JP4054179B2 - High-strength pearlite steel with excellent delayed fracture resistance - Google Patents

High-strength pearlite steel with excellent delayed fracture resistance Download PDF

Info

Publication number
JP4054179B2
JP4054179B2 JP2001128924A JP2001128924A JP4054179B2 JP 4054179 B2 JP4054179 B2 JP 4054179B2 JP 2001128924 A JP2001128924 A JP 2001128924A JP 2001128924 A JP2001128924 A JP 2001128924A JP 4054179 B2 JP4054179 B2 JP 4054179B2
Authority
JP
Japan
Prior art keywords
delayed fracture
steel
pearlite
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001128924A
Other languages
Japanese (ja)
Other versions
JP2002327233A (en
Inventor
大輔 平上
敏三 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001128924A priority Critical patent/JP4054179B2/en
Publication of JP2002327233A publication Critical patent/JP2002327233A/en
Application granted granted Critical
Publication of JP4054179B2 publication Critical patent/JP4054179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐遅れ破壊特性の優れた鋼材、特に1200MPa以上の引張強度を有する、耐遅れ破壊特性の優れたパーライト鋼に関するものである。
【0002】
【従来の技術】
PC鋼棒、橋梁用ワイヤ、レールに数多く使われている高強度パーライト鋼は、引張り強度が1300MPaを超えると遅れ破壊の危険性が高くなることが知られており、使用の範囲が限定されている。
パーライト鋼の耐遅れ破壊特性を改善する方法として、例えば特開2000−337332号公報、特開2000−337333号公報や特開2000−337334号公報では、耐遅れ破壊特性の改善にはパーライト鋼を強伸線加工することが有効であると提案している。確かにパーライト鋼を強伸線加工すると耐遅れ破壊特性が改善するが、強伸線加工によりコストが高くなる問題があり、また強伸線加工が必要なことから、形状およびサイズも限定される。
【0003】
【発明が解決しようとする課題】
本発明は上記のような実情を考慮してなされたものであり、遅れ破壊特性が優れた高強度パーライト鋼、特に遅れ破壊特性が良好で、且つ強度が1300MPa以上のパーライト鋼を提供するものである。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明者らは鋼材組成、組織形態を最適に選択すれば、遅れ破壊特性に優れたパーライト鋼を実現できるという結論に達し、本発明をなしたものである。
【0005】
本発明の要旨とするところは下記の通りである。
(1) 質量%で、
C :0.55〜1.2%、 Si:0.01〜3%、
Mn:0.1〜2%、 Ti:0.005%以下
を含有し、さらに、
V :0.01〜1.5%、 Mo:0.61〜3%
を含有し、残部がFeおよび不可避的不純物からなり、炭化物又は窒化物となっているMoの質量%が0.5%以上であることを特徴とする耐遅れ破壊特性に優れた高強度パーライト鋼。
(2) 質量%で、
C :0.55〜1.2%、 Si:0.01〜3%、
Mn:0.1〜2%、 Ti:0.005%以下
を含有し、さらに、
V :1.0〜1.5%、 Mo:0〜3%
を含有し、残部がFeおよび不可避的不純物からなり、炭化物、窒化物又は炭窒化物となっているVの質量%が0.3%以上であることを特徴とする耐遅れ破壊特性に優れた高強度パーライト鋼。
(3) 質量%でさらに、
Cr:0.05〜1.5%、 Al:0.003〜0.1%、
Nb:0.001〜0.05%、Cu:0.01〜4%、
Ni:0.01〜4%、 B :0.0001〜0.005%
の1種または2種以上を含有することを特徴とする前記(1)又は(2)記載の耐遅れ破壊特性に優れた高強度パーライト鋼。
(4) EBSP(Electron Back Scattering Pattern)で測定したパーライト組織中のフェライト結晶方位が同一であるパーライトブロックの大きさが20μm以下であることを特徴とする前記(1)〜(3)のいずれか1項に記載の耐遅れ破壊特性に優れた高強度パーライト鋼。
(5) 遅れ破壊の限界拡散性水素量が0.2ppm以上であることを特徴とする前記(1)〜(4)のいずれか1項に記載の耐遅れ破壊特性に優れた高強度パーライト鋼。
【0006】
【発明の実施の形態】
本発明者らは、圧延ままおよび圧延後加速冷却した種々の強度レベルのパーライト鋼材を用いて、遅れ破壊挙動を詳細に解析した。遅れ破壊は外部環境から鋼材中に侵入し、鋼材中を室温で拡散し得る拡散性水素に起因して発生していることは既に明らかである。
耐遅れ破壊特性は、遅れ破壊が発生しない限界拡散性水素量を求めることにより評価した。この方法は、電解水素チャージにより種々のレベルの拡散性水素量を含有させた後、遅れ破壊試験中に試料中の水素が大気中に抜けることを抑制するためにCdめっきを施し、その後、大気中で所定の荷重を負荷し、遅れ破壊が発生しなくなる拡散性水素量を評価するものである。
【0007】
図4に、拡散性水素量と遅れ破壊が発生するまでの破断時間の関係について解析した一例を示す。試料中に含まれる拡散性水素量が少なくなるほど遅れ破壊が発生するまでの時間が長くなり、拡散性水素量がある値以下では遅れ破壊が発生しなくなる。この遅れ破壊が発生しない上限の拡散性水素量を「限界拡散性水素量」と定義する。この限界拡散性水素量が高いほど遅れ破壊特性は良好である。なお、この拡散性水素量は、ガスクロマトグラフを用いた昇温分析によって測定することができる。
【0008】
そこで、パーライト鋼の遅れ破壊特性を改善すべく詳細に検討した結果、Ti添加量を制限し、VもしくはMoを添加、あるいは両方添加することにより、VおよびMoの炭化物または窒化物、あるいはその両方を微細に分散析出させ、水素のトラップサイトを多数導入することによって、限界拡散性水素量が増加し耐遅れ破壊特性が向上する条件を確立した。
【0009】
次に、本発明の成分の限定理由について説明する。
C:Cは鋼の強度確保およびパーライト組織形成のために必須な元素であるが、0.55%未満であるとパーライト組織形成は困難であり、1.2%を超えると延靭性の低下が顕著に現れてくるため、0.55〜1.2%に限定した。
【0010】
Si:Siは初析セメンタイトの生成を抑え、焼入れ性を向上させる効果がある。また、パーライトラメラー間のフェライトに固溶し、固溶体硬化によって強度を高める効果がある。しかし、0.01%未満ではこの強化の効果を得られず、3%を超えると延靭性が著しく低下するため、0.01〜3%の範囲に限定した。
【0011】
Mn:Mnは脱酸、脱硫のために必要であるばかりでなく、焼入れ性を向上させるために有効な元素であるが、0.1%未満であると上記の効果は得られず、2%を超えるとMnの偏析部にマルテンサイトなどの過冷組織が生成して延靭性が劣化するため、0.1〜2%に限定した。
【0012】
Ti:Tiは不純物でありV炭窒化物やMo炭化物と密接に関係しており、0.005%を超えると、粗大なTi炭窒化物が圧延や加工あるいは熱処理のための加熱時に生成し、VやMoの炭窒化物がこのTi炭窒化物に析出してVやMoの炭窒化物が粗大化するので、少ないほど好ましい。このため、水素のトラップサイトであるVやMoの炭窒化物の数が少なくなり、遅れ破壊特性が改善されない。したがってTiは0.005%以下に限定した。
【0013】
V:Vは焼入れ性を向上させる元素であると共に、炭化物または窒化物あるいはその複合析出物を形成し、この析出物が水素トラップサイトとなり、遅れ破壊特性が向上する。しかし、0.01%未満であると、この水素トラップの効果はほとんど得られず、1.5%を超えてもその添加量に見合う効果が得られないため、0.01〜1.5%の範囲に限定した。なお上記(2)の発明では、Vの添加量の下限は、実施例の表1の本発明鋼Cの1.00%に基づき、1.00%とした。
【0014】
Mo:MoもVと同様に焼入れ性を向上させる元素であると共に、炭化物または窒化物あるいはその複合析出物を形成し、この析出物が水素トラップサイトとなり、遅れ破壊特性が向上する。しかし3%を超えてもその添加量に見合う効果が得られないため、0〜3%の範囲に限定した。なお、上記(1)の発明ではMoの添加量の下限は、実施例の表1の本発明鋼Dの0.61%に基づき、0.61%とした。
【0015】
本発明では上記成分のほか、必要に応じて以下の元素を添加することが好ましい。
Cr:Crはパーライトのラメラー間隔を微細化して強度を向上させる効果がある。しかし0.05%未満では上記効果は得られず、1.5%を超えると変態終了時間が長くなりすぎて、マルテンサイトなどの過冷組織が生成して延靭性が低下するため、0.05〜1.5%の範囲に限定した。
【0016】
Al:Alは脱酸およびAlNを形成することによりオーステナイト粒の粗大化を防止する効果を有しているが、0.003%未満では上記効果は発揮されず、0.1%を超えると効果が飽和するため、0.003〜0.1%の範囲に限定した。
【0017】
Nb:NbはTiと同様に炭窒化物を生成し、遅れ破壊特性の向上をもたらすが、0.001%未満であると上記効果は不十分であり、0.05%を超えるとこの効果が飽和するため、0.001〜0.05%の範囲に限定した。
【0018】
Cu:Cuは焼入れ性の向上と析出効果による高強度化が図れるが、0.01未満だと上記効果は得られず、4%を超えると粒界脆化を起こして耐遅れ破壊特性を劣化させるため、0.01〜4%の範囲に限定した。
【0019】
Ni:Niは延靭性を向上する効果があるが、0.01%未満であると上記効果が得られず、4%を超えるとCrと同様に変態終了時間が長くなりすぎて、マルテンサイトなどの過冷組織が生成して延靭性が低下するため、0.01〜4%の範囲に限定した。
【0020】
B:Bは粒界破壊を抑制し、遅れ破壊特性を向上させる効果がある。さらに、Bはオーステナイト粒界に偏析することにより焼入れ性を著しく高めるが、0.0001%未満であると上記効果が得られず、0.005%を超えても効果が飽和するため、0.0001〜0.005%の範囲に限定した。
【0021】
不純物であるP,SおよびNについては特に制限しないものの、遅れ破壊特性を向上させる観点から、それぞれ0.015%以下が好ましい範囲である。
【0022】
Vの炭化物,窒化物又は炭窒化物,及びMoの炭化物,窒化物又は炭窒化物は、抽出残渣により分離抽出したものを分析した。Vの炭化物、窒化物又は炭窒化物となるV量は、質量%で0.3%未満であると十分に水素をトラップすることができないため、Vの炭化物、窒化物又は炭窒化物となるV量を0.3%以上に限定した。Moの炭化物、窒化物又は炭窒化物となるMo量が質量%で0.5%未満であると十分に水素をトラップすることができないため、Moの炭化物、窒化物又は炭窒化物となるMo量を0.5%以上に限定した。
【0023】
次に、本発明の組織形態について説明する。
EBSP(Electron Back Scattering Pattern)で測定したパーライト組織中のフェライトの、結晶方位が同一の領域をパーライトブロックと定義する。このパーライトブロックの大きさは微細になるほど鋼材の延靭性が改善される。
ここで、大きさとは各パーライトブロックと同じ面積の円の直径(円相当径)と定義する。更に、パーライトブロックの大きさが20μm以下であると遅れ破壊特性も向上するため、20μm以下と範囲を限定した。遅れ破壊特性を更に向上させるためには、10μm以下であることが好ましい。
【0024】
次に、限界拡散性水素量の限定理由について説明する。
上記成分の鋼材の遅れ破壊を評価した結果、VまたはMoあるいは両方の炭化物または窒化物あるいはこれらの複合析出物により水素が捕捉され、限界拡散性水素量が著しく向上した。特に1300MPa以上の高強度パーライト鋼では、上記の水素トラップ効果により0.2ppm以上の限界拡散性水素量にすることができる。
【0025】
【実施例】
以下、実施例により本発明の効果を更に具体的に説明する。
表1に示す化学組成を有するパーライト鋼の機械的性質や、図1に示す遅れ破壊試験片を、図2に示す遅れ破壊試験機で評価した遅れ破壊特性を表2に示す。
図3に示した水素放出プロファイルは標準的な鋼材の放出プロファイルであり、100℃に見られるピークの面積を積分したものが拡散性水素量である。
遅れ破壊特性は、図4に示す100時間後に遅れ破壊しない拡散性水素量、すなわち限界拡散性水素量で評価を行い、負荷荷重は引張り強さの90%の条件で実施した。なお水素チャージは、電解水素チャージ法を用いて、チャージ電流を変えることにより水素レベルを変化させた。
【0026】
表1および表2の鋼種A〜が本発明鋼であり、鋼種G〜Lが比較鋼である。本発明鋼は、いずれも引張強度が1300MPa以上であると共に、パーライトブロックの大きさが20μm以下であり、遅れ破壊試験の限界拡散性水素量が0.2ppm以上である。
【0027】
これに対して、比較鋼GはC量が低いため引張強度が1300MPa未満という強度が低い例である。比較鋼Hは、C量が多くパーライトブロックサイズが20μm以上であるため、限界拡散性水素量が0.2ppm未満と、遅れ破壊特性が悪い例である。比較鋼IはSiが3.10%と高く、Mnが0.05%と低いため、靭性が低下して遅れ破壊特性が悪くなった例である。
【0028】
比較鋼JはSiが0.009%と低く、Mnが2.1%と高く、Ti量が多くV炭窒化物の数が少ないため、遅れ破壊特性が悪い例である。比較鋼KはVが1.58%,Crが1.61%と高く、靭性値が著しく低下したため遅れ破壊特性が悪い例である。比較鋼LはMoが3.05%と高いほかにCuおよびNiが高く、靭性値が著しく低下したため遅れ破壊特性が悪い例である。
【0029】
【表1】
【0030】
【表2】
【0031】
【発明の効果】
本発明によれば、パーライト鋼のブロックサイズおよび水素トラップサイトであるVおよびMo炭化物を析出させることにより、引張強さが1300MPa以上の耐遅れ破壊特性に優れたパーライト鋼を製造することができる。
【図面の簡単な説明】
【図1】鋼材の遅れ破壊試験に用いた試験片平面図である。
【図2】遅れ破壊試験装置の説明図である。
【図3】水素分析の水素放出プロファイルである。
【図4】限界拡散性水素量の説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel material having excellent delayed fracture resistance, and particularly to a pearlite steel having a tensile strength of 1200 MPa or more and excellent delayed fracture resistance.
[0002]
[Prior art]
High-strength pearlite steel, which is widely used for PC steel bars, bridge wires and rails, is known to have a high risk of delayed fracture when its tensile strength exceeds 1300 MPa, and its range of use is limited. Yes.
As a method for improving the delayed fracture resistance of pearlite steel, for example, in JP 2000-337332 A, JP 2000-337333 A and JP 2000-337334 A, pearlite steel is used for improving delayed fracture resistance. It has been proposed that strong wire drawing is effective. Certainly, if pearlite steel is strongly drawn, the resistance to delayed fracture improves, but there is a problem that the cost is increased due to strong drawing, and the shape and size are limited because of the need for strong drawing. .
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides high-strength pearlite steel having excellent delayed fracture characteristics, particularly pearlite steel having good delayed fracture characteristics and strength of 1300 MPa or more. is there.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have reached the conclusion that pearlite steel having excellent delayed fracture characteristics can be realized by optimally selecting the steel material composition and structure, and thus the present invention has been made.
[0005]
The gist of the present invention is as follows.
(1) In mass%,
C: 0.55-1.2%, Si: 0.01-3%,
Mn: 0.1 to 2%, Ti: 0.005% or less,
V: 0.01 to 1.5%, Mo: 0.61 to 3%
High-strength pearlite steel with excellent delayed fracture resistance, characterized in that the remainder is composed of Fe and inevitable impurities, and the mass% of Mo which is carbide or nitride is 0.5% or more .
(2) By mass%
C: 0.55-1.2%, Si: 0.01-3%,
Mn: 0.1 to 2%, Ti: 0.005% or less,
V: 1.0-1.5%, Mo: 0-3%
The balance is excellent in delayed fracture resistance, characterized in that the balance is made of Fe and inevitable impurities, and the mass% of V that is carbide, nitride or carbonitride is 0.3% or more. High strength pearlite steel.
(3) In addition by mass%,
Cr: 0.05-1.5%, Al: 0.003-0.1%,
Nb: 0.001 to 0.05%, Cu: 0.01 to 4%,
Ni: 0.01 to 4%, B: 0.0001 to 0.005%
The high-strength pearlite steel excellent in delayed fracture resistance according to the above (1) or (2), characterized by containing one or more of the above.
(4) Any of (1) to (3) above, wherein the size of the pearlite block having the same ferrite crystal orientation in the pearlite structure measured by EBSP (Electron Back Scattering Pattern) is 20 μm or less. High-strength pearlite steel excellent in delayed fracture resistance according to item 1.
(5) The high-strength pearlite steel excellent in delayed fracture resistance according to any one of (1) to (4), wherein the critical diffusible hydrogen content of delayed fracture is 0.2 ppm or more .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors analyzed delayed fracture behavior in detail using pearlite steel materials of various strength levels that were rolled and accelerated after rolling. It is clear that delayed fracture has occurred due to diffusible hydrogen that penetrates into the steel from the external environment and can diffuse through the steel at room temperature.
Delayed fracture resistance was evaluated by determining the amount of critical diffusible hydrogen that does not cause delayed fracture. In this method, after various amounts of diffusible hydrogen are contained by electrolytic hydrogen charging, Cd plating is applied to suppress the escape of hydrogen in the sample to the atmosphere during the delayed fracture test. Among them, a predetermined load is applied, and the amount of diffusible hydrogen at which delayed fracture does not occur is evaluated.
[0007]
FIG. 4 shows an example in which the relationship between the amount of diffusible hydrogen and the fracture time until delayed fracture occurs is analyzed. The smaller the amount of diffusible hydrogen contained in the sample, the longer the time until delayed fracture occurs. When the amount of diffusible hydrogen is less than a certain value, delayed fracture does not occur. The upper limit amount of diffusible hydrogen at which this delayed fracture does not occur is defined as “limit diffusible hydrogen amount”. The higher the critical diffusible hydrogen content, the better the delayed fracture characteristics. The amount of diffusible hydrogen can be measured by temperature analysis using a gas chromatograph.
[0008]
Therefore, as a result of detailed examination to improve the delayed fracture characteristics of pearlite steel, by limiting the amount of Ti added, adding V or Mo, or adding both, carbide and / or nitride of V and Mo, or both By finely dispersing and precipitating and introducing a large number of hydrogen trap sites, the amount of critical diffusible hydrogen was increased and the conditions for improving delayed fracture resistance were established.
[0009]
Next, the reasons for limiting the components of the present invention will be described.
C: C is an essential element for securing the strength of steel and forming a pearlite structure. However, if it is less than 0.55%, it is difficult to form a pearlite structure, and if it exceeds 1.2%, the ductility is lowered. Since it appears remarkably, it was limited to 0.55 to 1.2%.
[0010]
Si: Si has an effect of suppressing generation of proeutectoid cementite and improving hardenability. Moreover, it has the effect of solid-dissolving in the ferrite between pearlite lamellar and increasing the strength by solid solution hardening. However, if it is less than 0.01%, this strengthening effect cannot be obtained, and if it exceeds 3%, the ductility is remarkably lowered, so the content is limited to the range of 0.01 to 3%.
[0011]
Mn: Mn is not only necessary for deoxidation and desulfurization, but is an element effective for improving the hardenability. However, if it is less than 0.1%, the above effect cannot be obtained. If it exceeds 1, the supercooled structure such as martensite is generated in the segregated part of Mn and the toughness deteriorates, so the content was limited to 0.1 to 2%.
[0012]
Ti: Ti is an impurity and is closely related to V carbonitride and Mo carbide, and if it exceeds 0.005%, coarse Ti carbonitride is produced during heating for rolling, processing or heat treatment, V and Mo carbonitrides precipitate on this Ti carbonitride and the V and Mo carbonitrides become coarser. For this reason, the number of carbon nitrides of V and Mo which are hydrogen trap sites is reduced, and the delayed fracture characteristics are not improved. Therefore, Ti is limited to 0.005% or less.
[0013]
V: V is an element that improves hardenability and forms carbides, nitrides, or composite precipitates thereof, and these precipitates serve as hydrogen trap sites, thereby improving delayed fracture characteristics. However, if it is less than 0.01%, the effect of this hydrogen trap is hardly obtained, and even if it exceeds 1.5%, an effect commensurate with the amount added is not obtained, so 0.01 to 1.5% It was limited to the range. In the above invention (2), the lower limit of the amount of V added was set to 1.00% based on 1.00% of the steel C of the present invention in Table 1 of the examples.
[0014]
Mo: Mo is an element that improves hardenability like V, and forms carbides, nitrides, or composite precipitates thereof, and these precipitates become hydrogen trap sites, thereby improving delayed fracture characteristics. However, even if it exceeds 3%, an effect commensurate with the amount added cannot be obtained, so the content is limited to the range of 0 to 3%. In the above invention (1), the lower limit of the amount of Mo added was 0.61% based on 0.61% of the steel D of the present invention in Table 1 of the examples.
[0015]
In the present invention, in addition to the above components, it is preferable to add the following elements as necessary.
Cr: Cr has the effect of increasing the strength by reducing the pearlite lamellar spacing. However, if the content is less than 0.05%, the above effect cannot be obtained. If the content exceeds 1.5%, the transformation end time becomes too long, and a supercooled structure such as martensite is generated to reduce the ductility. It was limited to the range of 05 to 1.5%.
[0016]
Al: Al has an effect of preventing austenite grains from coarsening by deoxidation and formation of AlN, but the effect is not exhibited when the content is less than 0.003%, and the effect is achieved when the content exceeds 0.1%. Is saturated, so the content is limited to 0.003 to 0.1%.
[0017]
Nb: Nb produces carbonitride as with Ti and improves delayed fracture characteristics. However, if it is less than 0.001%, the above effect is insufficient, and if it exceeds 0.05%, this effect is In order to saturate, it limited to 0.001 to 0.05% of range.
[0018]
Cu: Cu can improve the hardenability and increase the strength by the precipitation effect, but if it is less than 0.01, the above effect cannot be obtained, and if it exceeds 4%, it causes grain boundary embrittlement and deteriorates the delayed fracture resistance. Therefore, the content is limited to a range of 0.01 to 4%.
[0019]
Ni: Ni has an effect of improving ductility, but if it is less than 0.01%, the above effect cannot be obtained, and if it exceeds 4%, the transformation end time becomes too long like Cr, martensite, etc. Since the supercooled structure of this produced | generated and ductility fell, it limited to 0.01 to 4% of range.
[0020]
B: B has an effect of suppressing grain boundary fracture and improving delayed fracture characteristics. Further, B segregates at the austenite grain boundary to remarkably improve the hardenability. However, if the content is less than 0.0001%, the above effect cannot be obtained. If the content exceeds 0.005%, the effect is saturated. It was limited to the range of 0001 to 0.005%.
[0021]
The impurities P, S and N are not particularly limited, but from the viewpoint of improving delayed fracture characteristics, each is preferably 0.015% or less.
[0022]
The carbides, nitrides or carbonitrides of V and the carbides, nitrides or carbonitrides of Mo were separated and extracted by the extraction residue and analyzed. If the amount of V that becomes V carbide, nitride, or carbonitride is less than 0.3% by mass, hydrogen cannot be trapped sufficiently, so V carbide, nitride, or carbonitride is formed. V amount was limited to 0.3% or more . Since Mo cannot be sufficiently trapped when the amount of Mo that becomes Mo carbide, nitride, or carbonitride is less than 0.5% by mass, Mo that becomes Mo carbide, nitride, or carbonitride The amount was limited to 0.5% or more.
[0023]
Next, the organization form of the present invention will be described.
A region having the same crystal orientation of ferrite in a pearlite structure measured by EBSP (Electron Back Scattering Pattern) is defined as a pearlite block. The smaller the size of this pearlite block, the better the ductility of the steel material.
Here, the size is defined as the diameter (equivalent circle diameter) of a circle having the same area as each pearlite block. Furthermore, when the size of the pearlite block is 20 μm or less, the delayed fracture characteristics are improved, so the range is limited to 20 μm or less. In order to further improve the delayed fracture characteristics, the thickness is preferably 10 μm or less.
[0024]
Next, the reason for limiting the amount of limit diffusible hydrogen will be described.
As a result of evaluating delayed fracture of the steel materials having the above components, hydrogen was trapped by V or Mo, both carbides or nitrides, or composite precipitates thereof, and the critical diffusible hydrogen amount was significantly improved. Particularly in the case of high-strength pearlite steel of 1300 MPa or more, the limit diffusible hydrogen amount can be 0.2 ppm or more due to the hydrogen trap effect.
[0025]
【Example】
Hereinafter, the effects of the present invention will be described more specifically with reference to examples.
Table 2 shows the mechanical properties of pearlite steel having the chemical composition shown in Table 1 and the delayed fracture characteristics of the delayed fracture test piece shown in FIG. 1 evaluated by the delayed fracture tester shown in FIG.
The hydrogen release profile shown in FIG. 3 is a standard steel release profile, and the amount of diffusible hydrogen is obtained by integrating the peak area seen at 100 ° C.
The delayed fracture characteristics were evaluated based on the amount of diffusible hydrogen that does not cause delayed fracture after 100 hours shown in FIG. 4, that is, the limit diffusible hydrogen amount, and the load was 90% of the tensile strength. In the hydrogen charging, the hydrogen level was changed by changing the charging current using the electrolytic hydrogen charging method.
[0026]
Steel types A to D in Tables 1 and 2 are steels of the present invention, and steel types G to L are comparative steels. All of the steels of the present invention have a tensile strength of 1300 MPa or more, a pearlite block size of 20 μm or less, and a limit diffusible hydrogen content in a delayed fracture test of 0.2 ppm or more.
[0027]
On the other hand, since the comparative steel G has a low C content, the tensile strength is less than 1300 MPa. Since the comparative steel H has a large amount of C and a pearlite block size of 20 μm or more, the critical diffusible hydrogen amount is less than 0.2 ppm, which is an example of poor delayed fracture characteristics. Comparative Steel I is an example in which Si is as high as 3.10% and Mn is as low as 0.05%, so that the toughness is lowered and the delayed fracture characteristics are deteriorated.
[0028]
Comparative steel J is an example of poor delayed fracture characteristics because Si is as low as 0.009%, Mn is as high as 2.1%, Ti content is large, and the number of V carbonitrides is small. In Comparative Steel K, V is as high as 1.58%, Cr is as high as 1.61%, and the toughness value is remarkably lowered, which is an example of poor delayed fracture characteristics. Comparative steel L is an example of poor delayed fracture characteristics because Mo is high at 3.05%, Cu and Ni are high, and the toughness value is significantly reduced.
[0029]
[Table 1]
[0030]
[Table 2]
[0031]
【The invention's effect】
According to the present invention, pearlite steel having excellent delayed fracture resistance with a tensile strength of 1300 MPa or more can be produced by precipitating the block size of pearlite steel and V and Mo carbides which are hydrogen trap sites.
[Brief description of the drawings]
FIG. 1 is a plan view of a test piece used in a delayed fracture test of a steel material.
FIG. 2 is an explanatory diagram of a delayed fracture test apparatus.
FIG. 3 is a hydrogen release profile of hydrogen analysis.
FIG. 4 is an explanatory diagram of the amount of limit diffusible hydrogen.

Claims (5)

質量%で、
C :0.55〜1.2%、
Si:0.01〜3%、
Mn:0.1〜2%、
Ti:0.005%以下
を含有し、さらに、
V :0.01〜1.5%、
Mo:0.61〜3%
含有し、残部がFeおよび不可避的不純物からなり、炭化物、窒化物又は炭窒化物となっているMoの質量%が0.5%以上であることを特徴とする耐遅れ破壊特性に優れた高強度パーライト鋼。
% By mass
C: 0.55-1.2%,
Si: 0.01 to 3%,
Mn: 0.1 to 2%,
Ti: 0.005% or less, further,
V: 0.01 to 1.5%,
Mo: 0.61 to 3%
Containing the balance being Fe and unavoidable impurities, excellent in delayed fracture resistance, characterized in that carbides, mass% of Mo that has become a nitride compound or carbonitride is 0.5% or more High strength pearlite steel.
質量%で、
C :0.55〜1.2%、
Si:0.01〜3%、
Mn:0.1〜2%、
Ti:0.005%以下
を含有し、さらに、
V :1.0〜1.5%、
Mo:0〜3%
を含有し、残部がFeおよび不可避的不純物からなり、炭化物、窒化物又は炭窒化物となっているVの質量%が0.3%以上であることを特徴とする耐遅れ破壊特性に優れた高強度パーライト鋼。
% By mass
C: 0.55-1.2%,
Si: 0.01 to 3%,
Mn: 0.1 to 2%,
Ti: 0.005% or less, further,
V: 1.0-1.5%
Mo: 0 to 3%
The balance is excellent in delayed fracture resistance, characterized in that the balance is made of Fe and inevitable impurities, and the mass% of V that is carbide, nitride or carbonitride is 0.3% or more. High strength pearlite steel.
質量%でさらに、
Cr:0.05〜1.5%、
Al:0.003〜0.1%、
Nb:0.001〜0.05%、
Cu:0.01〜4%、
Ni:0.01〜4%、
B :0.0001〜0.005%
の1種又は2種以上を含有することを特徴とする請求項1又は2記載の耐遅れ破壊特性に優れた高強度パーライト鋼。
In mass%,
Cr: 0.05 to 1.5%,
Al: 0.003 to 0.1%,
Nb: 0.001 to 0.05%,
Cu: 0.01 to 4%,
Ni: 0.01-4%,
B: 0.0001 to 0.005%
The high-strength pearlite steel excellent in delayed fracture resistance according to claim 1 or 2 , characterized by containing one or more of the following.
EBSP(Electron Back Scattering Pattern)で測定したパーライト組織中のフェライト結晶方位が同一であるパーライトブロックの大きさが20μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の耐遅れ破壊特性に優れた高強度パーライト鋼。The pearlite block having the same ferrite crystal orientation in the pearlite structure measured by EBSP (Electron Back Scattering Pattern) has a size of 20 µm or less, and the resistance to resistance according to any one of claims 1 to 3. High-strength pearlite steel with excellent delayed fracture characteristics. 遅れ破壊の限界拡散性水素量が0.2ppm以上であることを特徴とする請求項1〜4のいずれか1項に記載の耐遅れ破壊特性に優れた高強度パーライト鋼。The high-strength pearlite steel excellent in delayed fracture resistance according to any one of claims 1 to 4, wherein the critical diffusible hydrogen content of delayed fracture is 0.2 ppm or more.
JP2001128924A 2001-04-26 2001-04-26 High-strength pearlite steel with excellent delayed fracture resistance Expired - Fee Related JP4054179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128924A JP4054179B2 (en) 2001-04-26 2001-04-26 High-strength pearlite steel with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128924A JP4054179B2 (en) 2001-04-26 2001-04-26 High-strength pearlite steel with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2002327233A JP2002327233A (en) 2002-11-15
JP4054179B2 true JP4054179B2 (en) 2008-02-27

Family

ID=18977543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128924A Expired - Fee Related JP4054179B2 (en) 2001-04-26 2001-04-26 High-strength pearlite steel with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4054179B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074529A1 (en) 2003-02-20 2004-09-02 Nippon Steel Corporation High strength steel product excellent in characteristics of resistance to hydrogen embrittlement
JP2006213981A (en) * 2005-02-04 2006-08-17 Ntn Corp Environment resistant bearing steel having excellent hydrogen embrittlement resistance
JP5401762B2 (en) * 2006-03-16 2014-01-29 Jfeスチール株式会社 High-strength pearlite rail with excellent delayed fracture resistance
AU2007230254B2 (en) 2006-03-16 2010-12-02 Jfe Steel Corporation High-strength pearlitic steel rail having excellent delayed fracture properties
JP5000367B2 (en) * 2007-04-13 2012-08-15 新日本製鐵株式会社 High strength galvanized bolt with excellent hydrogen embrittlement resistance
JP5459342B2 (en) * 2012-03-26 2014-04-02 新日鐵住金株式会社 Manufacturing method of high-strength galvanized bolts with excellent hydrogen embrittlement resistance

Also Published As

Publication number Publication date
JP2002327233A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
JP3817105B2 (en) High strength steel with excellent fatigue characteristics and method for producing the same
WO2011111872A1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
JP4267376B2 (en) High strength PC steel wire with excellent delayed fracture characteristics and method for producing the same
JP4868935B2 (en) High strength spring steel wire with excellent sag resistance
JP4464524B2 (en) Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4116762B2 (en) High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4489928B2 (en) High strength austenitic stainless steel wire
JP2004359973A (en) High strength steel sheet having excellent delayed fracture resistance, and its production method
JP2019077911A (en) Steel member and manufacturing method of steel member
CN107614723B (en) Spring steel
JP4267126B2 (en) Steel material excellent in delayed fracture resistance and method for producing the same
JP3793391B2 (en) High strength bolt excellent in delayed fracture resistance with a tensile strength of 1300 MPa or more and method for producing the same
JP4054179B2 (en) High-strength pearlite steel with excellent delayed fracture resistance
EP3409810A1 (en) Spring steel
JP3648192B2 (en) High strength PC steel bar with excellent delayed fracture resistance and manufacturing method
JP2012017484A (en) Steel for bolt, bolt, and method for production of the bolt
JP4146271B2 (en) High strength PC steel wire with excellent delayed fracture resistance and method for producing the same
JP3548519B2 (en) High strength steel with excellent hydrogen embrittlement resistance
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
EP4112754A1 (en) Precipitation-hardening martensitic stainless steel
JP2002327235A (en) Steel for machine structure superior in hydrogen fatigue fracture resistance, and manufacturing method therefor
JP2004360022A (en) HIGH-STRENGTH Al-PLATED WIRE OR BOLT EXCELLENT IN DELAYED FRACTURE RESISTANCE AND METHOD FOR PRODUCING THE SAME
JP2003201513A (en) High strength case hardening steel
JP2022535237A (en) Martensitic stainless steel alloy
JP2021161479A (en) Steel material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees