JP4053156B2 - 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具 - Google Patents

光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具 Download PDF

Info

Publication number
JP4053156B2
JP4053156B2 JP26830998A JP26830998A JP4053156B2 JP 4053156 B2 JP4053156 B2 JP 4053156B2 JP 26830998 A JP26830998 A JP 26830998A JP 26830998 A JP26830998 A JP 26830998A JP 4053156 B2 JP4053156 B2 JP 4053156B2
Authority
JP
Japan
Prior art keywords
coordinate system
jig
reference coordinate
optical element
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26830998A
Other languages
English (en)
Other versions
JP2000097684A5 (ja
JP2000097684A (ja
Inventor
俊樹 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP26830998A priority Critical patent/JP4053156B2/ja
Publication of JP2000097684A publication Critical patent/JP2000097684A/ja
Publication of JP2000097684A5 publication Critical patent/JP2000097684A5/ja
Application granted granted Critical
Publication of JP4053156B2 publication Critical patent/JP4053156B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学素子の面間の位置関係を測定する技術に関する。
【0002】
【従来の技術】
特開平7−229811号は、非球面レンズの対向する二面の位置関係を測定し得る装置の一例を開示している。この装置は、互いに直交する3軸方向に関する位置を測定し得る3次元形状測定機と、非球面レンズを支持する非球面レンズ支持器と、コンピュータとを有しており、被検体である非球面レンズの一方の面を非球面レンズ支持器に当て付け、3次元形状測定機により、非球面レンズ支持器と、被検非球面レンズのもう一方の面とを測定している。
【0003】
【発明が解決しようとする課題】
上述した装置では、基準軸に同心的に形成された真円の非球面レンズ支持器に被検非球面レンズを当て付けることにより、基準軸と被検非球面レンズの一方の面の光軸との軸合わせを行なっている。
【0004】
従って、同装置は、光軸に対して回転対称性を持つ光学素子に対しては有効であるが、光軸に対して回転対称性を持たない面を持つ光学素子に対しては適用できない。本明細書では、光軸に対して回転対称性を持たない面を自由曲面と呼ぶことにする。
【0005】
近年では、小型化や光学特性向上を図るため、二以上の機能を併せ持つ光学素子の使用が増えている。プリズムの機能とレンズの機能を持つ光学素子はその一例である。
【0006】
このような光学素子は、光軸に対して回転対称性を持たない面つまり自由曲面を持つものが多い。このような光学素子を用いた装置では、その光学特性の向上を図るためにも、その複数の面の相互の位置関係を知ることが望まれている。
【0007】
しかし、現在のところ、自由曲面を持つ光学素子の複数の面の間の位置関係を測定する好適な手法は未だ提供されていない。
本発明は、このような現状に応えるために成されたものであり、その目的は、光学素子の面間の位置関係を測定する好適な技術を提供することであり、特には、自由曲面を持つ光学素子の複数の面の相互の相対的な位置関係を測定し得る技術を提供することである。
【0008】
【課題を解決するための手段】
本発明による少なくとも第1の面と第2の面を持つ光学素子を保持する保持具は、前記光学素子を保持する治具と、該治具を支持する補助治具とを有しており、前記補助治具は、第1の姿勢及び第2の姿勢で治具治具を支持可能であり、前記治具は、第1及び第2の基準座標系を定義するための基準座標系定義部を有し、前記第1の姿勢は、3次元形状測定機により前記第1の面を測定するときの姿勢であり、前記第2の姿勢は、前記3次元形状測定機により前記第2の面を測定するときの姿勢であり、前記第1の基準座標系は、前記第1の面の測定の際の基準となる座標系であり、前記第2の基準座標系は、前記第2の面の測定の際の基準となる座標系であり、前記基準座標系定義部は、少なくとも3つの球体、あるいは1つの基準面と2つの球体、あるいは2つの基準面と1つの球体であって、前記基準座標系定義部は、前記第1の面側からみた配置関係と、前記第2の面側からみた配置関係とがお互いに異なるように各々が配置されてなる。
【0009】
本発明による少なくとも第1の面と第2の面を持つ光学素子を保持する別の保持具は、該保持具は前記光学素子を保持する治具と、該治具を支持する補助治具とを有しており、前記補助治具は、第1の姿勢及び第2の姿勢で前記治具を支持可能であり、前記治具は、第1及び第2の基準座標系を定義するための基準座標系定義部を有し、記第1の姿勢は、3次元形状測定機により前記第1の面を測定するときの姿勢であり、前記第2の姿勢は、前記3次元形状測定機により前記第2の面を測定するときの姿勢であり、前記第1の基準座標系は、前記第1の面の測定の際の基準となる座標系であり、前記第2の基準座標系は、前記第2の面の測定の際の基準となる座標系であり、前記基準座標系定義部は、少なくとも3つの球体で構成され、前記少なくとも3つの球体のうち、3つの球体の各々の大きさ異なる。
【0011】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態について説明する。
第一の実施の形態
本発明の実施の形態による光学素子の光学面の位置関係の測定に用いる装置10の全体構成を図1に示す。同装置は、被検ワークである光学素子50を保持する保持具100と、3次元形状測定機30と、測定データを処理するコンピュータ20とを有している。
【0012】
3次元形状測定機30は、基台32に立てられた一対の脚部36に支持されたガイドレール38と、ガイドレール38に支持されたスライダ40と、スライダ40に支持された接触プローブ42とを備えている。ガイドレール38は一対の脚部36に対して上下方向および前後方向に移動可能であり、スライダ40はガイドレール38に対して左右方向に移動可能である。従って、接触プローブ42は、基台32の上面に平行なXY方向と、基台32の上面に直交するZ方向に移動し得る。
【0013】
3次元形状測定機は、接触プローブ42の接触部44を測定対象物に接触させ、両者の接触を保ったまま接触プローブ42をXYZ方向に移動させることによって、測定対象物の表面形状をXYZ方向に関する座標の集合として計測する。
【0014】
本実施の形態の説明では、3次元形状測定機として、接触プローブを備える装置を例示的にあげているが、本発明に適用可能な3次元形状測定機は、このタイプに限定されない。本発明の3次元形状測定機には、測定対象物の表面形状を三次元座標の集合として測定し得るあらゆる装置が適用可能である。
【0015】
図1に示した保持具100の詳細な構成を図2に示す。保持具100は、3次元形状測定機30の基台32の上に置かれる補助治具110と、その上に載置される治具200とで構成されている。治具200はコの字形状をしており、被検ワークである光学素子50を両側から支持し得る。補助治具110は、治具200に保持された光学素子50と干渉しないように、治具200の形状に対応してコの字形状をしている。
【0016】
治具200はコの字形状である必要はない。被検ワーク50を適切に保持できさえすれば、どのような形状であっても一向に構わない。また、補助治具110もコの字形状である必要はない。被検ワーク50と干渉することなく、治具200を適切に支持できさえすれば、どのような形状であっても一向に構わない。
【0017】
被検ワーク50は両側に突出した一対のみみ52を有している。みみ52は、後述するように、治具200への固定に利用される。みみ52は、好ましくは、治具200への固定のためだけでなく、装置への取り付けをも考慮して設けられている。
【0018】
また被検ワーク50は面間の位置関係の測定対象である二つの光学面50aと50bを有している。本明細書において、「光学面」という用語は、光が透過又は回折又は反射することを想定して設計された面を指し、入射した光に対して光学的な作用を及ぼす面および単に光を通過させるだけで何ら光学的な作用を及ぼさない面の両方を含む。例えば、プリズムの機能とレンズの機能を持つ光学素子においては、光を屈折させたり集光させたり発散又は回折又は反射させたりする面および単に光を通過させる面の両方を指す。
【0019】
治具200は、コの字形状の板材からなる基板210と、被検ワーク50のみみ52を押さえるための押さえ部材220と、これを締め付けるためのねじ222とを有している。図4に示されるように、被検ワーク50のみみ52を基板210と押さえ部材220の間に配置してねじ222を締めることにより、基板210と押さえ部材220とで被検ワーク50のみみ52を狭持することで、被検ワーク50は治具200に固定される。
【0020】
治具200は、基準座標系を定めるための基準座標系定義部として機能する三つの球体230を備えている。図3に示されるように、球体230は基板210の外周面に接着剤232により固定されている。球体230は基板210の外周部に固定されているので、基板210の両面に露出している。従って、図2に示されるように、基板210の第一面210aを上にして補助治具110の上に載置した場合にも、図5に示されるように、基板210の第二面210bを上にして補助治具110の上に載置した場合にも、3次元形状測定機30により測定可能である。
【0021】
続いて、被検ワーク50の光学面50aと光学面50bの相互の位置関係(面間の位置関係)の測定について説明する。以下では、まず基準座標系定義部すなわち三つの球体230に基づいた基準座標系の求め方について説明し、その後で被検ワークの面間の位置関係の求め方について述べる。
【0022】
基準座標系の求め方
1.図1に示す3次元形状測定機30のプローブ42により、基準座標系定義部すなわち三つの球体230をそれぞれ走査して、各球体230の形状データを求める。
2.図1に示すコンピュータ20により、各球体230の形状データからそれぞれの中心座標を計算し、それぞれ中心1、中心2、中心3とする。
3.中心1と中心2を結ぶ直線に、中心3から垂線を下した交点を原点とする。4.中心1から中心2へ向かうベクトルをXの方向ベクトルとする。
5.原点から中心3へ向かうベクトルをYの方向ベクトルとする。
6.Xの方向ベクトルとYの方向ベクトルの外積をZの方向ベクトルとする。
7.3〜6で定義されるX,Y,Zの方向ベクトルにより決まる座標系を基準座標系とする。
【0023】
面間の位置関係の求め方
1.図2に示されるように、光学面50aを測定できる姿勢に治具200を補助治具110の上に置く。
2.図1で示した3次元形状測定機30のプローブ42により、光学面50aを走査測定し、光学面50aの形状データを得る。
3.上述した手順に従って、基準座標系定義部すなわち三つの球体230に基づいて基準座標系を求める。
4.治具200を裏返して、図5に示されるように、光学面50bが測定できる姿勢に治具200を補助治具110の上に置く。
5.図1で示した3次元形状測定機30のプローブ42により、光学面50bを走査測定し、光学面50bの形状データを得る。
6.上述した手順に従って、基準座標系定義部すなわち三つの球体230に基づいて基準座標系を求める。
7.図1に示したコンピュータ20により、3と6で求めた基準座標系を元に、光学面50aの形状データと、光学面50bの形状データを同じ座標系に変換する。
8.コンピュータ20により、光学面50aの形状データを設計式とフィッティングし、つまり両者の差が最も少ない姿勢に合わせ、光学面50aの面座標を求める。ここで、面座標は、光学面50aの種類に応じて異なり、光学面50aが球面の場合には中心点の座標であり、非球面の場合には原点の座標と軸の式(あるいは方向ベクトル)、自由曲面の場合には座標面を決めるためには原点と直交する2つの方向ベクトルが必要になるが、後処理を容易にするために、原点と互いに直交する3つの方向ベクトル、つまり原点の座標とZベクトル(軸の方向ベクトル)とX方向ベクトル(軸に直交するベクトル)とY方向ベクトル(Z,X方向ベクトルの外積)をとることが多い。
9.光学面50bに対しても同じ処理を行ない、光学面50bの面座標を求める。
10.コンピュータ20により、8と9で求めた面座標に基づいて、光学面50aと光学面50bの位置関係を求める。
【0024】
図2と図5から分かるように、三つの球体230は、好ましくは、治具200に非対称に配置されており、従って、第一面210aの側から見た球体230の配置関係と第二面210bの側から見た球体230の配置関係は互いに異なっている。球体230のこのような配置関係は、治具200のどちら側(第一面210aの側と第二面210bの側のいずれ)から測ったかを測定データから判断することを可能にする。
【0025】
三つの球体230は、非対称に配置する代わりに、その各々の大きさを異ならせてもよい。あるいは、両側の球体230の一方の大きさを異ならせてるだけであってもよい。このように大きさの異なる球体230の組み合わせは、これらが対称的な位置関係にあっても、治具200のどちら側から測ったかを測定データから判断することを可能にする。
【0026】
なお、この実施の形態の各構成は、当然、様々な変形や変更が可能である。
変形例のひとつを図6に示す。この変形例では、基準座標系定義部すなわち三つの球体230が、接着や一体成形などにより、被検ワーク50に直接設けられている。面間の位置関係は同様の測定を行なうことで求められる。
【0027】
この変形例では、被検ワークを保持する構造体には、上述した特殊な保持具100を用いる必要はなく、被検ワーク50を安定に保持し得るものであれば、どのようなものを用いても構わない。
【0028】
別の変形例を図7に示す。この変形例では、基板210に外周部に五つの球体230が設けられている。面間の位置関係は、五つの球体230の任意の三つに対して、同様の測定を行なうことで求められる。また、五つの球体230のすべてを基準座標系定義部に利用することで、面間の位置関係をより高い精度で求めることも可能である。
【0029】
この変形例では、図7に示されるように、射出成形において被検ワーク50の製作時に出来るゲート54などが、その下方に位置する球体230を3次元形状測定機30が測定するのを邪魔する場合であっても、これを除く他の四つの球体230を基準座標系定義部として用いることで、面間の位置関係を求めることができる。
【0030】
また、この構成は非常に長い被検ワークの面間の位置関係の測定に対して有用である。つまり、非常に長い被検ワークに対しては、面間の位置関係はいくつかの部分に分けて測定するが、それぞれの測定部分の近くに少なくとも三つの球体を配することで、所要時間が短く精度の高い好適な測定を提供する。
【0031】
第二の実施の形態
第二の実施の形態による治具300を図8に示す。治具300は、図9と図10と図11に示されるように、測定する面に応じて、それぞれ、異なる補助治具120と130と140と組み合わされて、図1に示される3次元形状測定機30の基台32の上に載置される。
【0032】
治具300は、コの字形状の板材からなる基板310と、被検ワーク60のみみ62を押さえるための押さえ部材320と、これを締め付けるためのねじ322とを有している。治具200と同様に、ねじ322を締め付けて被検ワーク60のみみ62を基板310と押さえ部材320で狭持することによって、被検ワーク60は治具300に固定される。
【0033】
治具300は、基準座標系を定めるための基準座標系定義部として機能する二つの球体330とひとつの基準面310aを有している。基準面310aとその反対側の面310bは共に高い平面度を有し、両者は高い精度で平行となっている。球体330は基板310の外周部に接着により固定されている。
【0034】
図8において、被検ワーク60は、面間の位置関係の測定対象である三つの光学面60aと60bと60cを有している。
光学面60aの測定に対しては、治具300は、図9に示されるように、補助治具120の斜面124の上に載せられる。治具300は、補助治具120の斜面124に設けられた二本の位置決めピン122によって支持され、また斜面124に面接触することで向きが安定化される。この状態で、被検ワーク60の光学面60aは上を向き、図1に示される3次元形状測定機30によって測定することが可能である。勿論、球体330も3次元形状測定機30で測定可能である。
【0035】
光学面60bの測定に対しては、治具300は、図10に示されるように、補助治具130の斜面134の上に載せられる。治具300は、補助治具130の斜面134に設けられた二本の位置決めピン132によって支持され、また斜面134に面接触することで向きが安定化される。この状態で、被検ワーク60の光学面60bは上を向き、図1に示される3次元形状測定機30によって測定することが可能である。勿論、球体330も3次元形状測定機30で測定可能である。
【0036】
光学面60cの測定に対しては、治具300は、図11に示されるように、補助治具140の斜面144の上に載せられる。治具300は、補助治具140の斜面144に設けられた二本の位置決めピン142によって支持され、また斜面144に面接触することで向きが安定化される。この状態で、被検ワーク60の光学面60cは上を向き、図1に示される3次元形状測定機30によって測定することが可能である。勿論、球体330も3次元形状測定機30で測定可能である。
【0037】
本実施の形態では、基準面310aと二つの球体330に基づいて基準座標系を設定する。以下、まず基準面310aの測定方法について説明し、続いて基準座標系の求め方について述べる。
【0038】
基準面の測定方法
1.図9に示されるように、基準面310aが上側にある場合は、そのまま基準面310aを3次元形状測定機30で測定する。
2.図11に示されるように、基準面310aが下側にある場合は、基準面310aに平行な裏面310bを3次元形状測定機30で測定することで、間接的に基準面310aを測定する。
3.図10に示されるように、3次元形状測定機30で基準面310aまたは裏面310bを直接測定できない場合は、基準面310aまたは裏面310bに面接触している斜面134に対して既知の角度θだけ傾斜して上を向いている測定面136を3次元形状測定機30で測定することにより、間接的に基準面310aを測定する。
【0039】
基準座標系の求め方
1.図1に示すプローブ44により、基準座標系定義部すなわち基準面310aと二つの球体330をそれぞれ走査測定し、形状データを求める。
2.図1に示すコンピュータ20により、二つの球体330の形状データからそれぞれの中心座標を計算する。
3.図1に示すコンピュータ20により、基準面310aの形状データから基準面310aの法線ベクトルを求める。
4.一方の球体330の中心を原点とする。
5.一方の球体330の中心から他方の球体330の中心へ向かうベクトルをXの方向ベクトルとする。
6.Xの方向ベクトルと基準面310aの法線ベクトルの外積をYの方向ベクトルとする。
7.Xの方向ベクトルとYの方向ベクトルの外積をZの方向ベクトルとする。
8.4〜7で定義される座標系を基準座標系とする。
【0040】
任意の二つの光学面の間の位置関係は、対象の二つの光学面に対して、第一の実施の形態で説明した「面間の位置関係の求め方」をそのまま適用することで求められる。
【0041】
本発明は、上述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で行なわれるすべての実施を含む。
実施の形態では、基準座標系定義部として、三つの球体の例と、二つの球体と一つの基準面の例を挙げたが、本発明はこれに限らない。基準座標系定義部は、座標系を定義し得るものでありさえすれば、その形状や形態は問わない。例えば、基準座標系定義部は一つの球体と二つの基準面とで構成されてもよい。このような構成もまた本発明の範囲内にある。
【0042】
この構成による治具は、具体的には、例えば、被検ワークを保持し得る機構を持つ基板と、この基板の外周部に固定された球体とを備えており、基板は、一方の側に異なる面方向を持つ二つの基準面を有し、反対側にこれらの二つの基準面に対して既知の位置関係にある二つの測定面を有している。
【0043】
このような治具やこれを用いて光学素子の面間の位置関係を求める装置や方法は、当然、本発明に含まれる。
本明細書には以下の各項に記す発明が含まれる。
(1) 3次元形状測定機を用いて光学素子の面間の位置関係を求める方法であって、
前記3次元形状測定機を用いて前記光学素子の第1の面の形状を測定する第1の面形状測定工程と、
前記第1の面形状測定工程における第1の基準座標系を測定する第1の基準座標系測定工程と、
前記3次元形状測定機を用いて前記光学素子の第2の面の形状を測定する第2の面形状測定工程と、
前記第2の面形状測定工程における第2の基準座標系を測定する第2の基準座標系測定工程と、
前記第1及び第2の面形状と前記第1及び第2の基準座標系に基づいて前記第1の面と前記第2の面の位置関係を演算により求める演算工程とを有している、光学素子の面間の位置関係を求める方法。
(2) 上記(1)項において、前記3次元形状測定機による測定の際、前記光学素子は保持具によって保持され、この保持具は第1及び第2の基準座標系を定義するための複数の基準座標系定義部を有しており、
前記第1及び第2の基準座標系測定工程は、前記基準座標系定義部の形状を前記3次元形状測定機で測定する工程を含んでいる、光学素子の面間の位置関係を求める方法。
(3) 上記(2)項において、前記基準座標系定義部は第1及び第2の面形状測定の際に前記3次元形状測定機で測定可能な形状を有しており、
前記第1及び第2の基準座標系測定工程は、前記基準座標系定義部の形状を前記3次元形状測定機で測定する工程を含んでいる、光学素子の面間の位置関係を求める方法。
(4) 上記(3)項において、前記保持具は板状の支持部材を含んでおり、前記複数の基準座標系定義部は、前記支持部材の両面に露出した少なくとも3つの球形状部を含んでいる、光学素子の面間の位置関係を求める方法。
(5) 上記(4)項において、前記少なくとも3つの球形状部は、前記支持部材に非対称に配置されており、従って、前記支持部材の前記両面の一方から見た球形状部の配置関係と前記両面の他方から見た球形状部の配置関係は互いに異なっている、光学素子の面間の位置関係を求める方法。
(6) 上記(4)項において、前記少なくとも3つの球形状部は、4つ以上の球形状部である、光学素子の面間の位置関係を求める方法。
(7) 上記(3)項において、前記保持具は、1つの基準平面を持つ支持部材を含んでおり、前記基準座標系定義部は、前記支持部材の前記1つの基準平面と、前記支持部材の両面に露出した2つの球形状部を含んでいる、光学素子の面間の位置関係を求める方法。
(8) 上記(3)項において、前記保持具は、一方の側に面方向が異なる2つの基準平面を持つ支持部材を含んでおり、前記基準座標系定義部は、前記支持部材の前記2つの基準平面と、前記支持部材の両面に露出した1つの球形状部とを含んでいる、光学素子の面間の位置関係を求める方法。
(9) 上記(1)項ないし(8)項のいずれかひとつにおいて、前記演算工程は、前記第1及び第2の基準座標系から前記第1及び第2の面形状を同一座標系に変換する変換工程と、
同一座標系における前記第1及び第2の面形状から前記第1及び第2の面間の位置関係を演算する第1の演算工程とを有している、光学素子の面間の位置関係を求める方法。
(10) 上記(9)において、前記演算工程は、前記前記第1及び第2の面形状をそれぞれ設計式と比較して第1及び第2の面の面座標を演算する第2の演算工程を更に有し、
前記第1の演算工程は、同一座標系における前記第1及び第2の面形状又は前記第1及び第2の面座標から前記第1及び第2の面間の位置関係を演算する工程を含んでいる、光学素子の面間の位置関係を求める方法。
(11) 3次元形状測定機により測定される少なくとも第1の面と第2の面を持つ光学素子を保持する保持具であり、
光学素子を保持する治具と、これを支持する補助治具とを有しており、
前記補助治具は、3次元形状測定機が第1の面を測定し得る第1の姿勢及び3次元形状測定機が第2の面を測定し得る第2の姿勢で前記治具を支持可能であり、
前記治具は、第1及び第2の面形状測定における第1及び第2の基準座標系を定義するための基準座標系定義部を有している、光学素子を保持する保持具。
(12) 上記(11)項において、前記治具は、板状の基板と、この基板に光学素子を固定する固定部と、基板の外周部に設けられた3つの球形状部とを有しており、
前記基準座標系定義部は、前記3つの球形状部を含んでいる、光学素子を保持する保持具。
(13) 上記(11)項において、前記治具は、板状の基板と、この基板に光学素子を固定する固定部と、基板の外周部に設けられた2つの球形状部とを有し、前記基板は1つの基準面を有しており、
前記基準座標系定義部は、前記1つの基準面と前記2つの球形状部を含んでいる、光学素子を保持する保持具。
(14) 上記(11)項において、前記治具は、板状の基板と、この基板に光学素子を固定する固定部と、基板の外周部に設けられた1つの球形状部とを有し、前記基板は一方の側に面方向の異なる2つの基準面を有しており、
前記基準座標系定義部は、前記2つの基準面と前記1つの球形状部を含んでいる、光学素子を保持する保持具。
(15) 被検物の3次元形状を測定する3次元形状測定機と、
少なくとも第1の面と第2の面を持つ光学素子を、前記3次元形状測定機が前記第1の面または前記第2の面を測定し得る姿勢で保持する保持具であって、第1及び第2の面形状測定における第1及び第2の基準座標系を定義するための基準座標系定義部を有している保持具と、
前記3次元形状測定機による前記基準座標系定義部の測定データから前記第1及び第2の基準座標系を演算する第1の演算手段と、
前記3次元形状測定機による前記光学素子の前記第1及び第2の面の形状の測定データと、前記第1の演算手段により得られた前記第1及び第2の基準座標系とから、前記第1の面と前記第2の面の間の位置関係を演算する第2の演算手段とを有している、光学素子の面間の位置関係を測定する測定装置。
【0044】
【発明の効果】
本発明によれば、球面や非球面などの回転対称性を持つ面を有する光学素子はもちろん、回転対称性を持たない面を有する光学素子に対しても、その面間の位置関係を測定し得る技術が提供される
【図面の簡単な説明】
【図1】本発明の実施の形態による光学素子の光学面の位置関係の測定に用いる装置の全体構成を示した図である。
【図2】図1に示される保持具の斜視図である。
【図3】図2に示される治具の III−III 線に沿った部分断面図である。
【図4】図2に示される治具のIV−IV線に沿った部分断面図である。
【図5】図2に示される治具が裏返された状態の保持具の斜視図である。
【図6】第一の実施の形態の変形例に基づいた基準座標系定義部を備えた被検ワークの斜視図である。
【図7】第一の実施の形態の別の変形例に基づいた多数の基準座標系定義部を備えた治具の斜視図である。
【図8】第二の実施の形態における治具と被検ワークの斜視図である。
【図9】図8に示される治具が、被検ワークのある光学面の測定のための補助治具と組み合わされた様子を示している斜視図である。
【図10】図8に示される治具が、被検ワークの別の光学面の測定のための補助治具と組み合わされた様子を示している斜視図である。
【図11】図8に示される治具が、被検ワークの更に別の光学面の測定のための補助治具と組み合わされた様子を示している斜視図である。
【符号の説明】
30 3次元形状測定機
50 光学素子
100 保持具
110 補助治具
200 治具
230 球体

Claims (4)

  1. 少なくとも第1の面と第2の面を持つ光学素子を保持する保持具であり、
    該保持具は前記光学素子を保持する治具と、該治具を支持する補助治具とを有しており、
    前記補助治具は、第1の姿勢及び第2の姿勢で前記治具を支持可能であり、
    前記治具は、第1及び第2の基準座標系を定義するための基準座標系定義部を有し、
    前記第1の姿勢は、3次元形状測定機により前記第1の面を測定するときの姿勢であり、
    前記第2の姿勢は、前記3次元形状測定機により前記第2の面を測定するときの姿勢であり、
    前記第1の基準座標系は、前記第1の面の測定の際の基準となる座標系であり、
    前記第2の基準座標系は、前記第2の面の測定の際の基準となる座標系であり、
    前記基準座標系定義部は、少なくとも3つの球体、あるいは1つの基準面と2つの球体、あるいは2つの基準面と1つの球体であって
    前記基準座標系定義部は、前記第1の面側からみた配置関係と、前記第2の面側からみた配置関係とがお互いに異なるように各々が配置されてなることを特徴とする光学素子を保持する保持具。
  2. 前記基準座標系定義部は、1つの基準面と2つの球形状部で構成され、前記球が設けられている面は、前記基準面と直交する面であることを特徴とする請求項1に記載の光学素子を保持する保持具。
  3. 少なくとも第1の面と第2の面を持つ光学素子を保持する保持具であり、
    該保持具は前記光学素子を保持する治具と、該治具を支持する補助治具とを有しており、
    前記補助治具は、第1の姿勢及び第2の姿勢で前記治具を支持可能であり、
    前記治具は、第1及び第2の基準座標系を定義するための基準座標系定義部を有し、
    前記第1の姿勢は、3次元形状測定機により前記第1の面を測定するときの姿勢であり、
    前記第2の姿勢は、前記3次元形状測定機により前記第2の面を測定するときの姿勢であり、
    前記第1の基準座標系は、前記第1の面の測定の際の基準となる座標系であり、
    前記第2の基準座標系は、前記第2の面の測定の際の基準となる座標系であり、
    前記基準座標系定義部は、少なくとも3つの球体で構成され
    前記少なくとも3つの球体のうち、3つの球体の各々の大きさ異なることを特徴とする光学素子を保持する保持具。
  4. 被検物の3次元形状を測定する3次元測定機と、
    請求項1又は3に記載の保持具と、
    前記3次元形状測定機で得た測定データに基づいて所定の処理を行うコンピュータを備えてなることを特徴とする測定装置。
JP26830998A 1998-09-22 1998-09-22 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具 Expired - Fee Related JP4053156B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26830998A JP4053156B2 (ja) 1998-09-22 1998-09-22 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26830998A JP4053156B2 (ja) 1998-09-22 1998-09-22 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具

Publications (3)

Publication Number Publication Date
JP2000097684A JP2000097684A (ja) 2000-04-07
JP2000097684A5 JP2000097684A5 (ja) 2005-10-27
JP4053156B2 true JP4053156B2 (ja) 2008-02-27

Family

ID=17456752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26830998A Expired - Fee Related JP4053156B2 (ja) 1998-09-22 1998-09-22 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具

Country Status (1)

Country Link
JP (1) JP4053156B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002250621A (ja) * 2000-12-18 2002-09-06 Olympus Optical Co Ltd 光学素子及びその型の形状測定方法及び装置
JP2006343255A (ja) * 2005-06-10 2006-12-21 Olympus Corp 3次元形状測定装置及び方法
JP4705828B2 (ja) * 2005-09-22 2011-06-22 株式会社ミツトヨ 相対関係測定方法、及び相対関係測定装置
JP2008209244A (ja) * 2007-02-27 2008-09-11 Nagoya Institute Of Technology 3次元表面形状計測器による表面データからの立体形状の構築方法と板状物体の板厚計測法
JP5200582B2 (ja) * 2008-02-27 2013-06-05 国立大学法人浜松医科大学 長軸部を有する物体の長軸部の先端座標と該物体の位置姿勢を定義する手段との3次元相対関係測定方法およびシステム
JP4881941B2 (ja) * 2008-12-27 2012-02-22 キヤノン株式会社 光学素子設計製造支援システム
JP2010237054A (ja) * 2009-03-31 2010-10-21 Toyota Motor Corp 組み付け精度測定方法および測定装置

Also Published As

Publication number Publication date
JP2000097684A (ja) 2000-04-07

Similar Documents

Publication Publication Date Title
CA2331906C (en) Method for evaluating measurement error in coordinate measuring machine and gauge for coordinate measuring machine
US6710798B1 (en) Methods and apparatus for determining the relative positions of probe tips on a printed circuit board probe card
US6347458B1 (en) Displaceable X/Y coordinate measurement table
KR100616483B1 (ko) 3차원 좌표 측정기용 게이지
US6985238B2 (en) Non-contact measurement system for large airfoils
US7440089B2 (en) Method of measuring decentering of lens
JP2000180103A (ja) Cmm校正ゲージ及びcmmの校正方法
JP2000028477A (ja) 光学部材のウエッジ部を計測する方法および装置
JP4053156B2 (ja) 光学素子の面間の位置関係を測定する装置に用いる光学素子を保持する保持具
CN110940267A (zh) 测量方法及其测量***
US7764387B2 (en) Apparatus and method for measuring suspension and head assemblies in a stack
Liu et al. Three-point-support method based on position determination of supports and wafers to eliminate gravity-induced deflection of wafers
CN115164793A (zh) 微纳米级复合测量的坐标统一标定器及标定方法
JP2008286700A (ja) 角度測定方法及び角度測定装置
JP4802134B2 (ja) 姿勢変化測定方法および装置
JP4125074B2 (ja) 三次元形状測定方法
JP2000097684A5 (ja)
JPH04268433A (ja) 非球面レンズ偏心測定装置
JP2006133059A (ja) 干渉測定装置
JPH0663760B2 (ja) 三次元測定方法及び測定装置
JP3633863B2 (ja) 校正用の被検体を用いた表面形状測定系の系統誤差の自律的決定方法
Ganci et al. The use of self-identifying targeting for feature based measurement
JP2001255138A (ja) 測定用治具
JP2002214071A (ja) 非球面レンズの評価装置及び評価方法
JP2006098201A (ja) 測定治具及び測定方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees