JP4055305B2 - Toroidal continuously variable transmission and manufacturing method thereof - Google Patents

Toroidal continuously variable transmission and manufacturing method thereof Download PDF

Info

Publication number
JP4055305B2
JP4055305B2 JP28993199A JP28993199A JP4055305B2 JP 4055305 B2 JP4055305 B2 JP 4055305B2 JP 28993199 A JP28993199 A JP 28993199A JP 28993199 A JP28993199 A JP 28993199A JP 4055305 B2 JP4055305 B2 JP 4055305B2
Authority
JP
Japan
Prior art keywords
drive
oil supply
drive rod
upstream
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28993199A
Other languages
Japanese (ja)
Other versions
JP2001108048A (en
JP2001108048A5 (en
Inventor
清孝 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP28993199A priority Critical patent/JP4055305B2/en
Publication of JP2001108048A publication Critical patent/JP2001108048A/en
Publication of JP2001108048A5 publication Critical patent/JP2001108048A5/ja
Application granted granted Critical
Publication of JP4055305B2 publication Critical patent/JP4055305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/049Friction gearings of the toroid type

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Friction Gearing (AREA)
  • General Details Of Gearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係るトロイダル型無段変速機は、例えば自動車用の変速機の変速ユニットとして、或は各種産業機械用の変速機として、それぞれ利用する。
【0002】
【従来の技術】
自動車用変速機として、図6〜7に略示する様なトロイダル型無段変速機を使用する事が研究されている。このトロイダル型無段変速機は、例えば実開昭62−71465号公報に開示されている様に、入力軸1と同心に、請求項に記載した第一のディスクに相当する入力側ディスク2を支持し、この入力軸1と同心に配置した出力軸3の端部に、請求項に記載した第二のディスクに相当する出力側ディスク4を固定している。トロイダル型無段変速機を納めたケーシングの内側には、上記入力軸1並びに出力軸3の中心軸に対して交差する事はないが、この中心軸の方向に対して直角若しくは直角に近い方向である捻れの位置にある枢軸5、5を中心として揺動するトラニオン6、6を設けている。
【0003】
即ち、これら各トラニオン6、6は、それぞれの両端部外面に上記枢軸5、5を、互いに同心に設けている。又、これら各トラニオン6、6の中間部には変位軸7、7の基端部を支持し、上記枢軸5、5を中心として上記各トラニオン6、6を揺動させる事により、上記各変位軸7、7の傾斜角度の調節を自在としている。上記各トラニオン6、6に支持した変位軸7、7の周囲には、それぞれパワーローラ8、8を回転自在に支持している。そして、これら各パワーローラ8、8を、上記入力側、出力側両ディスク2、4の、互いに対向する内側面2a、4a同士の間に挟持している。これら各内側面2a、4aは、それぞれ断面が、上記枢軸5を中心とする円弧若しくはこの様な円弧に近い曲線を、上記入力軸1及び出力軸3の中心軸の周りに回転させて得られる凹面をなしている。そして、球状凸面に形成した上記各パワーローラ8、8の周面8a、8aを、上記内側面2a、4aに当接させている。
【0004】
上記入力軸1と入力側ディスク2との間には、ローディングカム式の押圧装置9を設け、この押圧装置9によって、上記入力側ディスク2を出力側ディスク4に向け、弾性的に押圧自在としている。この押圧装置9は、入力軸1と共に回転するカム板10と、保持器11により転動自在に保持した複数個(例えば4個)のローラ12、12とから構成している。上記カム板10の片側面(図6〜7の左側面)には、円周方向に亙る凹凸面である駆動側カム面13を形成し、上記入力側ディスク2の外側面(図6〜7の右側面)にも、同様の形状を有する被駆動側カム面14を形成している。そして、上記複数個のローラ12、12を、上記入力軸1の中心に関し放射方向の軸を中心とする転動自在に支持している。
【0005】
上述の様に構成するトロイダル型無段変速機の使用時、入力軸1の回転に伴ってカム板10が回転すると、駆動側カム面13が複数個のローラ12、12を、入力側ディスク2の外側面に形成した被駆動側カム面14に押圧する。この結果、上記入力側ディスク2が、上記複数のパワーローラ8、8に押圧されると同時に、上記駆動側、被駆動側両カム面13、14と複数個のローラ12、12との押し付け合いに基づいて、上記入力側ディスク2が回転する。そして、この入力側ディスク2の回転が、上記複数のパワーローラ8、8を介して前記出力側ディスク4に伝達され、この出力側ディスク4に固定の出力軸3が回転する。
【0006】
入力軸1と出力軸3との回転速度比(変速比)を変える場合で、先ず入力軸1と出力軸3との間で減速を行なう場合には、前記各枢軸5、5を中心として前記各トラニオン6、6を所定方向に揺動させる。そして、上記各パワーローラ8、8の周面8a、8aが図6に示す様に、入力側ディスク2の内側面2aの中心寄り部分と出力側ディスク4の内側面4aの外周寄り部分とにそれぞれ当接する様に、前記各変位軸7、7を傾斜させる。反対に、増速を行なう場合には、上記各枢軸5、5を中心として上記各トラニオン6、6を反対方向に揺動させる。そして、上記各パワーローラ8、8の周面8a、8aが図7に示す様に、入力側ディスク2の内側面2aの外周寄り部分と出力側ディスク4の内側面4aの中心寄り部分とに、それぞれ当接する様に、上記各変位軸7、7を傾斜させる。これら各変位軸7、7の傾斜角度を図6と図7との中間にすれば、入力軸1と出力軸3との間で、中間の変速比を得られる。
【0007】
又、図8〜9は、実願昭63−69293号(実開平1−173552号)のマイクロフィルムに記載された、より具体化されたトロイダル型無段変速機の1例を示している。入力側ディスク2と出力側ディスク4とは円管状の入力軸15の周囲に、それぞれニードル軸受16、16を介して回転自在に支持している。又、カム板10は上記入力軸15の端部(図8の左端部)外周面にスプライン係合させ、鍔部17により上記入力側ディスク2から離れる方向への移動を阻止している。そして、このカム板10とローラ12、12とにより、上記入力軸15の回転に基づいて上記入力側ディスク2を、上記出力側ディスク4に向け押圧しつつ回転させる、ローディングカム式の押圧装置9を構成している。上記出力側ディスク4には出力歯車18を、キー19、19により結合し、これら出力側ディスク4と出力歯車18とが同期して回転する様にしている。
【0008】
1対のトラニオン6、6の両端部に互いに同心に設けた枢軸5、5は1対の支持板20、20に、その外周面を球状凸面とした外輪を有するラジアルニードル軸受21、21により、揺動並びに枢軸5、5の軸方向(図8の表裏方向、図9の左右方向)に亙る変位自在に支持している。そして、上記各トラニオン6、6の中間部に形成した円孔22、22部分に、変位軸7、7を支持している。これら各変位軸7、7は、互いに平行で且つ偏心した支持軸部23、23と枢支軸部24、24とを、それぞれ有する。このうちの各支持軸部23、23を上記各円孔22、22の内側に、ラジアルニードル軸受25、25を介して、回転自在に支持している。又、上記各枢支軸部24、24の周囲にパワーローラ8、8を、別のラジアルニードル軸受26、26を介して、回転自在に支持している。
【0009】
尚、上記1対の変位軸7、7は、上記入力軸15に対して180度反対側位置に設けている。又、これら各変位軸7、7の各枢支軸部24、24が各支持軸部23、23に対し偏心している方向は、上記入力側ディスク2の回転方向に関し同方向(図9で左右逆方向)としている。又、偏心方向は、上記入力軸15の配設方向に対しほぼ直交する方向としている。従って、上記各パワーローラ8、8は、上記入力軸15の配設方向に亙る若干の変位自在に支持される。この結果、回転力の伝達状態で構成各部材に加わる大きな荷重に基づく、これら構成各部材の弾性変形に起因して、上記各パワーローラ8、8が上記入力軸15の軸方向(図8の左右方向、図9の表裏方向)に変位する傾向となった場合でも、各部に無理な力を加える事なく、この変位を吸収できる。
【0010】
又、上記各パワーローラ8、8の外側面と上記各トラニオン6、6の中間部内側面との間には、パワーローラ8、8の外側面の側から順に、スラスト玉軸受27、27と、スラストニードル軸受28、28等のスラスト軸受とを設けている。このうちのスラスト玉軸受27、27は、上記各パワーローラ8、8に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ8、8の回転を許容するものである。又、上記各スラストニードル軸受28、28或は滑り軸受等のスラスト軸受は、上記各パワーローラ8、8から上記各スラスト玉軸受27、27を構成する外輪29、29に加わるスラスト荷重を支承しつつ、前記各枢支軸部24、24及び上記外輪29、29が、前記支持軸部23、23を中心に揺動する事を許容する。
【0011】
更に、上記各トラニオン6、6の一端部(図9の左端部)にはそれぞれ駆動ロッド30、30の先端部(図9の右端部)を結合し、これら各駆動ロッド30、30に外嵌固定した駆動チューブ31、31の中間部外周面に駆動ピストン32、32を固設している。そして、これら各駆動ピストン32、32を、それぞれ駆動シリンダ33、33内に油密に嵌装している。
【0012】
上述の様に構成するトロイダル型無段変速機の場合には、入力軸15の回転は、押圧装置9を介して入力側ディスク2に伝わる。そして、この入力側ディスク2の回転が、1対のパワーローラ8、8を介して出力側ディスク4に伝わり、更にこの出力側ディスク4の回転が、出力歯車18より取り出される。入力軸15と出力歯車18との間の回転速度比を変える場合には、上記1対の駆動ピストン32、32を互いに逆方向に変位させる。これら各駆動ピストン32、32の変位に伴って上記1対のトラニオン6、6が、それぞれ逆方向に変位し、例えば図9の下側のパワーローラ8が同図の右側に、同図の上側のパワーローラ8が同図の左側に、それぞれ変位する。この結果、これら各パワーローラ8、8の周面8a、8aと上記入力側ディスク2及び出力側ディスク4の内側面2a、4aとの当接部に作用する、接線方向の力の向きが変化する。そして、この力の向きの変化に伴って上記各トラニオン6、6が、支持板20、20に枢支された枢軸5、5を中心として、互いに逆方向に揺動する。この結果、前述の図6〜7に示した様に、上記各パワーローラ8、8の周面8a、8aと上記各内側面2a、4aとの当接位置が変化し、上記入力軸15と出力歯車18との間の回転速度比が変化する。
【0013】
尚、この様に上記入力軸15と出力歯車18との間で回転力の伝達を行なう際には、構成各部材の弾性変形に基づいて上記各パワーローラ8、8が、上記入力軸15の軸方向に変位し、これら各パワーローラ8、8を枢支している前記各変位軸7、7が、前記各支持軸部23、23を中心として僅かに回動する。この回動の結果、前記各スラスト玉軸受27、27の外輪29、29の外側面と上記各トラニオン6、6の内側面とが相対変位する。これら外側面と内側面との間には、前記各スラストニードル軸受28、28が存在する為、この相対変位に要する力は小さい。従って、上述の様に各変位軸7、7の傾斜角度を変化させる為の力が小さくて済む。
【0014】
上述の様に構成し作用するトロイダル型無段変速機の場合、パワーローラ8、8を支持する為のラジアルニードル軸受26及びスラスト玉軸受27等、上記各トラニオン6、6と上記各変位軸7、7と上記各パワーローラ8、8との組み合わせ部分に存在する各軸受部分に潤滑油(トラクションオイル)を送り込む必要がある。何となれば、トロイダル型無段変速機の運転時に上記パワーローラ8、8は、大きな荷重を受けつつ高速回転する。従って、上記ラジアルニードル軸受26及びスラスト玉軸受27の耐久性を確保する為には、これら両軸受26、27を含む各軸受部分に十分量の潤滑油を送り込む必要がある。
【0015】
この為に、図8〜9に示した従来構造の場合には、上記各トラニオン6、6の内部に下流側給油通路34、34を、前記各駆動ロッド30、30の内部及びこれら各駆動ロッド30、30の外周面と前記各駆動チューブ31、31の内周面との間に上流側給油通路35、35を、それぞれ設けている。そして、このうちの上流側給油通路35、35内に、前記駆動シリンダ33、33の低圧室側等から、これら各駆動シリンダ33、33内に存在する作動油を、潤滑油として送り込み自在としている。一方、上記各トラニオン6、6側に設けた下流側給油通路34、34の下流端から送り出される潤滑油を、前記各円孔22、22の内周面及び上記各トラニオン6、6の中間部内側面から吐出自在としている。トロイダル型無段変速機の運転時には、上記各駆動シリンダ33、33の低圧室側に存在する作動油を、上記各円孔22、22の内周面及び上記各トラニオン6、6の中間部内側面から吐出させて、前記各軸受25〜28を含む各軸受部分を潤滑する。
【0016】
図10〜13は、駆動ロッド30及び駆動チューブ31(図9)側に設ける上流側給油通路35の具体的構造の2例を示している。尚、これら図10〜13では、駆動チューブ31を省略した状態で示している。先ず、図10〜11に示した第1例の構造では、駆動ロッド30の中間部を平削する事により平坦面36を形成し、この平坦面36と上記駆動チューブ31の内周面との間に、上記上流側給油通路35を設ける様にしている。又、図12〜13に示した第2例の場合には、駆動ロッド30の中心部に形成した中心孔37と分岐孔38、38とにより、上記上流側給油通路35を設ける様にしている。
【0017】
【発明が解決しようとする課題】
図10〜11に示した従来構造の第1例の場合には、潤滑油の供給を確実に行なわせる為には、平坦面36とトラニオン6及び駆動チューブ31との位相を規制する必要があり、トロイダル型無段変速機の組立作業が面倒になる。又、平坦面36を加工後、端縁部に生じたバリを除去する作業が必要になり、加工工数が増え、上記組立作業が面倒になる事と相まって、トロイダル型無段変速機のコストを高くする原因となる。
【0018】
又、図12〜13に示した従来構造の第2例の場合には、駆動ロッド30に中心孔37及び分岐孔38、38をドリルにより加工する作業に時間を要するだけでなく、加工に伴って各孔37、38同士の交差部分にバリが発生する。この為、加工能率が悪く、バリを除去する必要が生じる等、やはりトロイダル型無段変速機のコストを高くする原因となる。更には、上記駆動ロッド30の先端部(図12の右端部)で、この駆動ロッド30とトラニオン6とを結合している結合ピン39とこの駆動ロッド30の先端面(図12の右端面)との間部分の断面積が、上記中心孔37の分だけ減少し、上記駆動ロッド30とトラニオン6との結合強度が低下する。
本発明は、この様な事情に鑑みて、部品加工並びに組立作業が容易で、バリ取り作業を不要にでき、しかも駆動ロッドとトラニオンとの結合強度を十分に図れるトロイダル型無段変速機を実現すべく発明したものである。
【0019】
【課題を解決するための手段】
本発明のトロイダル型無段変速機は、前述した従来のトロイダル型無段変速機と同様に、互いの内側面同士を対向させた状態で、互いに同心に、且つ互いに独立した回転自在に支持された第一、第二のディスクと、それぞれがこれら第一、第二のディスクの中心軸に対し捻れの位置にある互いに同心の1対ずつの枢軸を中心として揺動する複数のトラニオンと、これら各トラニオンの中間部にこれら各トラニオンの内側面から突出する状態で設けられた複数の変位軸と、これら各変位軸の周囲に回転自在に支持された状態で、上記第一、第二の両ディスク同士の間に挟持された複数のパワーローラと、上記各トラニオンの一端部に設けた取付孔と、この取付孔にその先端部を内嵌した状態でこれら各トラニオンに結合固定した駆動ロッドと、これら各駆動ロッドに外嵌した駆動チューブと、上記各トラニオンの内部に設けられ、それぞれの上流端を上記取付孔の内周面に開口させた下流側給油通路と、上記各駆動ロッドの外周面と上記各駆動チューブの内周面との間に設けられて、それぞれの下流端を上記取付孔の内部で上記下流側給油通路に連通させた上流側給油通路とを備える。
【0020】
特に、本発明のトロイダル型無段変速機に於いては、上記上流側給油通路は、上記各駆動ロッドの先端部外周面で上記下流側給油通路の上流端開口に整合する部分に全周に亙って形成した下流側環状凹溝と、上記各駆動ロッドの中間部外周面で上記各駆動チューブの内周面に対向する部分に全周に亙って形成した上流側環状凹溝と、上記各駆動ロッドの中間部外周面でこの上流側環状凹溝と上記下流側環状凹溝との間部分に、これら両環状凹溝同士を連通させる状態で形成した複数本の連通凹溝と、上記各駆動チューブの一部で上記上流側環状凹溝に整合する部分に、これら各駆動チューブの内外両周面同士を連通させる状態で形成した給油孔とから成る。
【0021】
【作用】
上述の様に構成する本発明のトロイダル型無段変速機は、前述した従来のトロイダル型無段変速機と同様の作用に基づき、第一のディスクと第二のディスクとの間で回転力の伝達を行ない、更にトラニオンの傾斜角度を変える事により、これら両ディスクの回転速度比を変える。
特に、本発明のトロイダル型無段変速機の場合には、上流側給油通路を、転造加工等の塑性加工により造る事が可能になる。この為、この上流側給油通路の加工が容易となり、加工に伴ってバリが発生する事もなくなる。又、上流側、下流側両環状凹溝の存在に基づき、組立時に、各駆動ロッドとトラニオン等の他の部材との位相を規制する必要がなくなる。この為、組立作業の容易化も図れる。更には、上記各駆動ロッドの先端部の断面積を十分に確保できるので、これら各駆動ロッドとトラニオンとの結合強度を十分に確保できる。
【0022】
【発明の実施の形態】
図1〜4は、本発明の実施の形態の1例を示している。尚、本発明の特徴は、駆動ロッド30及び駆動チューブ31部分に設ける上流側給油通路35部分の構造にある。その他の部分の構造及び作用に就いては、前述の図8〜9に示した従来構造と同様である為、同等部分に関する重複する図示並びに説明を省略若しくは簡略にし、以下、本発明の特徴部分を中心に説明する。
【0023】
上記上流側給油通路35を構成する為、上記駆動ロッド30の先端部外周面に下流側環状凹溝40を、中間部外周面に上流側環状凹溝41を、それぞれ形成している。このうちの下流側環状凹溝40は、上記駆動ロッド30とトラニオン6とを結合した状態で、このトラニオン6内に設けた下流側給油通路34の上流端開口に整合する部分に、全周に亙って形成している。一方、上記上流側環状凹溝41は、上記駆動チューブ31の中間部内周面に対向する部分に、全周に亙って形成している。そして、上記駆動チューブ31の中間部で上記上流側環状凹溝41に整合する部分に給油孔43を、この駆動チューブ31の内外両周面同士を連通させる状態で形成している。尚、上記下流側、上流側各環状凹溝40、41は、好ましくは転造加工等の塑性加工により形成する。但し、これら各環状凹溝40、41は、その形状からして、旋盤を使用した旋削加工によっても殆どバリを生じる事がなく、仮にバリが生じた場合でも、容易に除去できるので、切削加工により形成しても良い。又、上記給油孔43は、構造上、ドリルを使用した切削加工により形成し、生じたバリは加工後に除去する。
【0024】
更に、上記駆動ロッド30の中間部外周面で、上記下流側環状凹溝40と上記上流側各環状凹溝41との間部分には、複数本の連通凹溝42、42を、これら両環状凹溝40、41同士を連通させる状態で形成している。これら各連通凹溝42、42は、上記駆動ロッド30の中心軸に対し平行な直線状に、或は捩れ角αで螺旋状に形成する。螺旋状に形成する場合でも、この捩れ角αを45度未満(0度<α<45度)として、上記各連通凹溝42、42の全長が徒に長くなる事を防止し、これら各連通凹溝42、42部分の流通抵抗の増大を抑える。
【0025】
尚、これら各連通凹溝42、42の断面形状は、塑性加工可能なものであれば特に問わないが、例えば、図3(A)に示す様な円弧形、同図(B)に示す様な台形、同図(C)に示す様なインボリュート形状等を採用できる。又、上記各連通凹溝42、42の数も、加工し易さ、これら各連通凹溝42、42部分に許容される流通抵抗の値(各連通凹溝42、42の断面積の合計)、上記駆動ロッド30のうちでこれら各連通凹溝42、42を形成した部分に要求される強度等に応じて設計的に定める。例えば、図4(A)に示す様に4本(4条)としたり、同図(B)に示す様に8本(8条)としたり、同図(C)に示す様に多数本(多条)とする事ができる。
【0026】
何れにしても、上述の様な各連通凹溝42、42は、図5に示す様な転造加工装置44により形成する。この転造加工装置44は、上下1対のフォーミングラック45、45の間で被加工物46(駆動ロッド30)を強く挟持しつつ転動させ、これら各フォーミングラック45、45の互いに対向する面に形成した突条52、52の形状を上記被加工物46の外周面に転写するものである。上記各フォーミングラック45、45は、1対のラック47、47とピニオン48とにより同期させつつ、油圧シリンダ49により往復移動する。又、上記被加工物46は、ヘッドストック50とテールストック51との間で支持された状態で、上記ピニオン48と共に回転する。
【0027】
この様な転造加工装置44に上記駆動ロッド30を、被加工物46として装着した状態で加工作業を行なう事により、この駆動ロッド30の中間部外周面に、上記各連通凹溝42、42を形成する。尚、この様な転造加工は、前記下流側、上流側各環状凹溝40、41を形成した後に行なう事が好ましい。特に、これら両環状凹溝40、41を切削加工により形成する場合には、上記転造加工を後から行なう。この理由は、上記両環状凹溝40、41を切削加工するのに伴って、これら両環状凹溝40、41の内側面で上記各連通凹溝42、42の両端部に、除去しにくいバリが発生する事を防止する為である。
【0028】
上述の様に構成する本発明のトロイダル型無段変速機の場合には、前記上流側給油通路35を構成する各凹溝40〜42のうち、切削加工により形成した場合には除去しにくいバリが発生し易い連通凹溝42、42を、転造加工等の塑性加工により造る事が可能になる。この為、上記上流側給油通路35の加工が容易となり、加工に伴って除去しにくいバリが発生する事もなくなる。又、上記上流側、下流側両環状凹溝40、41の存在に基づき、上記駆動ロッド30の円周方向に関する位相に関係なく、これら両環状凹溝40、41と他の給油通路部分とを連通させる事ができる。従って、組立時に、各駆動ロッド30とトラニオン6等の他の部材との位相を規制する必要がなくなって、組立作業の容易化も図れる。更には、前述の図12〜13に示した従来の具体的構造の第2例の様に、上記駆動ロッド30の内部に中心孔37を形成する事もなく、この駆動ロッド30の先端部の断面積を十分に確保できる。この為、この駆動ロッド30とトラニオン6との結合強度を十分に確保できる。
【0029】
【発明の効果】
本発明は、以上に述べた通り構成され作用する為、駆動ロッド及び駆動チューブ部分に設ける上流側給油通路部分の製造並びに組立作業を簡略化して、トロイダル型無段変速機のコスト低減に寄与できる。しかも、上記駆動ロッドとトラニオンとの結合強度も十分に確保できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を、トラニオン、駆動ロッド、駆動チューブを取り出した状態で示す断面図。
【図2】駆動ロッドを取り出して図1と同方向から見た側面図。
【図3】連通凹溝の断面形状の3例を示す、駆動ロッドの部分断面図。
【図4】連通凹溝の形成状態の3例を示す、図2の拡大A−A断面図。
【図5】連通凹溝を形成する為の転造加工機の1例を示す斜視図。
【図6】従来から知られたトロイダル型無段変速機の基本的構成を、最大減速時の状態で示す側面図。
【図7】同じく最大増速時の状態で示す側面図。
【図8】従来の具体的構造の1例を示す断面図。
【図9】図8のB−B断面図。
【図10】従来考えられていた上流側給油通路の具体的構造の第1例を、トラニオン、駆動ロッドを取り出した状態で示す断面図。
【図11】図10のC−C断面図。
【図12】従来考えられていた上流側給油通路の具体的構造の第2例を、トラニオン、駆動ロッドを取り出した状態で示す断面図。
【図13】図12のD−D断面図。
【符号の説明】
1 入力軸
2 入力側ディスク
2a 内側面
3 出力軸
4 出力側ディスク
4a 内側面
5 枢軸
6 トラニオン
7 変位軸
8 パワーローラ
8a 周面
9 押圧装置
10 カム板
11 保持器
12 ローラ
13 駆動側カム面
14 被駆動側カム面
15 入力軸
16 ニードル軸受
17 鍔部
18 出力歯車
19 キー
20 支持板
21 ラジアルニードル軸受
22 円孔
23 支持軸部
24 枢支軸部
25 ラジアルニードル軸受
26 ラジアルニードル軸受
27 スラスト玉軸受
28 スラストニードル軸受
29 外輪
30 駆動ロッド
31 駆動チューブ
32 駆動ピストン
33 駆動シリンダ
34 下流側給油通路
35 上流側給油通路
36 平坦面
37 中心孔
38 分岐孔
39 結合ピン
40 下流側環状凹溝
41 上流側環状凹溝
42 連通凹溝
43 給油孔
44 転造加工装置
45 フォーミングラック
46 被加工物
47 ラック
48 ピニオン
49 油圧シリンダ
50 ヘッドストック
51 テールストック
52 突条
[0001]
BACKGROUND OF THE INVENTION
The toroidal type continuously variable transmission according to the present invention is used, for example, as a transmission unit of a transmission for an automobile or as a transmission for various industrial machines.
[0002]
[Prior art]
The use of a toroidal continuously variable transmission as schematically shown in FIGS. 6 to 7 has been studied as an automobile transmission. This toroidal-type continuously variable transmission is provided with an input side disk 2 corresponding to the first disk described in the claims concentrically with the input shaft 1 as disclosed in, for example, Japanese Utility Model Publication No. 62-71465. The output side disk 4 corresponding to the second disk described in the claims is fixed to the end of the output shaft 3 that is supported and arranged concentrically with the input shaft 1. The inside of the casing containing the toroidal-type continuously variable transmission does not intersect the central axis of the input shaft 1 and the output shaft 3, but is perpendicular or nearly perpendicular to the direction of the central axis. Trunnions 6 and 6 are provided that swing around pivots 5 and 5 at the twisted position.
[0003]
That is, these trunnions 6 and 6 are provided with the pivots 5 and 5 concentrically with each other on the outer surfaces of both ends. In addition, the base portions of the displacement shafts 7 and 7 are supported at intermediate portions of the trunnions 6 and 6, and the trunnions 6 and 6 are swung around the pivot shafts 5 and 5, so that the respective displacements are displaced. The inclination angle of the shafts 7 and 7 can be freely adjusted. Power rollers 8 and 8 are rotatably supported around the displacement shafts 7 and 7 supported by the trunnions 6 and 6, respectively. Each of these power rollers 8 and 8 is sandwiched between inner surfaces 2a and 4a of the input side and output side disks 2 and 4 facing each other. Each of the inner side surfaces 2a and 4a is obtained by rotating a cross section around a central axis of the input shaft 1 and the output shaft 3 with a cross section having a cross section around the pivot shaft 5 or a curve close to such a circular arc. It has a concave surface. And the peripheral surfaces 8a and 8a of each said power roller 8 and 8 formed in the spherical convex surface are made to contact | abut to the said inner surface 2a and 4a.
[0004]
A loading cam type pressing device 9 is provided between the input shaft 1 and the input side disc 2, and the pressing device 9 makes the input side disc 2 toward the output side disc 4 elastically pressable. Yes. The pressing device 9 includes a cam plate 10 that rotates together with the input shaft 1 and a plurality of (for example, four) rollers 12 and 12 that are rotatably held by a cage 11. On one side surface (left side surface in FIGS. 6 to 7) of the cam plate 10, a driving side cam surface 13 that is an uneven surface extending in the circumferential direction is formed, and the outer side surface (FIGS. 6 to 7) of the input side disk 2 is formed. The driven cam surface 14 having the same shape is also formed on the right side surface of FIG. The plurality of rollers 12 and 12 are supported so as to be rotatable about a radial axis with respect to the center of the input shaft 1.
[0005]
When the toroidal type continuously variable transmission configured as described above is used, when the cam plate 10 rotates with the rotation of the input shaft 1, the drive side cam surface 13 moves the plurality of rollers 12, 12 to the input side disk 2. Is pressed against the driven cam surface 14 formed on the outer surface. As a result, the input side disk 2 is pressed against the plurality of power rollers 8, 8, and at the same time, the drive side and driven side cam surfaces 13, 14 are pressed against the plurality of rollers 12, 12. Based on the above, the input side disk 2 rotates. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through the plurality of power rollers 8, 8, and the output shaft 3 fixed to the output side disk 4 rotates.
[0006]
When changing the rotational speed ratio (transmission ratio) between the input shaft 1 and the output shaft 3, and when first decelerating between the input shaft 1 and the output shaft 3, the pivots 5 and 5 are used as the centers. Each trunnion 6, 6 is swung in a predetermined direction. As shown in FIG. 6, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are formed on a portion near the center of the inner side surface 2a of the input side disc 2 and a portion near the outer periphery of the inner side surface 4a of the output side disc 4. The displacement shafts 7 and 7 are inclined so as to contact each other. On the contrary, when the speed is increased, the trunnions 6 and 6 are swung in the opposite directions around the pivots 5 and 5. Then, as shown in FIG. 7, the peripheral surfaces 8a and 8a of the power rollers 8 and 8 are formed on the outer peripheral portion of the inner side surface 2a of the input side disc 2 and the central portion of the inner side surface 4a of the output side disc 4, respectively. The displacement shafts 7 and 7 are inclined so as to contact each other. If the inclination angles of these displacement shafts 7 and 7 are set intermediate between those shown in FIGS. 6 and 7, an intermediate gear ratio can be obtained between the input shaft 1 and the output shaft 3.
[0007]
FIGS. 8 to 9 show an example of a more specific toroidal type continuously variable transmission described in the microfilm of Japanese Utility Model Application No. 63-69293 (Japanese Utility Model Publication No. 1-173552). The input side disk 2 and the output side disk 4 are rotatably supported around needle-shaped input shafts 15 via needle bearings 16 and 16, respectively. Further, the cam plate 10 is spline-engaged with the outer peripheral surface of the end portion (left end portion in FIG. 8) of the input shaft 15 and the movement of the cam plate 10 in the direction away from the input side disk 2 is prevented by the flange portion 17. The cam plate 10 and the rollers 12, 12 rotate the input side disk 2 while pressing the input side disk 2 against the output side disk 4 based on the rotation of the input shaft 15. Is configured. An output gear 18 is coupled to the output side disk 4 by means of keys 19, 19, so that the output side disk 4 and the output gear 18 rotate in synchronization.
[0008]
The pivot shafts 5 and 5 provided concentrically with each other at both ends of the pair of trunnions 6 and 6 have a pair of support plates 20 and 20 and radial needle bearings 21 and 21 each having an outer ring whose outer peripheral surface is a spherical convex surface. It swings and is supported so as to be displaceable over the axial directions of the pivot shafts 5 and 5 (front and back direction in FIG. 8, left and right direction in FIG. 9). The displacement shafts 7 and 7 are supported in the circular holes 22 and 22 formed in the intermediate portions of the trunnions 6 and 6. These displacement shafts 7 and 7 have support shaft portions 23 and 23 and pivot shaft portions 24 and 24 that are parallel to each other and eccentric, respectively. Of these, the support shaft portions 23 and 23 are rotatably supported inside the circular holes 22 and 22 via radial needle bearings 25 and 25. Further, power rollers 8 and 8 are rotatably supported around the pivot shaft portions 24 and 24 via other radial needle bearings 26 and 26, respectively.
[0009]
The pair of displacement shafts 7 and 7 are provided at positions opposite to the input shaft 15 by 180 degrees. Further, the direction in which the pivot shafts 24 and 24 of the displacement shafts 7 and 7 are eccentric with respect to the support shafts 23 and 23 is the same as the rotation direction of the input disk 2 (left and right in FIG. 9). Reverse direction). The eccentric direction is a direction substantially perpendicular to the direction in which the input shaft 15 is disposed. Accordingly, the power rollers 8 and 8 are supported so as to be slightly displaceable in the direction in which the input shaft 15 is disposed. As a result, due to the elastic deformation of the constituent members based on the large load applied to the constituent members in the state of transmission of the rotational force, the power rollers 8 and 8 are moved in the axial direction of the input shaft 15 (see FIG. 8). Even when it tends to be displaced in the left-right direction (the front-back direction in FIG. 9), this displacement can be absorbed without applying an excessive force to each part.
[0010]
Also, between the outer surface of each of the power rollers 8 and 8 and the inner surface of the intermediate portion of each of the trunnions 6 and 6, thrust ball bearings 27 and 27 in order from the outer surface of the power rollers 8 and 8, Thrust bearings such as thrust needle bearings 28 and 28 are provided. Of these, the thrust ball bearings 27 and 27 support rotation of the power rollers 8 and 8 while supporting a load in the thrust direction applied to the power rollers 8 and 8. The thrust bearings such as the thrust needle bearings 28 and 28 or the sliding bearings support thrust loads applied to the outer rings 29 and 29 constituting the thrust ball bearings 27 and 27 from the power rollers 8 and 8. However, the pivot shafts 24 and 24 and the outer rings 29 and 29 are allowed to swing around the support shafts 23 and 23.
[0011]
Further, one end (the left end in FIG. 9) of each trunnion 6 and 6 is connected to the tip (the right end in FIG. 9) of the drive rods 30 and 30, respectively. Drive pistons 32 and 32 are fixedly provided on the outer peripheral surface of the intermediate portion of the fixed drive tubes 31 and 31. These drive pistons 32 and 32 are oil-tightly fitted in the drive cylinders 33 and 33, respectively.
[0012]
In the case of the toroidal type continuously variable transmission configured as described above, the rotation of the input shaft 15 is transmitted to the input side disk 2 via the pressing device 9. Then, the rotation of the input side disk 2 is transmitted to the output side disk 4 through a pair of power rollers 8, 8, and the rotation of the output side disk 4 is taken out from the output gear 18. When changing the rotational speed ratio between the input shaft 15 and the output gear 18, the pair of drive pistons 32, 32 are displaced in opposite directions. As the drive pistons 32 and 32 are displaced, the pair of trunnions 6 and 6 are displaced in the opposite directions. For example, the lower power roller 8 in FIG. The power rollers 8 are displaced to the left in the figure. As a result, the direction of the tangential force acting on the contact portion between the peripheral surfaces 8a, 8a of the power rollers 8, 8 and the inner side surfaces 2a, 4a of the input side disk 2 and the output side disk 4 changes. To do. The trunnions 6 and 6 swing in opposite directions around the pivots 5 and 5 pivotally supported by the support plates 20 and 20 in accordance with the change in the direction of the force. As a result, as shown in FIGS. 6 to 7 described above, the contact position between the peripheral surfaces 8a and 8a of the power rollers 8 and 8 and the inner surfaces 2a and 4a changes, and the input shaft 15 and The rotational speed ratio with the output gear 18 changes.
[0013]
When the rotational force is transmitted between the input shaft 15 and the output gear 18 in this way, the power rollers 8 and 8 are connected to the input shaft 15 based on the elastic deformation of the constituent members. The displacement shafts 7 and 7 that are displaced in the axial direction and pivotally support the power rollers 8 and 8 are slightly rotated around the support shaft portions 23 and 23. As a result of this rotation, the outer surfaces of the outer rings 29, 29 of the thrust ball bearings 27, 27 and the inner surfaces of the trunnions 6, 6 are relatively displaced. Since the thrust needle bearings 28, 28 exist between the outer surface and the inner surface, the force required for this relative displacement is small. Therefore, as described above, the force for changing the inclination angle of each displacement shaft 7, 7 can be small.
[0014]
In the case of the toroidal-type continuously variable transmission constructed and operated as described above, each of the trunnions 6 and 6 and each of the displacement shafts 7 such as a radial needle bearing 26 and a thrust ball bearing 27 for supporting the power rollers 8 and 8 are provided. , 7 and the power rollers 8 and 8 must be fed with lubricating oil (traction oil) into each bearing portion. In any case, when the toroidal type continuously variable transmission is operated, the power rollers 8 and 8 rotate at a high speed while receiving a large load. Therefore, in order to ensure the durability of the radial needle bearing 26 and the thrust ball bearing 27, it is necessary to feed a sufficient amount of lubricating oil to each bearing portion including both the bearings 26 and 27 .
[0015]
For this reason, in the case of the conventional structure shown in FIGS. 8 to 9, the downstream oil supply passages 34, 34 are provided inside the respective trunnions 6, 6, the insides of the respective driving rods 30, 30 and the respective driving rods. The upstream oil supply passages 35 and 35 are provided between the outer peripheral surfaces 30 and 30 and the inner peripheral surfaces of the drive tubes 31 and 31, respectively. The hydraulic oil existing in the drive cylinders 33, 33 can be fed into the upstream oil supply passages 35, 35 as lubricating oil from the low pressure chamber side of the drive cylinders 33, 33 and the like. . On the other hand, the lubricating oil fed from the downstream end of the downstream oil supply passages 34, 34 provided on the respective trunnions 6, 6 is supplied to the inner peripheral surface of each of the circular holes 22, 22 and in the intermediate portion of each of the trunnions 6, 6. It can be discharged from the side. During operation of the toroidal-type continuously variable transmission, the hydraulic oil present on the low pressure chamber side of each of the drive cylinders 33, 33 is passed through the inner peripheral surface of each of the circular holes 22, 22 and the inner surface of the intermediate portion of each of the trunnions 6, The bearing portions including the respective bearings 25 to 28 are lubricated.
[0016]
FIGS. 10-13 has shown two examples of the specific structure of the upstream oil supply path 35 provided in the drive rod 30 and the drive tube 31 (FIG. 9) side. 10 to 13, the drive tube 31 is omitted. First, in the structure of the first example shown in FIGS. 10 to 11, a flat surface 36 is formed by planing the intermediate portion of the drive rod 30, and the flat surface 36 and the inner peripheral surface of the drive tube 31 are formed. The upstream oil supply passage 35 is provided between them. In the case of the second example shown in FIGS. 12 to 13, the upstream oil supply passage 35 is provided by a center hole 37 and branch holes 38, 38 formed at the center of the drive rod 30. .
[0017]
[Problems to be solved by the invention]
In the case of the first example of the conventional structure shown in FIGS. 10 to 11, it is necessary to regulate the phase between the flat surface 36, the trunnion 6 and the drive tube 31 in order to reliably supply the lubricating oil. Assembling work of the toroidal type continuously variable transmission becomes troublesome. In addition, after machining the flat surface 36, it is necessary to remove the burrs generated at the edge, which increases the number of processing steps and the above assembly work, which reduces the cost of the toroidal continuously variable transmission. Causes to raise.
[0018]
In the case of the second example of the conventional structure shown in FIGS. 12 to 13, not only does it take time to work the center hole 37 and the branch holes 38, 38 in the drive rod 30 with a drill, As a result, burrs are generated at the intersections between the holes 37 and 38. For this reason, the machining efficiency is poor, and it is necessary to remove burrs. This also causes the cost of the toroidal continuously variable transmission to be increased. Further, at the tip of the drive rod 30 (the right end in FIG. 12), a coupling pin 39 that couples the drive rod 30 and the trunnion 6 and the tip of the drive rod 30 (the right end in FIG. 12). The cross-sectional area between the two and the central hole 37 is reduced by the amount corresponding to the central hole 37, and the coupling strength between the drive rod 30 and the trunnion 6 is reduced.
In view of such circumstances, the present invention realizes a toroidal continuously variable transmission that facilitates parts processing and assembly work, eliminates the need for deburring work, and provides sufficient coupling strength between the drive rod and trunnion. Invented as much as possible.
[0019]
[Means for Solving the Problems]
The toroidal type continuously variable transmission of the present invention is supported so as to be rotatable concentrically and independently of each other with the inner surfaces facing each other, like the conventional toroidal type continuously variable transmission described above. A plurality of trunnions swinging around a pair of concentric pivots, each of which is twisted with respect to the central axes of the first and second disks, and A plurality of displacement shafts provided in a state projecting from the inner surface of each trunnion at the intermediate portion of each trunnion, and both the first and second in a state of being rotatably supported around each displacement shaft. A plurality of power rollers sandwiched between the discs, a mounting hole provided at one end of each trunnion, and a drive rod coupled and fixed to each trunnion with the tip end fitted into the mounting hole. , A drive tube that is externally fitted to each of these drive rods, a downstream oil supply passage that is provided inside each trunnion and has an upstream end thereof opened to the inner peripheral surface of the mounting hole, and an outer periphery of each drive rod And an upstream oil supply passage that is provided between the surface and the inner peripheral surface of each drive tube and communicates the downstream end with the downstream oil supply passage inside the mounting hole.
[0020]
In particular, in the toroidal-type continuously variable transmission according to the present invention, the upstream oil supply passage is arranged on the entire periphery of a portion of the outer peripheral surface of the distal end portion of each drive rod aligned with the upstream end opening of the downstream oil supply passage. A downstream annular groove formed over the entire circumference of the downstream annular groove formed on the intermediate portion of each drive rod and the inner circumferential surface of each drive tube; A plurality of communicating grooves formed in a state where these annular grooves are communicated with each other between the upstream annular groove and the downstream annular groove on the outer peripheral surface of the intermediate portion of each drive rod; An oil supply hole formed in a state where the inner and outer peripheral surfaces of each drive tube are in communication with each other at a portion of each of the drive tubes aligned with the upstream annular groove.
[0021]
[Action]
The toroidal type continuously variable transmission of the present invention configured as described above has a rotational force between the first disk and the second disk based on the same operation as the conventional toroidal type continuously variable transmission described above. By performing transmission, and further changing the angle of inclination of the trunnion, the rotational speed ratio of these two disks is changed.
In particular, in the case of the toroidal type continuously variable transmission of the present invention, the upstream oil supply passage can be formed by plastic processing such as rolling. For this reason, the processing of the upstream oil supply passage is facilitated, and burrs are not generated with the processing. Further, based on the presence of both the upstream and downstream annular grooves, it is not necessary to regulate the phase between each drive rod and another member such as a trunnion during assembly. For this reason, the assembly work can be facilitated. Furthermore, since the cross-sectional area of the tip portion of each of the drive rods can be sufficiently secured, the coupling strength between each of the drive rods and the trunnion can be sufficiently secured.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show an example of an embodiment of the present invention. The feature of the present invention is the structure of the upstream oil supply passage 35 provided in the drive rod 30 and the drive tube 31. Since the structure and operation of other parts are the same as those of the conventional structure shown in FIGS. 8 to 9 described above, overlapping illustrations and explanations of equivalent parts are omitted or simplified. The explanation will be focused on.
[0023]
In order to constitute the upstream oil supply passage 35, a downstream annular groove 40 is formed on the outer peripheral surface of the tip of the drive rod 30, and an upstream annular groove 41 is formed on the outer peripheral surface of the intermediate portion. Of these, the downstream annular concave groove 40 is in a state where the drive rod 30 and the trunnion 6 are coupled to each other at a portion aligned with the upstream end opening of the downstream oil supply passage 34 provided in the trunnion 6. It is formed in a row. On the other hand, the upstream annular groove 41 is formed over the entire circumference in a portion facing the inner peripheral surface of the intermediate portion of the drive tube 31. And the oil supply hole 43 is formed in the part which aligns with the said upstream side annular ditch | groove 41 in the intermediate part of the said drive tube 31 in the state which made the inner and outer peripheral surfaces of this drive tube 31 communicate. The downstream and upstream annular grooves 40 and 41 are preferably formed by plastic working such as rolling. However, these annular concave grooves 40 and 41 are almost free from burrs even by turning using a lathe because of their shapes, and can be easily removed even if burrs are generated. You may form by. The oil supply hole 43 is structurally formed by cutting using a drill, and the generated burrs are removed after processing.
[0024]
Further, on the outer peripheral surface of the intermediate portion of the drive rod 30, a plurality of communicating concave grooves 42, 42 are formed between the downstream annular groove 40 and the upstream annular grooves 41. The grooves 40 and 41 are formed so as to communicate with each other. Each of the communication concave grooves 42 and 42 is formed in a straight line parallel to the central axis of the drive rod 30 or in a spiral shape with a twist angle α. Even when it is formed in a spiral shape, the twist angle α is set to less than 45 degrees (0 degree <α <45 degrees) to prevent the overall length of each of the communication concave grooves 42 and 42 from becoming longer. An increase in the flow resistance of the concave grooves 42 and 42 is suppressed.
[0025]
The cross-sectional shape of each of the communication concave grooves 42, 42 is not particularly limited as long as it can be plastically processed. For example, an arc shape as shown in FIG. 3 (A), as shown in FIG. Such trapezoidal shapes, involute shapes as shown in FIG. In addition, the number of the communication concave grooves 42, 42 is also easy to process, and the value of the flow resistance allowed for each of the communication concave grooves 42, 42 (the total cross-sectional area of the communication concave grooves 42, 42). The design is determined in accordance with the strength and the like required for the portion of the drive rod 30 in which the communicating grooves 42 and 42 are formed. For example, as shown in FIG. 4A, there are four (4), as shown in FIG. 4 (B), 8 (8), and as shown in FIG. (Multiple)).
[0026]
In any case, the communication concave grooves 42 and 42 as described above are formed by a rolling processing device 44 as shown in FIG. The rolling processing device 44 rolls the work piece 46 (drive rod 30) between a pair of upper and lower forming racks 45 and 45 while strongly sandwiching them, and surfaces of the forming racks 45 and 45 facing each other. The shape of the protrusions 52 and 52 formed on the workpiece is transferred to the outer peripheral surface of the workpiece 46. The forming racks 45, 45 are reciprocated by a hydraulic cylinder 49 while being synchronized by a pair of racks 47, 47 and a pinion 48. The workpiece 46 rotates together with the pinion 48 while being supported between the head stock 50 and the tail stock 51.
[0027]
By performing the machining operation with the drive rod 30 mounted on the rolling device 44 as a workpiece 46, the communication concave grooves 42, 42 are formed on the outer peripheral surface of the intermediate portion of the drive rod 30. Form. Such a rolling process is preferably performed after the downstream and upstream annular grooves 40 and 41 are formed. In particular, when the both annular grooves 40 and 41 are formed by cutting, the rolling process is performed later. The reason for this is that as both the annular grooves 40 and 41 are cut, burrs that are difficult to be removed are formed at both end portions of the communication grooves 42 and 42 on the inner surface of the annular grooves 40 and 41. This is to prevent the occurrence of the problem.
[0028]
In the case of the toroidal type continuously variable transmission of the present invention configured as described above, the burrs that are difficult to remove when formed by cutting among the concave grooves 40 to 42 constituting the upstream oil supply passage 35 are provided. It is possible to make the communication concave grooves 42 and 42 that are likely to generate by plastic working such as rolling. For this reason, the upstream side oil supply passage 35 can be easily processed, and burrs that are difficult to remove with the processing do not occur. Further, based on the presence of the upstream and downstream annular grooves 40, 41, the annular grooves 40, 41 and other oil supply passage portions are connected to each other regardless of the phase of the drive rod 30 in the circumferential direction. You can communicate. Therefore, there is no need to regulate the phase between each drive rod 30 and other members such as the trunnion 6 during assembly, and the assembly work can be facilitated. Further, unlike the second example of the conventional concrete structure shown in FIGS. 12 to 13 described above, the central hole 37 is not formed inside the drive rod 30, and the tip of the drive rod 30 is not formed. A sufficient cross-sectional area can be secured. For this reason, the coupling strength between the drive rod 30 and the trunnion 6 can be sufficiently secured.
[0029]
【The invention's effect】
Since the present invention is configured and operates as described above, it is possible to simplify the manufacturing and assembling work of the upstream oil supply passage portion provided in the drive rod and the drive tube portion, and contribute to the cost reduction of the toroidal continuously variable transmission. . In addition, the coupling strength between the drive rod and the trunnion can be sufficiently secured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention with a trunnion, a drive rod, and a drive tube taken out.
FIG. 2 is a side view of the drive rod taken out and viewed from the same direction as FIG.
FIG. 3 is a partial cross-sectional view of a drive rod showing three examples of a cross-sectional shape of a communication concave groove.
4 is an enlarged cross-sectional view taken along the line AA in FIG. 2, showing three examples of the formation of communication concave grooves.
FIG. 5 is a perspective view showing an example of a rolling machine for forming a communication groove.
FIG. 6 is a side view showing a basic configuration of a conventionally known toroidal-type continuously variable transmission in a state at the time of maximum deceleration.
FIG. 7 is a side view showing the state of the maximum speed increase.
FIG. 8 is a cross-sectional view showing an example of a conventional specific structure.
9 is a cross-sectional view taken along the line BB in FIG.
FIG. 10 is a cross-sectional view showing a first example of a specific structure of the upstream side oil supply passage which has been conventionally considered in a state where a trunnion and a drive rod are taken out.
11 is a cross-sectional view taken along the line CC of FIG.
FIG. 12 is a cross-sectional view showing a second example of the specific structure of the upstream side oil supply passage, which has been conventionally considered, with the trunnion and drive rod taken out.
13 is a sectional view taken along the line DD of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 2a Inner side surface 3 Output shaft 4 Output side disk 4a Inner side surface 5 Pivot 6 Trunnion 7 Displacement shaft 8 Power roller 8a Circumferential surface 9 Pressing device 10 Cam plate 11 Retainer 12 Roller 13 Drive side cam surface 14 Drive side cam surface 15 Input shaft 16 Needle bearing 17 collar 18 Output gear 19 Key 20 Support plate 21 Radial needle bearing 22 Circular hole 23 Support shaft portion 24 Pivot shaft portion 25 Radial needle bearing 26 Radial needle bearing 27 Thrust ball bearing 28 Thrust needle bearing 29 Outer ring 30 Drive rod 31 Drive tube 32 Drive piston 33 Drive cylinder 34 Downstream oil supply passage 35 Upstream oil supply passage 36 Flat surface 37 Center hole 38 Branch hole 39 Connecting pin 40 Downstream annular groove 41 Upstream annular Concave groove 42 Communicating concave groove 43 Oil supply hole 44 Rolling processing device 45 Formi Gluck 46 workpiece 47 rack 48 pinion 49 a hydraulic cylinder 50 headstock 51 tailstock 52 ridges

Claims (2)

互いの内側面同士を対向させた状態で、互いに同心に、且つ互いに独立した回転自在に支持された第一、第二のディスクと、それぞれがこれら第一、第二のディスクの中心軸に対し捻れの位置にある互いに同心の1対ずつの枢軸を中心として揺動する複数のトラニオンと、これら各トラニオンの中間部にこれら各トラニオンの内側面から突出する状態で設けられた複数の変位軸と、これら各変位軸の周囲に回転自在に支持された状態で、上記第一、第二の両ディスク同士の間に挟持された複数のパワーローラと、上記各トラニオンの一端部に設けた取付孔と、この取付孔にその先端部を内嵌した状態でこれら各トラニオンに結合固定した駆動ロッドと、これら各駆動ロッドに外嵌した駆動チューブと、上記各トラニオンの内部に設けられ、それぞれの上流端を上記取付孔の内周面に開口させた下流側給油通路と、上記各駆動ロッドの外周面と上記各駆動チューブの内周面との間に設けられて、それぞれの下流端を上記取付孔の内部で上記下流側給油通路に連通させた上流側給油通路とを備えたトロイダル型無段変速機に於いて、この上流側給油通路は、上記各駆動ロッドの先端部外周面で上記下流側給油通路の上流端開口に整合する部分に全周に亙って形成した下流側環状凹溝と、上記各駆動ロッドの中間部外周面で上記各駆動チューブの内周面に対向する部分に全周に亙って形成した上流側環状凹溝と、上記各駆動ロッドの中間部外周面でこの上流側環状凹溝と上記下流側環状凹溝との間部分に、これら両環状凹溝同士を連通させる状態で形成した複数本の連通凹溝と、上記各駆動チューブの一部で上記上流側環状凹溝に整合する部分に、これら各駆動チューブの内外両周面同士を連通させる状態で形成した給油孔とから成るものである事を特徴とするトロイダル型無段変速機。  The first and second discs are supported concentrically and independently of each other with the inner surfaces facing each other, and the first and second discs are respectively supported with respect to the central axes of the first and second discs. A plurality of trunnions that swing about a pair of concentric pivots in a twisted position, and a plurality of displacement shafts that are provided in the middle of each trunnion so as to protrude from the inner surface of each trunnion; A plurality of power rollers sandwiched between the first and second disks in a state of being rotatably supported around each of the displacement shafts, and mounting holes provided at one end of each trunnion A drive rod that is coupled and fixed to each trunnion with the tip portion fitted in the mounting hole, a drive tube that is externally fitted to each drive rod, and each trunnion. A downstream oil supply passage having an upstream end of each of the mounting holes opened on the inner peripheral surface of the mounting hole, and an outer peripheral surface of each of the drive rods and an inner peripheral surface of each of the drive tubes. In the toroidal-type continuously variable transmission having an upstream oil supply passage whose end communicates with the downstream oil supply passage inside the mounting hole, the upstream oil supply passage is arranged at the outer periphery of the tip end portion of each drive rod. The downstream annular groove formed over the entire circumference in the portion aligned with the upstream end opening of the downstream oil supply passage on the surface, and the inner peripheral surface of each drive tube at the outer peripheral surface of the intermediate portion of each drive rod An upstream annular groove formed in the opposite part over the entire circumference, and a portion between the upstream annular groove and the downstream annular groove on the intermediate outer peripheral surface of each drive rod. A plurality of communicating concave grooves formed in a state in which the annular concave grooves communicate with each other; A portion of the tube that is aligned with the upstream annular groove is provided with an oil supply hole formed in a state where the inner and outer peripheral surfaces of each drive tube are in communication with each other. Step transmission. 請求項1に記載したトロイダル型無段変速機を造る場合に、各連通凹溝を、各駆動ロッドの一部外周面に塑性加工を施す事により形成する事を特徴とするトロイダル型無段変速機の製造方法。  A toroidal-type continuously variable transmission characterized in that, when the toroidal-type continuously variable transmission according to claim 1 is constructed, each communication concave groove is formed by subjecting a partial outer peripheral surface of each drive rod to plastic working. Machine manufacturing method.
JP28993199A 1999-10-12 1999-10-12 Toroidal continuously variable transmission and manufacturing method thereof Expired - Fee Related JP4055305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28993199A JP4055305B2 (en) 1999-10-12 1999-10-12 Toroidal continuously variable transmission and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28993199A JP4055305B2 (en) 1999-10-12 1999-10-12 Toroidal continuously variable transmission and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2001108048A JP2001108048A (en) 2001-04-20
JP2001108048A5 JP2001108048A5 (en) 2005-10-06
JP4055305B2 true JP4055305B2 (en) 2008-03-05

Family

ID=17749615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28993199A Expired - Fee Related JP4055305B2 (en) 1999-10-12 1999-10-12 Toroidal continuously variable transmission and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4055305B2 (en)

Also Published As

Publication number Publication date
JP2001108048A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
JP3932027B2 (en) Toroidal continuously variable transmission
JP3617267B2 (en) Toroidal continuously variable transmission
JP4161247B2 (en) Toroidal continuously variable transmission
JP4055305B2 (en) Toroidal continuously variable transmission and manufacturing method thereof
JP4135249B2 (en) Half toroidal continuously variable transmission
JP3870594B2 (en) Toroidal continuously variable transmission
JP4016514B2 (en) Toroidal continuously variable transmission
JP4141079B2 (en) Toroidal continuously variable transmission
JP4069573B2 (en) Toroidal continuously variable transmission
JP3899745B2 (en) Toroidal continuously variable transmission
JP4003347B2 (en) Toroidal continuously variable transmission
JP4172890B2 (en) Half toroidal continuously variable transmission
JP4433834B2 (en) Toroidal continuously variable transmission
JP4240688B2 (en) Toroidal continuously variable transmission
JP4247733B2 (en) Toroidal continuously variable transmission
JP3820978B2 (en) Toroidal continuously variable transmission
JP3663851B2 (en) Toroidal continuously variable transmission
JP4131054B2 (en) Toroidal continuously variable transmission
US5380256A (en) Toroidal type continuously variable transmission
JP3480034B2 (en) Toroidal type continuously variable transmission
JP2001032899A (en) Toroidal type continuously variable transmission
JP4211157B2 (en) Toroidal continuously variable transmission
JP4089081B2 (en) Toroidal continuously variable transmission
JP4013369B2 (en) Toroidal type continuously variable transmission assembly method
JP4051791B2 (en) Half toroidal continuously variable transmission

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees