JP4051818B2 - Cdma伝送方式を用いた無線機 - Google Patents

Cdma伝送方式を用いた無線機 Download PDF

Info

Publication number
JP4051818B2
JP4051818B2 JP13189699A JP13189699A JP4051818B2 JP 4051818 B2 JP4051818 B2 JP 4051818B2 JP 13189699 A JP13189699 A JP 13189699A JP 13189699 A JP13189699 A JP 13189699A JP 4051818 B2 JP4051818 B2 JP 4051818B2
Authority
JP
Japan
Prior art keywords
signal
value
section
code
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13189699A
Other languages
English (en)
Other versions
JP2000324019A (ja
Inventor
道雄 社本
政七 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP13189699A priority Critical patent/JP4051818B2/ja
Publication of JP2000324019A publication Critical patent/JP2000324019A/ja
Application granted granted Critical
Publication of JP4051818B2 publication Critical patent/JP4051818B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CDMA(Code Division Multiple Access)伝送方式用いた無線機に関する。
【0002】
【従来の技術】
近年、自動車電話や携帯電話等の移動通信の分野において、CDMA伝送方式を用いたものが実用化されている。
図10に、一般的なCDMA送信機の概要構成を示す。図中、入力端子100からパイロット信号に用いる既知なる値、ならびにn個の情報入力端子101〜10nから情報値が、それぞれ対応する位相変調回路(MOD)110ならびに111〜11nに入力される。入力情報の個数nは、同時多元接続する通信数を意味する。
【0003】
各々の位相変調回路は、入力される情報に対応して、キャリア信号を位相変調して、入力端子100〜10nからの信号に対応するn+1個の1次変調波を生成する。
拡散回路(SS)120〜12nは、それぞれ、対応する1次変調波と、拡散符号発生回路(CG)130〜13nから印加される拡散符号列との積を、拡散符号列の時間期間(チップ期間)において同期して求め、求めた積を拡散符号として出力する。なお、拡散符号発生回路(CG)130〜13nが生成する拡散符号列は、それぞれ直交している。また、拡散符号発生回路(CG)130〜13nは、符号長Nがn+1以上のWalsh関数の各行に対応する拡散符号系列を1シンボル期間内で、それぞれセグメント数だけ繰り返し発生する。
【0004】
n+1個の拡散信号ならびに、各種の制御信号は、次いで総和回路(SUM)140において、総和される。総和回路(SUM)140の出力は、帯域制限回路(BPF)141により帯域制限され、送信回路(TX)142において必要に応じて周波数変換し電力増幅して送信される。
ここで、図10における位相変調回路(MOD)110〜11nの動作を、以下に詳細に説明する。位相変調回路(MOD)110〜11nのそれぞれは、図11に示す1次変調波とシンボル構造のように、一定時間Tでキャリア信号を分割し、各期間の位相を図12に示すQPSKのビット配置あるいは、図13に示すオフセットQPSKのビット配置に従い、1期間で伝送するシンボル値00、01、10、11に1対1に対応するようにキャリア信号の位相を変調して1次変調波を生成する。
【0005】
ここに、1次変調波は、QPSK、オフセットQPSKなどの位相変調した信号の総称とする。さらに、1次変調波として、上記のようにQPSKが用いられる場合、QPSK波の位相は、0、90、180、270度(あるいは、0、±90、180度)の4種の値をとり、また、オフセットQPSKが用いられる場合、QPSK波の位相情報は、45、135、225、315度(あるいは、±45、±135度)の4種の値をとるものとする。位相差は、360度の剰余値であり、QPSKとオフセットQPSK波の位相は、全位相空間を最大に分割するように設定されており、例えば基準位相をQPSKでは0度、オフセットQPSKでは45度と考えれば、全ての位相は互いに90度ずつ離れている。1次変調波の4種の位相を状態00、01、10、11と対応させれば、送信ビット系列を2ビットずつ纏めたダイビットに対応させることができ、1シンボルで2ビットずつ送信できる。
【0006】
一方、シンボル期間Tは、シンボルレートの逆数で定義される量であり、シンボルレートが32kシンボル/秒(以降、シンボル/秒をspsと記述する)の場合には、T=31.25μ秒となる。従って、シンボルレートが32kspsの場合、QPSKの伝送速度は、64kビット/秒(以降、ビット/秒をbpsと記述する)となる。
【0007】
次に、図10の拡散回路(SS)120〜120nの動作を説明する。上記のように、QPSKあるいはオフセットQPSKの各4種の位相を表現するには、シンボル期間T内のキャリアの波形として互いに90度ずつ異なる各4種の波形が必要であり、これら各4種の波形を記述するためには最小でもシンボル期間あたり4以上のサンプル数が必要となる。ここでは、シンボル期間あたりのサンプル数を4として説明する。
【0008】
今、図14に示すように、1次変調波の各シンボル期間を、互いに等しい時間区間のセグメント0からセグメント3までの4個のセグメント区間に分割する。ここで、セグメントとは、各シンボル期間内における単一の拡散符号列における最初の符号から最後の符号までの期間を意味する。さらに、各セグメント区間を、図15に示すように、拡散符号列の符号数に等しい数のチップ区間に分割する。また、チップ値は、各チップ区間における1次変調波と拡散符号値との積で与えられるものとする。1次変調波が時間関数であるので、チップ値の時間分解能は、チップ期間τとなる。しかし、CDMA伝送においては、拡散操作と、後で説明する受信側での拡散操作を施すため、伝送する情報の時間分解能は、セグメント期間τNとなる。ここに、Nは符号長である。
【0009】
図15に示す拡散信号の波形は、拡散符号列として、符号長32のWalsh関数の第1の符号列を用いた場合を示している。拡散符号列としては、必ずしもWalsh関数を用いる必要はないが、互いに直交していることが必要である。ここに、符号列の内積がゼロになる場合に、その符号列が直交しているという。以下、符号長として32のWalsh符号列について説明する。
【0010】
まず、第0〜第2のWalsh符号列を例にとって、その直交性について説明する。
第0〜第2のWalsh符号列は、それぞれ次のように与えられる。
第0の符号列:(−1、−1、−1、−1、…、−1、−1、−1、−1)
第1の符号列:(−1、 1、−1、 1、…、−1、 1、−1、 1)
第2の符号列:(−1、−1、 1、 1、…、−1、−1、 1、 1)
第0と第1のWalsh符号列の内積(0、1)、第1と第2のWalsh符号列の内積(1、2)、第0と第2のWalsh符号列の内積(0、2)は、次のように計算できる。すなわち、
内積(0、1)=1−1+1−1+…+1−1+1−1=0
内積(1、2)=1−1−1+1+…+1−1−1+1=0
内積(0、2)=1+1−1−1+…+1+1−1−1=0
となる。これら内積が全て0となることから、Walsh関数の符号列が互いに直交していることが明らかになる。
【0011】
一方、Walsh符号列自信の内積は、次のように計算できる。すなわち、
内積(0、0)=1+1+1+1+…+1+1+1+1=32
内積(1、1)=1+1+1+1+…+1+1+1+1=32
内積(2、2)=1+1+1+1+…+1+1+1+1=32
となり、符号長32で正規化した、全ての符号列自身の内積は、常に単位1となる。これは、符号列としてWalsh符号列を用いる場合には、拡散符号列と逆拡散符号列として、互いに同じWalsh符号列を用いることができることを意味している。
【0012】
今、あるセグメント期間において、上記に示す第0〜第2のWalsh符号列を用いて3個の情報を多重伝送する場合を想定する。第0のWalsh符号列を用いて値aを、第1のWalsh符号列を用いて値bを、第3のWalsh符号列を用いて値cを伝送しているものとすれば、総和回路(SUM)140へ入力される情報(総和信号(0、1、2))を、チップ対応に記述すれば、次のようになる。
Figure 0004051818
受信側で、総和信号が正しく受信できるものとすれば、受信した総和信号に拡散符号列を乗じて、対応するセグメントの1次変調信号の値が、次に示すように求まる。
【0013】
すなわち、第0のWalsh符号列に対応する値は、総和信号(0、1、2)と第0のWalsh符号列の内積で次のように与えられる。
Figure 0004051818
となる。従って、総和信号(0、1、2)・第0のWalsh符号列との内積を符号長32で正規化すれば、値aが正しく受信され、値bと値cは完全に抑圧され混信することなく正しく受信できることが明らかになる。
【0014】
同様に、第1のWalsh符号列に対応する値は、総和信号(0、1、2)と第1のWalsh符号列の内積で与えられ、その値は32bとなり、第2のWalsh符号列に対応する値は、総和信号(0、1、2)と第2のWalsh符号列の内積で与えられ、その値は32cとなる。従って、総和信号(0、1、2)と第1のWalsh符号列の内積を符号長32で正規化すれば、値bが正しく受信され、総和信号(0、1、2)と第2のWalsh符号列の内積を符号長32で正規化すれば、値cが正しく受信される。
【0015】
このように、拡散符号列が互いに直交する限り、拡散符号列の数だけ多元接続でき、かつ拡散符号列が一致する場合だけ通信することができる。
なお、図15におけるシンボル区間1のセグメント0における1次変調波は、0〜1の正なる値であり、セグメント1における1次変調波は、0〜−1の負なる値であるので、同図における対応するシンボル区間1のセグメント0のチップ値の符号は負、正の交番に、セグメント1のチップ値の符号は正、負の交番に変化する。
【0016】
拡散信号のチップレートは、符号長が32の場合には、32ksps・4セグメント・32チップ/セグメント=4.096Mチップ/秒となる(以降、チップ/秒をcpsと記述する)。
全ての拡散信号は、各チップ区間において同期して変化するので、チップ値の総和をチップ区間における信号値とする総和信号は、チップ区間内では一定値を示す波形となる。従って、32チャネルを同時通信する2Mbpsの最大情報速度の場合でも、1チャネルの64kbpsの最小情報速度で伝送している場合でも、伝送情報速度には関係なく、チップレートは常に一定の4.096Mcpsとなる。
【0017】
このようにして、情報信号ならびに必要な制御信号に対応する複数個の拡散信号を、図10に示すように、拡散符号発生回路(CG)130〜130nから出力される互いに直交する拡散符号列を用いて、拡散回路(SS)120〜12nで生成し、次いで複数個の拡散符号の総和を総和回路(SUM)140で求め、求めた総和信号を必要に応じて送信回路(TX)において周波数変換と電力増幅して、CDMA信号として送信する。
【0018】
なお、CDMA信号の矩形波を正確に伝送するためには、チップレートの数倍の周波数帯が必要になるが、図10に示すように、帯域制限回路(BPF)141の機能としてバンドパスフィルタ操作が実施され、チップレート程度に周波数帯域幅が制限される。
ここで、上記のように送信回路(TX)から送信された電波が、理想的な電波伝播路を経て通信されることは、一般的に、ほとんどない。自動車電話や携帯電話等の移動通信では、送信機自体が移動するのでドップラーシフトが生じ、キャリア周波数が偏移する。あるいは、複数の電波伝播路を経て受信されることにより、受信波の位相や振幅が時間とともに変化するフェーディング現象が生じたりする。
【0019】
そこで、受信側において、CDMA受信機は、受信、同期検波、受信制御、復調、逆拡散、位相補正、判断等の主要回路で構成される。
図16において、受信制御回路(CNT)204は、受信信号から受信機の制御に必要な各種制御信号を検出し、ならびに受信に必要な複数個の逆拡散符号列を出力する。同期検出回路(SYNC)203は、受信信号から、キャリア再生波、チップ同期信号、セグメント同期信号、ならびにシンボル同期信号等を出力する。
【0020】
復調回路(deMOD)201は、図17に示す構成を有している。同図において、受信回路(RX)200と接続される入力端子2010に印加される受信波は、乗算器2011、2012に入力される。ここで、復調回路(deMOD)201は、同期検波方式を一般に用いており、キャリア再生波202と受信波との積を乗算器2011で求め、続いてキャリア周期毎にアキュムレータ2014で累積したキャリア周期毎の内積を求め、求めた内積をラッチレジスタ(REG)2016で取り込み、キャリア周期期間だけ保持し、ラッチレジスタ(REG)2016で保持した値を1次変調波の復調信号の同相成分i(t)としてキャリア周期毎に出力する。同時に、復調回路(deMOD)201は、キャリア再生波202を移相器2013で90度移相した直交キャリア信号と受信波との積を乗算器2012で求め、続いてキャリア周期毎にアキュムレータ2015で累積してキャリア周期毎の内積を求め、求めた内積をラッチレジスタ(REG)2017で取り込み、キャリア周期期間だけ保持し、ラッチレジスタ(REG)2017で保持した値を1次変調波の復調信号の直交成分q(t)としてキャリア周期毎に出力する。アキュムレータ2014、2015に入力される信号Rは、制御端子2018からキャリア周期毎に入力される累積リセット信号であり、この累積リセット信号Rの前縁で、アキュムレータ2016、2017は入力値を保持する。
【0021】
復調回路(deMOD)201からの復調信号の同相成分i(t)、直交成分q(t)は、図16に示すように、n+1個の逆拡散回路(deSS)210〜21nに入力される。図18に、この拡散回路(deSS)210〜21nの1つの構成例を示す。
入力端子2100、2101に復調信号の同相成分i(t)、復調信号の直交成分q(t)がそれぞれ入力される。乗算器2102、2103は、チップ同期信号に従い、それぞれ復調信号の同相成分i(t)、復調信号の直交成分q(t)と、端子22iから入力される第i番の逆拡散符号列との積を求め、セグメント同期信号に従い積の累積をセグメント毎に求める。
【0022】
ここで、iはi番目のチャネルであることを示す、また、第i番の逆拡散符号列とは、送信側で用いた第i番の拡散符号列に対応する逆拡散符号列をいい、Walsh関数を用いる場合には逆拡散符号列と拡散符号列は互いに等しくなっている。なお、図16に示すように、逆拡散回路201〜20nのそれぞれの端子220〜22nには、対応する逆拡散符号列が入力される。
【0023】
続いて、図18において、乗算器2102、2103の出力は、アキュムレータ2014、2015で累積される。アキュムレータ2104、2105には、端子2110から累積リセット信号Rがセグメント毎に入力される。アキュムレータ2104、2105の出力は、それぞれ符号長で正規化され、ラッチレジスタ(REG)2106、2107でセグメント区間保持される逆拡散信号の同相成分Ii ' (t)ならびに逆拡散信号の直交成分Qi ' (t)として出力端子2108、2109から出力される。
【0024】
なお、拡散符号列は互いに直交しているので、逆拡散符号列が送信の拡散符号列に一致する場合には、逆拡散回路210〜21nの出力は、有限な値を出力し、正しく受信できる。逆拡散符号列が送信の拡散符号列に一致しない場合には、逆拡散回路210〜21nの出力は、常にゼロとなり、受信信号を結果的に出力しない。
【0025】
同時多元接続のn個の情報チャネルに関する逆拡散信号の同相成分Ii ' (t)と逆拡散信号の直交成分Qi ' (t)は、逆拡散回路211〜21nからそれぞれ出力される。また、これらnチャネルに共通なパイロット信号に関する逆拡散信号の同相成分I0 ' (t)ならびに逆拡散信号の直交成分Q0 ' (t)は、逆拡散回路210から出力される。
【0026】
これらの逆拡散信号は、それぞれ伝播中に、位相差や振幅ひずみ、遅延などの撹乱を受ける。既知の値、例えば、”0”の位相情報の1次変調を拡散したパイロット拡散信号を送信し、受信側で検知する位相差と既知の値との誤差を測定することで伝播中に生じた撹乱の位相誤差を概略知ることができる。従って、図16に示すように、nチャネルの情報に対して、既知なる値を伝送するパイロット信号を1チャネル付加して、伝播中の撹乱を概略補正するパイロット方式が用いられることが多い。
【0027】
このため、n情報チャネルに対して1パイロットチャネルを付加する場合について説明するが、1情報チャネルに1パイロットチャネルを付加する場合も、あるいは各拡散信号における1次変調波の同相成分を情報に、直交成分をパイロット信号に割り当てる場合も同様である。
図16において、逆拡散回路(deSS)211〜21nの各出力ならびに逆拡散回路(deSS)の出力は、位相補正回路(CMP)231〜23nに導かれる。図19に、この位相補正回路(CMP)231〜23nの1つの構成を示す。
【0028】
入力端子2300と2301に、逆拡散回路(deSS)21iから情報チャネルiの同相成分Ii ' (t)と逆拡散信号の直交成分Qi ' (t)が、それぞれ入力される。また、入力端子2302と2303に、逆拡散回路210からパイロットチャネルの同相成分I0 ' (t)と直交成分Q0 ' (t)が、それぞれ入力される。続いて、情報チャネルiの同相成分Ii ' (t)は乗算器2310と2311に、情報チャネルiの直交成分Qi ' (t)は乗算器2312と2313に入力され、パイロットチャネルの同相成分I0 ' (t)は乗算器2310と2312に、パイロットチャネルの直交成分Q0 ' (t)は乗算器2313と2311に入力される。加算器2320は、乗算器2310と2313の出力の和を位相補正信号の同相成分Ii (t)として端子2340に出力する。さらに、加算器2321は、乗算器2312の出力と乗算器2311の出力の差を位相補正信号の直交成分Qi (t)として端子2341に出力する。
【0029】
位相補正回路(CMP)231〜23nの出力は、図16に示すように、判断回路(DEC)241〜24nに導かれる。判断回路(DEC)241〜24nは、位相補正信号の同相成分Ii (t)、直交成分Qi (t)から位相角を求めるマッピングを行い、このマッピングで得られた位相角により象限判定を行って情報シンボルとしての受信シンボルSi (t)を端子251〜25nに出力する。
【0030】
【発明が解決しようとする課題】
従来のCDMA伝送方式において、1次変調波のPSK波に、Walsh符号列などの拡散符号列を乗じ、スペクトラムを拡散した拡散信号を生成する。チップ1〜チップ3における拡散符号列の時間応答波形を示す図2において、破線は従来の拡散符号列波形の1例を示している。チップ区間1ならびにチップ区間2では符号値1を、チップ区間3では符号値−1を、チップ区間4では符号値1の場合を示しているが、他の場合も同様である。チップ区間1とチップ区間2のように隣接するチップ区間で拡散符号値が互いに等しい場合には、隣接するチップ区間での拡散信号の波形に不連続性は生じない。
【0031】
一方、チップ区間2とチップ区間3の間、あるいはチップ区間3とチップ区間4の間などのように、拡散符号値が互いに異なる場合には、チップ区間端で激しい波形の変化が拡散信号に現れる。
全てのチップ区間でチップ区間端まで符号値を保持した場合には、図2の破線で示すような激しい波形の変動がチップ区間端で生じ、拡散信号の周波数帯域幅が極端に増大する。その結果、通信品質が劣化するという問題がある。
【0032】
そこで、本発明は、チップ区間端における拡散符号列波形の激しい変動を排除して、周波数帯域幅の増大を防止し、通信品質を向上させることを目的とする。
【0033】
【課題を解決するための手段】
上記目的を達成するため、本発明では、例えば、図2の実線の波形で示すように、拡散符号値が隣接チップ区間で異なる場合に遷移区間で連続的に変化させ、遷移区間での拡散符号値の急激な変動を排除するようにしている。
ここで、遷移区間とは、各チップ区間端近傍に隣接チップ区間に跨って設置した区間をいう。例えば、図2の場合、チップ区間1とチップ区間2の間が遷移区間2、チップ区間2とチップ区間3との間が遷移区間3、チップ区間3とチップ区間4の間が遷移区間4となる。なお、全ての遷移区間は同じ時間長Rとしている。
【0034】
このように、拡散符号値が隣接チップ区間で異なる場合に遷移区間での拡散符号値の急激な変動を排除することにより、チップ区間端における拡散符号列波形の激しい変動を排除して、周波数帯域幅の増大を防止することができる。
しかしながら、チップ区間端において拡散符号列波形を変化させ歪ませると、伝播すべき情報位相が変化してしまい、従来のCDMA方式の受信機の構成のままでは、通信品質が劣化してしまうという問題が生じる。
【0035】
そこで、本発明では、復調の際に、全てのチップ区間でチップ区間端まで受信信号を使用するのではなく、チップ中心付近の歪みの少ない区間の受信信号を有効領域とし、復調に使用する復調区間とすることにより、遷移区間周辺の不安定な値を除去し、安定な復調動作を行うことができるようにしている。すなわち、本発明の特徴は、特許請求の範囲に記載した通りのものであって、請求項1に記載の発明では、情報に対応してキャリア信号を位相変調して、1次変調波を生成する手段と、拡散符号の値が隣接チップ区間で異なる場合にチップ区間の端部領域の遷移区間で拡散符号の値を連続的に変化させ、拡散符号の値の急激な変動が排除された拡散符号列を発生する手段と、この手段によって発生された拡散符号列を前記1次変調波に乗じてスペクトラム拡散した拡散信号を生成し、その生成された拡散信号を送信する手段と、受信信号の中から、少なくとも前記拡散符号の値の急激な変動が排除された遷移区間を除いた復調区間の受信信号を選択する手段と、この手段によって選択された受信信号に対し逆拡散符号列を用いて逆拡散を行い情報を復元する手段とを備え、前記受信信号を選択する手段は、前記逆拡散符号列に基づき逆拡散符号の値が隣接するチップ区間で異なる場合にのみ、前記受信信号の中から前記復調区間の受信信号を選択するものであるCDMA伝送方式を用いた無線機を特徴としている。
【0036】
このように、受信信号の中から、少なくとも拡散符号の値の急激な変動が排除された遷移区間を除いた復調区間の受信信号を選択し、この選択された受信信号を用いて逆拡散を行っているから、送信側においてチップ区間端における拡散符号列を急激な変動を排除するように変化させても、安定した復調動作を行うことができる。
【0037】
お、受信信号を選択する手段としては、請求項に記載の発明のように、受信信号を復調する復調手段と、逆拡散を行う手段との間にあって、復調手段によって復調された受信信号の中から復調区間の受信信号を選択するようにすることができる。
【0039】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。
この実施形態における送信機は、図1に示すように、拡散符号発生回路(CG)130〜13nと拡散回路(SS)120〜12nの間に拡散符号列波形連続化回路(CODE−CS)150〜15nが挿入された構成となっている。なお、この送信機において、拡散符号列波形連続化回路(CODE−CS)150〜15n以外の構成は、図10に示すものと同様である。この拡散符号列波形連続化回路(CODE−CS)150〜15nを設けることにより、図2に示すように、拡散符号値が隣接チップ区間で異なる場合にのみ、遷移区間で拡散符号値を緩やかに変化させることができる。
【0040】
図3に、拡散符号列波形連続化回路(CODE−CS)150〜15nの1つの構成を示す。図において、入力端子300には、対応する拡散符号発生回路(CG)13iからの拡散符号列が入力され、そのまま加算器301に入力される。出力端子306の出力は、クロック端子(CLK)307に印加されるクロック信号の前縁で、ラッチレジスタ(REG)305に取り込まれ保持される。加算器301は、入力端子300に入力される拡散符号値とラッチレジスタ(REG)305に保持されている値との差を出力する。この加算器301の出力値は、スムーサ(SMO)303から出力される値と乗算器302において掛け算される。この乗算器302の出力は、加算器304において、ラッチレジスタ305の出力値と加算され、その加算値が出力端子306から出力される。
【0041】
ここで、スムーサ(SMO)303は、図4に示すように、出力(t)が各遷移区間において0から1まで連続的に変化する値、例えば数式1で表わされる値を出力する。スムーサ出力(t)は、チップ区間τに関して周期的に値を出力するので、ROMに1チップ区間分の出力値を格納しておき、その出力値を順次読み出すことにより、図4に示す値を周期的に出力することができる。
【0042】
【数1】
Figure 0004051818
【0043】
次に、上記した拡散符号列波形連続化回路(CODE−CS)の動作を説明する。その動作は、チップ区間に対して周期的であるので、時刻t=R/2から時刻t=2τ+R/2までについて説明するが、他のチップ区間も同様である。
遷移区間の後縁t=R/2で、クロック端子(CLK)307にクロックが印加され、かつ次のチップ区間の拡散符号値が確定するものとする。図2に示すように、時刻t=R/2において、出力端子306の出力が1になっているので、ラッチレジスタ(REG)305には1が取り込まれ保持される。かつ、入力端子300にはチップ区間2の拡散符号値1が印加される。ラッチレジスタ(REG)305の出力と入力端子300の入力が等しいので、加算器301の出力は0となる。従って、スムーサ(SMO)303の出力値に係わりなく乗算器302の出力は、遷移区間2の全域において0となり、加算器304の出力は1のまま変化せず、出力端子305には値1が継続して出力される。さらに、遷移区間2の後縁t=τ+R/2において、ラッチレジスタ(REG)305は、出力値1を取り込んで保持し、入力端子300には次のチップ区間3の拡散符号値−1が印加される。
【0044】
このため、加算器301の出力は−2となるが、スムーサ(SMO)303は遷移区間3の前縁まで出力は0であるので、乗算器302は値0を継続して出力する。しかし、出力端子306には、乗算器304とラッチレジスタ(REG)305の和が出力されるので、ラッチレジスタ305に保持されている値1が、遷移区間3の前縁まで継続して出力される。遷移区間3において、スムーサ303の出力は前縁で値0から立ち上がり、終縁で値1まで連続して増大する。従って、乗算器302の出力は0〜−2に変化する。これにより、乗算器304の出力とラッチレジスタ305の保持値との和は、1〜−1に変化しながら出力端子306に現れる。このため、遷移区間3の拡散符号値は、図2に示すように滑らかに変化する波形に整形される。さらに、遷移区間3の終縁で、出力端子の値−1がラッチレジスタ305に取り込まれ、次の動作に移行し、上記と同様な動作が行われる。
【0045】
このように拡散符号列波形連続化回路(CODE−CS)150〜15nを設けることにより、拡散符号値が隣接チップ区間で異なる場合に遷移区間で拡散符号値を緩やかに変化させ、チップ区間端における拡散符号列波形の激しい変動を排除して、周波数帯域幅の増大を防止することができる。しかしながら、チップ区間端における拡散符号列波形を歪ませると、伝播すべき情報位相が変化してしまい、従来のCDMA方式の受信機の構成のままでは、通信品質が劣化してしまう。
【0046】
また、所定の帯域幅で通信を行うために、送信波の周波数帯域を帯域制限回路(BPF)141により帯域制限しているが、その場合、上記のように位相を連続化させると、遷移区間における歪んだ波形が、前後の区間に干渉として影響を与え、通信品質を劣化させてしまう。すなわち、帯域制限回路(BPF)141として、図6に示すように、k個の遅延器1401〜140kと、これらの遅延器1401〜140kによって遅延された信号にタップ係数W1 〜Wk を乗じる乗算器1411〜141kと、乗算器1411〜141kからの信号を総和する総和回路(SUM)1420からなるトランスバーサルフィルタを用いた場合、遷移区間において歪んだ波形に対応する信号がこのフィルタに入力されると、フィルタの出力は、遷移区間の前後の区間においてその影響を受けることになり、出力される所望の周波数帯域に対して異なる周波数成分が混入してしまい、このことが通信品質を劣化させる。
【0047】
そこで、この実施形態における受信機においては、図6に示すように、各チップ区間における遷移区間を除いた区間内で復調区間を設定し、この復調区間における受信信号値を用いて逆拡散を行うようにしている。
このため、受信機においては、図7に示すように、復調回路(deMOD)201と逆拡散回路(deSS)210〜21nの間に、選択回路(スイッチ回路)251、252を設け、タイミング制御回路253からタイミング信号が出力されているときにのみ、復調回路201からの復調信号の同相成分i(t)、復調信号の直交成分q(t)を、逆拡散回路(deSS)210〜21nに出力するようにしている。なお、この受信機において、選択回路251、252、タイミング制御回路253を設けた点以外は、図16に示すものと同様である。
【0048】
ここで、タイミング制御回路253は、チップ毎に出力される信号、例えばチップ同期信号に基づき、各チップ区間内の復調区間において上記したタイミング信号を出力する。この復調区間は、チップ中心付近の歪みの少ない区間に設定され、その開始タイミングはR/2以後、終了タイミングはτ−R/2以前となっている。この場合、例えば、この受信機のシステムクロックによるサンプリングにて復調期間を設定するときには、図8に示すように、チップ区間のサンプル数がnで復調区間のサンプル数がmのとき、サンプル数がm/2になるとタイミング信号を出力し、n−m/2−1になるとタイミング信号の出力を停止するようにすれば、上記した復調区間においてのみタイミング信号を出力させることができる。なお、サンプル数がm/2になるまで、およびサンプル数がn−m/2−1を超えてn−1になるまでは、受信信号値を用いない破棄区間となっている。
【0049】
また、復調回路201の出力をA/D変換器にてA/D変換し、その変換値に基づいて逆拡散を行うように構成されている場合には、A/D変換のタイミングで上記したサンプリングを行うようにしてもよい。
さらに、逆拡散符号値が隣接チップ区間と同じ場合は、不連続点が存在しないため、チップ区間の全てにおいて上記したタイミング信号を出力させるようにしてもよい。この場合、図9に示すように、上記した選択回路251、252、タイミング制御回路253と同構成の選択回路2112、2113、タイミング制御回路2111を逆拡散回路(deSS)210〜21nのそれぞれに設け、その逆拡散回路(deSS)における逆拡散符号列を基に、タイミング制御回路2111が、逆拡散符号値が隣接チップ区間と同じあるか否かを判定して、逆拡散符号値が隣接チップ区間と異なる場合のみ上記したタイミング信号を出力するようにすればよい。このようにすることにより、逆拡散符号値が隣接チップ区間と同じ場合に、遷移区間における復調信号の同相成分i(t)、直交成分q(t)も逆拡散処理に用いることができるので、復調の精度を向上させることができる。
【0050】
従って、この実施形態によれば、送信機側にて、拡散符号値が隣接チップ区間で異なる場合に遷移区間で拡散符号値を緩やかに変化させ、チップ区間端における拡散符号列波形の激しい変動を排除して、周波数帯域幅の増大を防止するとともに、受信機側にて、各チップ区間内の復調期間における受信信号値を用いて逆拡散を行うようにしているから、遷移区間での波形の歪みに影響されずに、精度よく復調を行うことができ、通信品質を向上させることができる。
【0051】
また、上記した実施形態で示した各回路は、それぞれの機能を実現する手段として把握されるものである。
なお、上記した通信は、移動局と基地局との間で行われるものであるため、移動局、基地局とも、上記した送信機および受信機を備えている。従って、移動局を携帯電話のような無線機とした場合には、その無線機に上記した送信機および受信機が備えられる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るCDMA送信機の構成を示す図である。
【図2】チップ区間1〜4における拡散符号列波形を示す図である。
【図3】拡散符号列波形連続化回路(CODE−CS)の構成を示す図である。
【図4】スムーサ(SMO)の出力特性を示す図である。
【図5】帯域制限回路(BPF)の構成を示す図である。
【図6】各チップ区間における遷移区間と復調区間を説明するための図である。
【図7】本発明の一実施形態に係るCDMA受信機において、復調回路(deMOD)と逆拡散回路の間に、選択回路とタイミング制御回路を設けた構成を示す図である。
【図8】サンプル数に基づいて復調期間を設定する場合の説明図である。
【図9】逆拡散回路(deSS)に、選択回路とタイミング制御回路を設けた構成を示す図である。
【図10】従来のCDMA送信機の構成を示す図である。
【図11】図10に示すCDMA送信機の1次変調波の、シンボル0ならびにシンボル1区間における波形を示す図である。
【図12】QPSKのビット配置(ビットコンステレーション)例を示す図である。
【図13】オフセットQPSKのビット配置(ビットコンステレーション)例を示す図である。
【図14】1次変調波のシンボル区間におけるセグメント構成例を示す図である。
【図15】セグメント区間におけるチップ構成例を示す図である。
【図16】従来のCDMA受信機の構成例を示す図である。
【図17】図16に示すCDMA受信機中の復調回路(deMOD)の構成例を示す図である。
【図18】図16に示すCDMA受信機中の逆拡散回路(deSS)の構成例を示す図である。
【図19】図16に示すCDMA受信機中の位相補正回路(CMP)の構成例を示す図である。
【符号の説明】
100〜10n…情報入力端子、
110〜11n…位相変調回路(MOD)、
120〜12n…拡散回路(SS)、
130〜13n…拡散符号発生回路(CG)、
140…総和回路(SUM)、
141…帯域制限回路(BPF)、
142…送信回路(TX)、
151〜15n…拡散符号列波形連続化回路(CODE−CS)、
201…復調回路(deMOD)、
202…キャリア再生波、
203…同期検出回路(SYNC)、
204…受信制御回路(CNT)、
210〜21n…逆拡散回路(deSS)、
231〜23n…位相補正回路(CMP)、
241〜24n…判断回路(DEC)、
251〜25n…出力端子、
253、2111…タイミング制御回路、
251、252、2112、2113…選択回路。

Claims (2)

  1. 情報に対応してキャリア信号を位相変調して、1次変調波を生成する手段と、
    拡散符号の値が隣接チップ区間で異なる場合にチップ区間の端部領域の遷移区間で拡散符号の値を連続的に変化させ、拡散符号の値の急激な変動が排除された拡散符号列を発生する手段と、
    この手段によって発生された拡散符号列を前記1次変調波に乗じてスペクトラム拡散した拡散信号を生成し、その生成された拡散信号を送信する手段と、
    受信信号の中から、少なくとも前記拡散符号の値の急激な変動が排除された遷移区間を除いた復調区間の受信信号を選択する手段と、
    この手段によって選択された受信信号に対し逆拡散符号列を用いて逆拡散を行い情報を復元する手段とを備え
    前記受信信号を選択する手段は、前記逆拡散符号列に基づき逆拡散符号の値が隣接するチップ区間で異なる場合にのみ、前記受信信号の中から前記復調区間の受信信号を選択するものであることを特徴とするCDMA伝送方式を用いた無線機。
  2. 前記送信された拡散信号を受信して復調する手段を備え、前記受信信号を選択する手段は、前記復調された受信信号の中から前記復調区間の受信信号を選択するものであることを特徴とする請求項に記載のCDMA伝送方式を用いた無線機。
JP13189699A 1999-05-12 1999-05-12 Cdma伝送方式を用いた無線機 Expired - Fee Related JP4051818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13189699A JP4051818B2 (ja) 1999-05-12 1999-05-12 Cdma伝送方式を用いた無線機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13189699A JP4051818B2 (ja) 1999-05-12 1999-05-12 Cdma伝送方式を用いた無線機

Publications (2)

Publication Number Publication Date
JP2000324019A JP2000324019A (ja) 2000-11-24
JP4051818B2 true JP4051818B2 (ja) 2008-02-27

Family

ID=15068700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13189699A Expired - Fee Related JP4051818B2 (ja) 1999-05-12 1999-05-12 Cdma伝送方式を用いた無線機

Country Status (1)

Country Link
JP (1) JP4051818B2 (ja)

Also Published As

Publication number Publication date
JP2000324019A (ja) 2000-11-24

Similar Documents

Publication Publication Date Title
JP2780690B2 (ja) 符号多重化通信装置
JP3406319B2 (ja) 高速データ伝送無線ローカル・エリア・ネットワーク
EP1361687B1 (en) CDMA demodulation circuit and demodulation method
US7167456B2 (en) Apparatus for estimating propagation path characteristics
US5533013A (en) Communication method and system
US6396868B1 (en) Spread spectrum signal generating device and method in transmitter of mobile communications system
US6363106B1 (en) Method and apparatus for despreading OQPSK spread signals
US6463043B1 (en) Carrier phase recovery of multi-rate signals
KR19990042181A (ko) 코드분할 다중접속 시스템에서 파일럿 심벌을 이용한 동기식 이중 채널 큐피에스케이 송수신기의 구조
KR20010043543A (ko) 감소 파일롯용 다경로 cdma 수신기
KR100293894B1 (ko) Cdma무선전송시스템
CN111565161A (zh) 一种基带发射机、基带接收机、调制解调***和终端
US6674790B1 (en) System and method employing concatenated spreading sequences to provide data modulated spread signals having increased data rates with extended multi-path delay spread
US6778586B1 (en) Radio communication equipment and communication method
US20010026578A1 (en) Code division multiple access transmitter and receiver
JP3200628B2 (ja) 符号分割多重伝送方式
JP3120792B2 (ja) スペクトラム拡散通信方法及びスペクトラム拡散通信装置
JPH08251117A (ja) マルチキャリア伝送システム及びマルチキャリア伝送方法
JP4051818B2 (ja) Cdma伝送方式を用いた無線機
JPH07107007A (ja) 拡散符号生成方式
JP2002084332A (ja) 無線通信方法および無線通信装置
JP3462034B2 (ja) Cdma受信機
KR100862726B1 (ko) 통신 시스템의 신호 송신 방법 및 수신 방법
JP2000324084A (ja) Cdma伝送方式およびその伝送方式を用いた無線機
JP3909784B2 (ja) 変調方式、変調方法、復調方法、変調装置および復調装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4051818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees