1)

Country Link
JP (1) JP4055834B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061161A1 (en) * 2004-07-26 2008-03-13 Global Engineered Fasteners Pty Ltd Attachment of Components to Composite Materials
AU2007216651B2 (en) * 2006-09-18 2013-11-21 Illinois Tool Works Inc. Prop anchor
CN112903573A (en) * 2021-03-26 2021-06-04 中国第一汽车股份有限公司 Bolt corrosion test fixing device
KR102604243B1 (en) * 2022-10-25 2023-11-21 주식회사 항도엔지니어링 Anchor type lifting unit and concrete block lifting method using the same

Also Published As

Publication number Publication date
JPH11270291A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
US6070914A (en) Pipe coupling
AU603199B2 (en) Bung type drum
JP2008101325A (en) Connected concrete column
JPH0642112A (en) Frp reinforcement for concrete
JP4055834B2 (en) Cylindrical equipment for concrete members
CN102388194B (en) Load receiving means
JP2008101326A (en) Connected concrete column
JP2008175336A (en) Synthetic steel pipe and its manufacturing method
KR20060059763A (en) Steel reinforcing connection sleeve and precast concrete member using the same
RU2178082C2 (en) Cable anchor
WO2006058177A2 (en) Reinforced fitting and pipe
JP2002242314A (en) Injection anchor
KR20010002099A (en) A Corrugated Plastic Pipe
JP3621936B2 (en) Method for manufacturing mold fixture and mold fixture
CN218985216U (en) Production die of prestressed concrete pipe pile containing embedded part
CN217710689U (en) Prestressed concrete precast pile for coastal region
KR200344560Y1 (en) Plastic pipe
CN211057775U (en) Concatenation type concrete pipe pile
JP2008101327A (en) Connected concrete column
KR200355593Y1 (en) synthetic resins sewer
KR930010049B1 (en) Spiral pipe
JPH0210396Y2 (en)
KR200414075Y1 (en) Metal pipe
KR200231022Y1 (en) A concrete pipe lined with a synthetic resin
KR200269982Y1 (en) a

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term