JP4049946B2 - Method for forming carbon thin film - Google Patents

Method for forming carbon thin film Download PDF

Info

Publication number
JP4049946B2
JP4049946B2 JP18922399A JP18922399A JP4049946B2 JP 4049946 B2 JP4049946 B2 JP 4049946B2 JP 18922399 A JP18922399 A JP 18922399A JP 18922399 A JP18922399 A JP 18922399A JP 4049946 B2 JP4049946 B2 JP 4049946B2
Authority
JP
Japan
Prior art keywords
gas
thin film
carbon
carbon thin
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18922399A
Other languages
Japanese (ja)
Other versions
JP2001011630A (en
Inventor
康之 藤原
昌澄 大西
健二 下田
均 椛澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18922399A priority Critical patent/JP4049946B2/en
Publication of JP2001011630A publication Critical patent/JP2001011630A/en
Application granted granted Critical
Publication of JP4049946B2 publication Critical patent/JP4049946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭素薄膜の形成方法に関し、詳しくは金属基材上に気相を経由して熱分解炭素の薄膜を形成する方法に関する。ここで、気相を経由して薄膜を形成する方法は、減圧下で行う化学気相成長法(CVD)も含むが、むしろ大気圧下での薄膜形成に特徴がある。
【0002】
【従来の技術】
気相を経由して高温基材上に熱分解黒鉛(pyrolytic graphite)または熱分解炭素(pyrolytic carbon)の薄膜を形成する技術は、既に種々の工業分野で利用されている。具体的事例については、例えば「炭素・自問自答」大谷杉郎著(裳華房、発行1997年3月15日)、「炭素材の化学と工学」持田勲著(朝倉書店、発行1990年9月10日)、「カーボンファイバ入門」大谷杉郎、大谷朝男共著、(オーム社、発行1983年8月25日)等に詳述されている。
【0003】
従来、気相を経由した熱分解炭素薄膜の形成方法で用いられている原料は、安価かつ簡便でしかも膜の堆積速度が速いため、炭化水素ガス、特に比較的低沸点のガス状の鎖式飽和炭化水素であった。鎖式飽和炭化水素として典型的にはメタン系ガス、すなわちメタンガス(CH4)、プロパンガス(C3 6)、ブタンガス(C4 10) が用いられている。ガス雰囲気炉の加熱室内で、種々の材質の基材を1000〜2350℃に加熱し、上記のガスを薄膜形成用の原料ガスとして加熱室内に供給して熱分解させ、その際に発生した活性炭素をワーク表面に堆積させて薄膜を形成していた。原料ガスは、基材の全面に十分に行き渡らせるために、アルゴンガス(Ar)、窒素ガス(N2 )、水素ガス(H2 )等で希釈し、見掛けのガス量を増やして供給されていた。
【0004】
メタン系ガスが用いられていた理由は、基材表面で熱分解炭素が生成する温度範囲1000〜2350℃において、煤の発生はあるものの容易に熱分解し、短時間で炭素膜を形成させることができるからである。形成される炭素膜のうち、特に2000℃前後の比較的高温で形成されるものは熱分解黒鉛(pyrolytic graphite)と呼ばれ、構造が緻密で、ガス透過性が小さく、機械的特性が優れていると共に、構造的には顕著な異方性を有しており、宇宙工学、冶金、電気工業分野で広く利用されている。
【0005】
一方、アセチレンのようなガス状の鎖式不飽和炭化水素は、メタン系ガスよりも不安定であり、炭素膜の形成よりも煤の発生が盛んなため、気相を経由して熱分解炭素薄膜を形成するための原料ガスとしては全く適さない、というのが従来の認識であった。
しかし、上記従来の気相を経由した熱分解によるに炭素薄膜の形成方法には、下記の点で問題があった。
【0006】
(1)煤を主体とする副生成物の発生が多く、その処置が非常に煩雑なため、設備の保守作業に多大の労力を要し、作業環境の汚染も無視できない。
(2)表面全体に渡って均一な炭素薄膜を形成させるためには、原料ガスが基材表面に均一に接触するように、1回の処理量(加熱室内への基材の装入量)をかなり制限しなくてはならない。
【0007】
(3)1000〜2350℃という高温での処理を必要とするため、設備費が高くなるので適用対象が特殊用途に限定される上、処理対象とする基材が高融点材料に限定され、通常の金属材料への適用が困難である。
従来技術においてメタン系原料ガスの熱分解は下記の反応により進行する。
38 →〔C〕+C2 6 +H2
2 6 →〔C〕+CH4 +H2
CH4 →〔C〕+2H2
ここで〔C〕は、炭素薄膜形成に寄与する活性(発生期の)炭素である。
【0008】
ただし、基材表面で炭素薄膜の形成に関与しなかった活性炭素や、基材表面以外の加熱室空間での分解により生成した活性炭素は、そのまま煤となる。副生成物の大部分はこの煤である。
この煤を主体とする副生成物の発生量を少なくするには、下記の方策が知られている。
【0009】
(1)原料ガスをアルゴンガス(Ar)、窒素ガス(N2 )で希釈することにより、加熱室内での原料ガスの濃度を低下させる。
(2)原料ガスに酸素源(O2 、H2 O、CO2 )を添加して、余剰の活性炭素と反応させ、一酸化炭素(CO)および水素(H2 )として加熱室外へ排気する。
【0010】
(3)原料ガスに水素ガス(H2 )を添加して、余剰の活性炭素と反応させ、メタンガス(CH4 )として加熱室外へ排気する。
(4)プラズマCVDを用いる。すなわち、基材表面付近にプラズマを発生させて、希薄原料ガス(鎖式飽和炭化水素ガス)をイオン化して基材表面に引きつけて炭素膜形成に有効に利用し、基材表面付近以外の加熱室空間での副生成物の発生を少なくする。この場合、処理温度自体が低温化することによる副生成物の低減効果も得られる。
【0011】
これらの対策によれば、いずれも副生成物の発生を低減させることができるが、そのために設備費や処理コストが上昇することが避けられず、本来は簡潔な処理が可能であるという気相経由熱分解炭素膜形成の利点が失われてしまうという問題があった。
更に、炭素薄膜形成を窒化あるいは浸硫窒化のような表面硬化法と併行して行えば、耐摩耗性等の特性向上に極めて有利であるが、従来の気相経由熱分解炭素薄膜形成法では1000〜2350℃という高温での処理を必要とするのに対して、窒化を伴う表面硬化法は通常700℃以下が適当な処理温度であるため、両者を併行して行うことはできなかった。
【0012】
一方、特開昭62−161960号公報には、アセチレンまたはメタンの如き炭化物気体をプラズマ放電雰囲気内に導入して活性化、分解または反応せしめることにより、基板上に炭素被膜を形成する方法が開示されている。この方法は、上記のような副生成物の発生という問題もなく、150℃〜450℃という低温で処理できる。しかし、プラズマ放電雰囲気内で処理を行う必要があるため、設備費および処理コストが高価であると共に、生産効率を高めることができない、という問題があった。
【0013】
【発明が解決しようとする課題】
本発明は、設備費や処理コストを上昇させることなく、高い生産効率で、副生成物の発生を防止できる気相経由熱分解炭素薄膜の形成方法を提供することを目的とする。
本発明は更に、窒化を伴う表面硬化法と併行して行うことができる低温での処理が可能な、気相経由熱分解炭素薄膜の形成方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記の目的を達成するために、本発明の炭素薄膜の形成方法は、ガス雰囲気炉の加熱室内で、金属基材を窒素ガスおよび/または水素ガスから成る雰囲気中で無酸化加熱するとともに、該加熱室内に、炭素源ガスを窒素ガスおよび/または水素ガスで希釈した薄膜形成ガスを供給して、該金属基材の表面に熱分解炭素の薄膜を形成する方法において、
上記炭素源ガスとして鎖式不飽和炭化水素ガスを用い、上記加熱を大気圧下において400℃〜700℃で行い、
(1)前記薄膜形成ガスが更に窒素源ガスを含み、前記金属基材表面のガス窒化またはガス軟窒化と前記炭素薄膜の形成とを行うか、または
(2)前記薄膜形成ガスが更に窒素源ガスおよび硫黄源ガスを含み、前記金属基材表面のガス浸硫窒化と前記炭素薄膜の形成とを行う、
ことを特徴とする。
【0015】
本発明において、薄膜とは典型的には数μm程度の厚さの膜を意味するが、特にその範囲に限定する必要はない。
望ましくは、前記鎖式不飽和炭化水素ガスがアセチレン系ガスから成る。アセチレン系ガスのうち、特にアセチレンが望ましい
【0016】
本発明においては、炭素薄膜の形成のみでなく、(1)鋼材等の金属基材の表面に炭素薄膜の形成と同時に、窒素または窒素と炭素を侵入させることによりガス窒化またはガス軟窒化を併行して行うことができるし、あるいは、(2)鋼材等の金属基材の表面に炭素薄膜の形成と同時に、窒素または窒素と炭素さらに硫黄を侵入させることにより表面を硬化させる浸硫窒化を併行して行うことができる。
【0017】
本発明においては、前記加熱を大気圧下で行うことができ、処理設備、処理コストの上で極めて有利である。
【0018】
【発明の実施の形態】
本発明においては、熱分解炭素薄膜の炭素源ガスとして鎖式不飽和炭化水素ガスを用いるのは下記の理由による。
煤等の副生成物を低減するには、炭素薄膜の形成に直接寄与する炭素以外は加熱室内で分解させないことが望ましい。したがって、加熱室に供給する原料ガス(炭素源ガス)は基材の表面だけで分解または反応し、他の加熱室部材の表面や加熱室空間では分解または反応しないことが重要である。
【0019】
アセチレン系ガス、特にアセチレンガスに代表される鎖式不飽和炭化水素ガスであれば上記の要請を満たすことができる。このような特性は、典型例であるアセチレンガスの場合、炭素原子が一つのσ結合と二つのπ結合から成る三重結合を持つことに由来する。すなわち、アセチレンガスは、二つのπ結合を持つことにより非常に活性で反応性に富み、窒素ガス、水素ガス、一酸化炭素ガス、二酸化炭素ガス、硫化水素ガス等と比較して、金属表面で優先的に吸着される。
【0020】
更に、従来技術で用いていたガス状の鎖式飽和炭化水素ガスがいずれも、安定性が高温程低下するため、気相経由熱分解により炭素薄膜を形成するには高温での処理を必要としたのに対して、アセチレンガスで代表される鎖式不飽和炭化水素ガスは安定性が低温程低下するという特性を持つため、むしろ低温での処理が適している。すなわち、従来技術では処理温度として1000〜2350℃という高温を必要としたのに対して、本発明においては処理温度として400〜700℃が適しており、低温で炭素薄膜を形成することができる。本発明においてはこのように処理温度を低温化したことにより、煤等の副生成物の発生を極めて有効に抑制することができる。
【0021】
処理温度が700℃を超えると煤等の副生成物の発生が増加し、処理温度が400℃未満になると基材表面での原料ガス(炭素源ガス)の分解または反応速度が急激に遅くなる。加熱温度は450℃より高温が望ましく、500℃以上とすることが更に望ましい。
本発明においては、炭素薄膜の形成と併行して、ガス窒化、ガス軟窒化、ガス浸硫窒化が行われる。その場合、アセチレンガスに代表される鎖式不飽和炭化水素ガスは、金属基材表面への炭素供給源となると共に、窒化層や浸硫層への炭素供給源としても強力に寄与する。その上、アセチレンガスで代表される鎖式不飽和炭化水素ガスは上記のごとく金属基材表面に優先的に吸着され、吸着された状態で速やかに分解して基材金属の炭化物相(基材が鋼材であればセメンタイトFe3 C)を生成する。このような表面炭化物相は昇温過程において基材表面を酸化から保護するので、一般に窒化困難とされているステンレス鋼のような高クロム鋼でも表面酸化層が形成せず、窒化、軟窒化あるいは浸硫窒化と併行して炭素薄膜の形成を行うことができる。
【0022】
煤等の副生成物の発生をより効果的に抑制するためには、炭素源である鎖式不飽和炭化水素ガスを窒素ガス、水素ガスあるいはこれらの混合ガスで適当な濃度に希釈して用いることが重要である。適当な希釈濃度は、予め実験により最も副生成物発生が少なくなるように決定することができる。
典型的な炭素薄膜形成用ガスとしては、窒素ガス(N2 )、水素ガス(H2 )またはこれらの混合ガスで希釈したアセチレンガス(C2 2 )を用いる。炭素薄膜の形成のみでなく、それと同時にガス窒化を併行して行う場合には、上記の炭素薄膜形成用ガスに窒化用のガスとして典型的にはアンモニアガス(NH3 )を添加し、ガス軟窒化を併行して行う場合には軟窒化用のガスとして典型的にはアンモニアガス(NH3 )と二酸化炭素(CO2 )を添加し、浸硫窒化を行う場合には、更に浸硫用のガスとして典型的には硫化水素ガス(H2 S。通常は、N2 、H2 またはこれらの混合ガスで希釈したもの)を添加すればよい。
【0023】
【実施例】
図1に、本発明に従い、気相を経由して低温での熱分解により炭素薄膜を形成する装置の構造例を示す。ピット型気相経由低温熱分解炭素薄膜形成装置1は、炉本体2に断熱材3が内張りされており、その内壁に沿って鉄クロムヒーター等の発熱体4が配置されている。断熱材3は、セラミックスファイバーを組み合わせた構造である。発熱体4に囲まれた空間Bの中央に配置されたレトルト5の内部空間が加熱室Hを構成する。処理対象である金属基材は、加熱室H内の領域Sに装入される。炉本体2より上方へ延びているレトルト5の頂部には、加熱室内の温度を均一化するための攪拌機6があり、そこから加熱室内へ延びた回転シャフトの先端にファンを備えている。レトルト5の頂部は上蓋7により閉塞される。レトルト5、攪拌機6のシャフトおよびファン、上蓋7は、いずれもステンレス鋼製であり、表面にアルミニウムの拡散処理が施されている。油回転ポンプ等の真空排気装置8により、下方から加熱室H内の排気を行う。冷却ブロワー9により、レトルト5と断熱材3との間の空間Bに空気を送り込み、強制冷却を行うことができる。
【0024】
炭素源ガスであるアセチレンガス(C2 2)、希釈用および非酸化加熱用のガスである水素ガス(H2)および窒素ガス(N2 )、窒化用のアンモニアガス(NH3 )、浸硫用の硫化水素ガス(H2 S)、軟窒化用の二酸化炭素ガス(CO2 )は、それぞれ流量計10および電動弁11(電磁弁、ロータリーバルブ等)を介して、下方からレトルト5内すなわち加熱室H内へ供給される。
【0025】
アンモニア分解炉12は、Ni系の触媒を内蔵しており、装置1内での処理により消費されなかった余剰のアンモニアガスを分解処理する。同様に、未消費の硫化水素は、H2 S用化学吸着材を内蔵した硫化水素除害装置13により無害化処理される。その他、燃焼性の排ガス成分は燃焼塔14内で燃焼される。
図1の処理装置を用いて本発明により気相経由熱分解炭素薄膜の形成を行った。その際、炭素薄膜の形成と同時にガス浸硫窒化処理を併行して行った。
【0026】
処理対象とする金属基材としては、窒化困難とされているJIS SUS304ステンレス鋼を用いた。図2に処理サイクルを示す。図中にも示したように、処理温度は570℃であった。各ガスの使用量は下記の通りであった。
アセチレンガス(C2 2 ):0.7Nl/min
窒素ガス (N2 ):15 Nl/min
アンモニアガス (NH3 ):15 Nl/min
硫化水素ガス* (H2 S):20 Nl/hr
(*:3%H2 S、残部N2
これにより、気相を経由した熱分解炭素薄膜の形成と同時に、浸硫窒化処理が併行して行われる。
【0027】
なお、比較のため上記ガスのうち、アセチレン(C2 2 )および硫化水素(H2 S)を供給せずに、窒化処理のみを行った。
本発明により炭素薄膜形成と浸硫窒化処理の複合処理を行ったサンプルについて、表面から内部へかけて断面の金属組織を顕微鏡観察した。その結果、図3の光学顕微鏡写真に示すように、表層組織は下地金属層に最も近い最内層から表面にかけて順次、拡散層、化合物層(Fe3 N等)、硫黄膜、最外層が炭素薄膜という多層構造になっていた。
【0028】
このサンプルについて、対応する断面の硬さ分布を測定した結果を図4に示す。内部硬さHmV280に対して、表面から深さ50μm程度より浅い表層においては表面に近い程硬さが上昇している。特に、深さ30μm程度までは顕著に硬化しており、最外層の炭素薄膜の部分ではHmV1250に達している。
次に、本発明による複合処理を施した発明例のサンプルと、窒化処理のみを施した比較例のサンプルについて、摩擦摩耗試験を行った。試験装置および試験条件は、図5に示したとおりである。相手材としてFe−3Cr−0.5Al−0.5Si、硬さHV150を用いた。耐摩耗性および摩擦係数μの測定結果をそれぞれ図6および図7にまとめて示す。いずれの特性も、単に窒化処理した比較例に比べて、本発明により複合処理を施したことにより顕著に向上した。
【0029】
このように本発明によれば、煤等の副生成物を発生させずに、低温で気相経由熱分解炭素薄膜を形成することができる。膜の成長速度は数μm/hrと小さいが、均一で密着力の高い炭素薄膜が得られる。この炭素薄膜は、耐食性、熱伝導性、耐薬品性、耐摩耗性、耐カジリ性、耐焼付性が優れている。低温で処理するので、窒化、軟窒化、浸硫窒化といった窒化系の表面硬化処理と同時に併行して行うことができ、上記特性を更に向上させることができる。その際、窒化層内に窒素の他に炭素を高濃度で供給することができる。更に、本発明の方法は窒化困難であるステンレス鋼のような高クロム鋼にも適用することができる。
【0030】
【発明の効果】
以上説明したように、本発明によれば、設備費や処理コストを上昇させることなく、高い生産効率で、副生成物の発生を防止できる気相経由熱分解炭素薄膜の形成方法が提供される。更に、本発明の方法は、低温で処理を行うので、窒化を伴う表面硬化法と併行して行うことができる。
【図面の簡単な説明】
【図1】図1は、本発明の方法を行うのに適した処理装置の一構成例を示す配置図である。
【図2】図2は、本発明の実施例に用いた処理サイクルを示すグラフである。
【図3】図3は、本発明の方法により炭素薄膜の形成と浸硫窒化とを同時に併行して施したサンプルの表層の金属組織を示す光学顕微鏡写真である。
【図4】図4は、図3の表層組織を持つサンプルの断面硬さ分布の測定結果を示すグラフである。
【図5】図5は、実施例において用いた摩擦摩耗試験の斜視図である。図中に試験条件を併記した。
【図6】図6は、無処理材(基材のまま)、窒化材(窒化のみ実施)、複合処理材(本発明例)について、耐摩耗性の測定結果を比較して示すグラフである。
【図7】図7は、無処理材(基材のまま)、窒化材(窒化のみ実施)、複合処理材(本発明例)について、摩擦係数の測定結果を比較して示すグラフである。
【符号の説明】
1…ピット型気相経由低温熱分解炭素薄膜形成装置
2…炉本体
3…断熱材
4…発熱体
5…レトルト
6…攪拌機
7…上蓋
8…真空排気装置
9…冷却ブロワー
10…流量計
11…電動弁
12…アンモニア分解炉
13…硫化水素除害装置
14…燃焼塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a carbon thin film, and more particularly to a method for forming a thin film of pyrolytic carbon on a metal substrate via a gas phase. Here, the method of forming a thin film via a vapor phase includes chemical vapor deposition (CVD) performed under reduced pressure, but is rather characterized by forming a thin film under atmospheric pressure.
[0002]
[Prior art]
A technique for forming a pyrolytic graphite or pyrolytic carbon thin film on a high-temperature substrate via a gas phase has already been used in various industrial fields. For specific examples, for example, “Carbon / Self-answer”, written by Suguro Otani (Tatsumi Hanafusa, published March 15, 1997), “Chemistry and Engineering of Carbon Materials”, Isao Mochida (published by Asakura Shoten, published September 1990) 10th), “Introduction to Carbon Fiber” by Suguro Otani and Asao Otani, (Ohm Co., Ltd., published on August 25, 1983) and the like.
[0003]
Conventionally, the raw materials used in the method for forming a pyrolytic carbon thin film via the gas phase are inexpensive, simple and have a high film deposition rate. It was a saturated hydrocarbon. As chain-type saturated hydrocarbons, methane-based gases, that is, methane gas (CH 4 ), propane gas (C 3 H 6 ), and butane gas (C 4 H 10 ) are typically used. In the heating chamber of the gas atmosphere furnace, the base materials of various materials are heated to 1000 to 2350 ° C., and the above gas is supplied into the heating chamber as a raw material gas for forming a thin film and thermally decomposed. Carbon was deposited on the workpiece surface to form a thin film. The source gas is supplied by increasing the apparent gas volume by diluting with argon gas (Ar), nitrogen gas (N 2 ), hydrogen gas (H 2 ), etc., in order to sufficiently spread the entire surface of the substrate. It was.
[0004]
The reason why the methane-based gas was used is that in the temperature range 1000 to 2350 ° C. where pyrolytic carbon is generated on the surface of the base material, although it generates soot, it is easily pyrolyzed and forms a carbon film in a short time. Because you can. Among the carbon films formed, those formed at a relatively high temperature of around 2000 ° C. are called pyrolytic graphite, which has a dense structure, low gas permeability, and excellent mechanical properties. In addition, it has a remarkable anisotropy structurally and is widely used in the fields of space engineering, metallurgy, and electrical industry.
[0005]
On the other hand, gaseous chain unsaturated hydrocarbons such as acetylene are more unstable than methane-based gases and are more prone to soot than carbon film formation. The conventional recognition is that it is not suitable as a raw material gas for forming a thin film.
However, the conventional method for forming a carbon thin film by thermal decomposition via a gas phase has the following problems.
[0006]
(1) Since many by-products mainly composed of soot are generated and the treatment thereof is very complicated, a large amount of labor is required for maintenance work of equipment, and contamination of the work environment cannot be ignored.
(2) In order to form a uniform carbon thin film over the entire surface, a single treatment amount (amount of base material charged into the heating chamber) so that the source gas uniformly contacts the base material surface. Must be fairly limited.
[0007]
(3) Since processing at a high temperature of 1000 to 2350 ° C. is required, the equipment cost is high, so the application target is limited to special applications, and the base material to be processed is limited to a high melting point material. It is difficult to apply to metal materials.
In the prior art, thermal decomposition of methane-based source gas proceeds by the following reaction.
C 3 H 8 → [C] + C 2 H 6 + H 2
C 2 H 6 → [C] + CH 4 + H 2
CH 4 → [C] + 2H 2
Here, [C] is active (nascent) carbon that contributes to carbon thin film formation.
[0008]
However, activated carbon that was not involved in the formation of the carbon thin film on the surface of the substrate and activated carbon generated by decomposition in the heating chamber space other than the surface of the substrate become soot as it is. Most of the by-products are this.
In order to reduce the amount of by-products mainly composed of soot, the following measures are known.
[0009]
(1) The concentration of the source gas in the heating chamber is reduced by diluting the source gas with argon gas (Ar) and nitrogen gas (N 2 ).
(2) An oxygen source (O 2 , H 2 O, CO 2 ) is added to the source gas, reacted with excess activated carbon, and exhausted out of the heating chamber as carbon monoxide (CO) and hydrogen (H 2 ). .
[0010]
(3) Hydrogen gas (H 2 ) is added to the raw material gas, reacted with surplus activated carbon, and exhausted outside the heating chamber as methane gas (CH 4 ).
(4) Use plasma CVD. That is, plasma is generated in the vicinity of the substrate surface, and the dilute source gas (chain saturated hydrocarbon gas) is ionized and attracted to the substrate surface to be effectively used for carbon film formation. Reduce the generation of by-products in the room space. In this case, a reduction effect of by-products due to the lowering of the processing temperature itself is also obtained.
[0011]
According to these measures, it is possible to reduce the generation of by-products, but it is inevitable that the equipment cost and the processing cost will increase for that purpose, and the gas phase is that a simple process is originally possible. There has been a problem that the advantage of forming the via pyrolytic carbon film is lost.
Furthermore, if the carbon thin film formation is performed in parallel with a surface hardening method such as nitriding or nitrosulfurizing, it is extremely advantageous for improving properties such as wear resistance. While treatment at a high temperature of 1000 to 2350 ° C. is required, the surface hardening method involving nitriding usually has an appropriate treatment temperature of 700 ° C. or less, and thus cannot be carried out simultaneously.
[0012]
On the other hand, Japanese Patent Application Laid-Open No. Sho 62-161960 discloses a method of forming a carbon film on a substrate by introducing a carbide gas such as acetylene or methane into a plasma discharge atmosphere and activating, decomposing or reacting it. Has been. This method can be processed at a low temperature of 150 ° C. to 450 ° C. without the problem of generation of by-products as described above. However, since it is necessary to perform the treatment in a plasma discharge atmosphere, there are problems that the equipment cost and the processing cost are expensive and the production efficiency cannot be increased.
[0013]
[Problems to be solved by the invention]
It is an object of the present invention to provide a method for forming a pyrolytic carbon thin film via a vapor phase that can prevent the generation of by-products with high production efficiency without increasing equipment costs and processing costs.
It is another object of the present invention to provide a method for forming a pyrolytic carbon thin film via a gas phase, which can be performed at a low temperature and can be performed in parallel with a surface hardening method involving nitriding.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a method for forming a carbon thin film according to the present invention includes a non-oxidative heating of a metal substrate in an atmosphere composed of nitrogen gas and / or hydrogen gas in a heating chamber of a gas atmosphere furnace, In a method of forming a pyrolytic carbon thin film on the surface of the metal substrate by supplying a thin film forming gas obtained by diluting a carbon source gas with nitrogen gas and / or hydrogen gas into a heating chamber,
Using chain unsaturated hydrocarbon gas as the carbon source gas, it is performed by the 400 ° C. to 700 ° C. under atmospheric pressure the heating,
(1) The thin film forming gas further contains a nitrogen source gas, and gas nitriding or gas soft nitriding of the metal base surface and formation of the carbon thin film are performed, or
(2) The thin film forming gas further contains a nitrogen source gas and a sulfur source gas, and performs gas oxynitridation on the surface of the metal substrate and formation of the carbon thin film.
It is characterized by that.
[0015]
In the present invention, the term “thin film” typically means a film having a thickness of about several μm, but it is not particularly limited to this range.
Preferably, the chain unsaturated hydrocarbon gas is an acetylenic gas. Of the acetylenic gases, acetylene is particularly desirable .
[0016]
In the present invention, not only the formation of a carbon thin film, but also (1) simultaneously with the formation of a carbon thin film on the surface of a metal substrate such as a steel material, gas nitridation or gas soft nitridation is performed by introducing nitrogen or nitrogen and carbon (2) Simultaneously with the formation of a carbon thin film on the surface of a metal substrate such as steel, nitrogen or nitrogen and carbon and sulfur and nitridation that hardens the surface by intruding sulfur together. Can be done.
[0017]
In the present invention, the heating can be performed under atmospheric pressure, which is extremely advantageous in terms of processing equipment and processing cost.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the chain unsaturated hydrocarbon gas is used as the carbon source gas of the pyrolytic carbon thin film for the following reason.
In order to reduce by-products such as soot, it is desirable not to decompose other than carbon that directly contributes to the formation of the carbon thin film in the heating chamber. Therefore, it is important that the raw material gas (carbon source gas) supplied to the heating chamber decomposes or reacts only on the surface of the base material and does not decompose or react on the surfaces of other heating chamber members or heating chamber spaces.
[0019]
A chain unsaturated hydrocarbon gas typified by acetylene-based gas, particularly acetylene gas, can satisfy the above requirements. In the case of acetylene gas which is a typical example, such characteristics are derived from the fact that the carbon atom has a triple bond composed of one σ bond and two π bonds. In other words, acetylene gas is very active and reactive due to having two π bonds. Compared with nitrogen gas, hydrogen gas, carbon monoxide gas, carbon dioxide gas, hydrogen sulfide gas, etc. Preferentially adsorbed.
[0020]
Furthermore, since the stability of any gaseous chain saturated hydrocarbon gas used in the prior art decreases as the temperature increases, a high temperature treatment is required to form a carbon thin film by gas phase pyrolysis. On the other hand, the chain unsaturated hydrocarbon gas represented by acetylene gas has a characteristic that the stability is lowered as the temperature is low, so that the treatment at a low temperature is suitable. That is, while the conventional technique requires a high processing temperature of 1000 to 2350 ° C., in the present invention, a processing temperature of 400 to 700 ° C. is suitable, and a carbon thin film can be formed at a low temperature. In the present invention, the generation of by-products such as soot can be extremely effectively suppressed by lowering the treatment temperature in this way.
[0021]
When the treatment temperature exceeds 700 ° C., the generation of by-products such as soot increases, and when the treatment temperature is less than 400 ° C., the decomposition or reaction rate of the raw material gas (carbon source gas) on the substrate surface decreases rapidly. . The heating temperature is preferably higher than 450 ° C, and more preferably 500 ° C or higher.
Oite this onset Ming, in parallel with the formation of the carbon film, gas nitriding, gas soft, gas nitrosulphurization is performed. In that case, the chain unsaturated hydrocarbon gas typified by acetylene gas serves as a carbon supply source to the surface of the metal substrate, and also strongly contributes as a carbon supply source to the nitrided layer and the sulfurized layer. In addition, the chain unsaturated hydrocarbon gas represented by acetylene gas is preferentially adsorbed on the surface of the metal base as described above, and quickly decomposes in the adsorbed state to form a carbide phase of the base metal (base material). If is a steel, it produces cementite (Fe 3 C). Such a surface carbide phase protects the surface of the substrate from oxidation during the temperature rising process, so that a surface oxide layer is not formed even in a high chromium steel such as stainless steel, which is generally considered difficult to nitride. A carbon thin film can be formed in parallel with the nitrosulfiding.
[0022]
In order to more effectively suppress the generation of by-products such as soot, the chain unsaturated hydrocarbon gas, which is a carbon source, is diluted to an appropriate concentration with nitrogen gas, hydrogen gas or a mixed gas thereof. This is very important. An appropriate dilution concentration can be determined in advance by experiments so as to minimize the generation of by-products.
As a typical carbon thin film forming gas, nitrogen gas (N 2 ), hydrogen gas (H 2 ), or acetylene gas (C 2 H 2 ) diluted with a mixed gas thereof is used. When not only forming a carbon thin film but also simultaneously performing gas nitridation, ammonia gas (NH 3 ) is typically added as a nitriding gas to the above-described carbon thin film forming gas, and gas softening is performed. When nitriding is performed concurrently, ammonia gas (NH 3 ) and carbon dioxide (CO 2 ) are typically added as soft nitriding gases. Typically, hydrogen sulfide gas (H 2 S. Usually diluted with N 2 , H 2 or a mixed gas thereof) may be added as the gas.
[0023]
【Example】
FIG. 1 shows an example of the structure of an apparatus for forming a carbon thin film by pyrolysis at low temperature via a gas phase according to the present invention. In the pit type low temperature pyrolytic carbon thin film forming apparatus 1, a heat insulating material 3 is lined on a furnace body 2, and a heating element 4 such as an iron chrome heater is disposed along the inner wall. The heat insulating material 3 has a structure in which ceramic fibers are combined. The internal space of the retort 5 disposed in the center of the space B surrounded by the heating element 4 constitutes the heating chamber H. The metal base material to be processed is charged into the region S in the heating chamber H. At the top of the retort 5 extending upward from the furnace body 2, there is a stirrer 6 for equalizing the temperature in the heating chamber, and a fan is provided at the tip of the rotating shaft extending from there to the heating chamber. The top of the retort 5 is closed by the upper lid 7. The retort 5, the shaft and fan of the stirrer 6, and the upper lid 7 are all made of stainless steel, and the surface is subjected to aluminum diffusion treatment. The inside of the heating chamber H is exhausted from below by a vacuum exhaust device 8 such as an oil rotary pump. By the cooling blower 9, forced cooling can be performed by sending air into the space B between the retort 5 and the heat insulating material 3.
[0024]
Acetylene gas (C 2 H 2 ) as a carbon source gas, hydrogen gas (H 2 ) and nitrogen gas (N 2 ) as gases for dilution and non-oxidation heating, ammonia gas (NH 3 ) for nitriding, immersion Hydrogen sulfide gas (H 2 S) for sulfurization and carbon dioxide gas (CO 2 ) for soft nitriding are fed into the retort 5 from below through a flow meter 10 and an electric valve 11 (electromagnetic valve, rotary valve, etc.), respectively. That is, it is supplied into the heating chamber H.
[0025]
The ammonia decomposition furnace 12 contains a Ni-based catalyst, and decomposes excess ammonia gas that has not been consumed by the processing in the apparatus 1. Similarly, non-consumed hydrogen sulfide is detoxified by the hydrogen sulfide detoxifying device 13 incorporating the H 2 S chemical adsorbent. In addition, combustible exhaust gas components are burned in the combustion tower 14.
A gas-phase pyrolytic carbon thin film was formed according to the present invention using the processing apparatus of FIG. At that time, the gas nitrosulphurizing treatment was performed simultaneously with the formation of the carbon thin film.
[0026]
As the metal substrate to be treated, JIS SUS304 stainless steel, which is considered difficult to nitride, was used. FIG. 2 shows the processing cycle. As shown in the figure, the processing temperature was 570 ° C. The amount of each gas used was as follows.
Acetylene gas (C 2 H 2 ): 0.7 Nl / min
Nitrogen gas (N 2 ): 15 Nl / min
Ammonia gas (NH 3 ): 15 Nl / min
Hydrogen sulfide gas * (H 2 S): 20 Nl / hr
(*: 3% H 2 S, balance N 2 )
Thereby, the nitrosulphurizing process is performed concurrently with the formation of the pyrolytic carbon thin film via the gas phase.
[0027]
For comparison, only nitriding treatment was performed without supplying acetylene (C 2 H 2 ) and hydrogen sulfide (H 2 S) among the above gases.
With respect to the sample subjected to the combined treatment of carbon thin film formation and nitronitriding treatment according to the present invention, the cross-sectional metal structure was observed with a microscope from the surface to the inside. As a result, as shown in the optical micrograph of FIG. 3, the surface layer structure is a diffusion layer, a compound layer (such as Fe 3 N), a sulfur film, and an outermost layer in the order of carbon thin film from the innermost layer closest to the base metal layer to the surface. It was a multilayer structure.
[0028]
FIG. 4 shows the result of measuring the hardness distribution of the corresponding cross section for this sample. With respect to the internal hardness HmV280, in the surface layer shallower than the depth of about 50 μm from the surface, the hardness increases as it is closer to the surface. In particular, it is hardened to a depth of about 30 μm, and reaches HV1250 in the outermost carbon thin film portion.
Next, a frictional wear test was performed on the sample of the inventive example subjected to the composite treatment according to the present invention and the sample of the comparative example subjected only to the nitriding treatment. The test apparatus and test conditions are as shown in FIG. Fe-3Cr-0.5Al-0.5Si and hardness HV150 were used as the counterpart material. The measurement results of the wear resistance and the friction coefficient μ are collectively shown in FIGS. 6 and 7, respectively. All the characteristics were remarkably improved by performing the composite treatment according to the present invention as compared with the comparative example which was simply nitrided.
[0029]
Thus, according to the present invention, it is possible to form a vapor-phase pyrolytic carbon thin film at a low temperature without generating byproducts such as soot. Although the growth rate of the film is as small as several μm / hr, a uniform and high adhesion carbon thin film can be obtained. This carbon thin film is excellent in corrosion resistance, thermal conductivity, chemical resistance, wear resistance, galling resistance, and seizure resistance. Since the treatment is performed at a low temperature, the treatment can be performed simultaneously with the nitridation-type surface hardening treatment such as nitriding, soft nitriding, or nitrosulfiding, and the above characteristics can be further improved. At this time, carbon can be supplied at a high concentration in addition to nitrogen into the nitride layer. Furthermore, the method of the present invention can be applied to high chromium steel such as stainless steel which is difficult to nitride.
[0030]
【The invention's effect】
As described above, according to the present invention, there is provided a method for forming a pyrolytic carbon thin film via a vapor phase that can prevent the generation of by-products with high production efficiency without increasing equipment costs and processing costs. . Furthermore, since the method of the present invention is performed at a low temperature, it can be performed in parallel with the surface hardening method involving nitriding.
[Brief description of the drawings]
FIG. 1 is a layout view showing an example of the configuration of a processing apparatus suitable for performing the method of the present invention.
FIG. 2 is a graph showing a processing cycle used in an example of the present invention.
FIG. 3 is an optical micrograph showing a metallographic structure of a surface layer of a sample obtained by simultaneously performing carbon thin film formation and nitrosulphurizing by the method of the present invention.
4 is a graph showing the measurement results of the cross-sectional hardness distribution of the sample having the surface layer structure of FIG. 3;
FIG. 5 is a perspective view of a friction and wear test used in Examples. The test conditions are also shown in the figure.
FIG. 6 is a graph showing a comparison of measurement results of wear resistance of a non-treated material (as it is a base material), a nitrided material (only nitriding is performed), and a composite treated material (example of the present invention). .
FIG. 7 is a graph showing a comparison of measurement results of friction coefficients for an untreated material (as it is a base material), a nitrided material (only nitriding is performed), and a composite treated material (example of the present invention).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Pit type low temperature pyrolysis carbon thin film formation apparatus 2 ... Furnace body 3 ... Heat insulating material 4 ... Heat generating body 5 ... Retort 6 ... Stirrer 7 ... Upper cover 8 ... Vacuum exhaust apparatus 9 ... Cooling blower 10 ... Flow meter 11 ... Motorized valve 12 ... Ammonia decomposition furnace 13 ... Hydrogen sulfide abatement device 14 ... Combustion tower

Claims (2)

ガス雰囲気炉の加熱室内で、金属基材を窒素ガスおよび/または水素ガスから成る雰囲気中で無酸化加熱するとともに、該加熱室内に、炭素源ガスを窒素ガスおよび/または水素ガスで希釈した薄膜形成ガスを供給して、該金属基材の表面に熱分解炭素の薄膜を形成する方法において、
上記炭素源ガスとして鎖式不飽和炭化水素ガスを用い、上記加熱を大気圧下において400℃〜700℃で行い、
(1)前記薄膜形成ガスが更に窒素源ガスを含み、前記金属基材表面のガス窒化またはガス軟窒化と前記炭素薄膜の形成とを行うか、または
(2)前記薄膜形成ガスが更に窒素源ガスおよび硫黄源ガスを含み、前記金属基材表面のガス浸硫窒化と前記炭素薄膜の形成とを行う、
ことを特徴とする炭素薄膜の形成方法。
A thin film in which a metal base material is non-oxidatively heated in an atmosphere composed of nitrogen gas and / or hydrogen gas in a heating chamber of a gas atmosphere furnace, and a carbon source gas is diluted with nitrogen gas and / or hydrogen gas in the heating chamber. In a method of supplying a forming gas to form a thin film of pyrolytic carbon on the surface of the metal substrate,
Using chain unsaturated hydrocarbon gas as the carbon source gas, it is performed by the 400 ° C. to 700 ° C. under atmospheric pressure the heating,
(1) The thin film forming gas further contains a nitrogen source gas, and gas nitriding or gas soft nitriding of the metal base surface and formation of the carbon thin film are performed, or
(2) The thin film forming gas further contains a nitrogen source gas and a sulfur source gas, and performs gas oxynitridation on the surface of the metal substrate and formation of the carbon thin film.
A method for forming a carbon thin film.
前記鎖式不飽和炭化水素ガスがアセチレン系ガスから成ることを特徴とする請求項1記載の方法。  2. The method according to claim 1, wherein the chain unsaturated hydrocarbon gas comprises an acetylenic gas.
JP18922399A 1999-07-02 1999-07-02 Method for forming carbon thin film Expired - Lifetime JP4049946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18922399A JP4049946B2 (en) 1999-07-02 1999-07-02 Method for forming carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18922399A JP4049946B2 (en) 1999-07-02 1999-07-02 Method for forming carbon thin film

Publications (2)

Publication Number Publication Date
JP2001011630A JP2001011630A (en) 2001-01-16
JP4049946B2 true JP4049946B2 (en) 2008-02-20

Family

ID=16237646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18922399A Expired - Lifetime JP4049946B2 (en) 1999-07-02 1999-07-02 Method for forming carbon thin film

Country Status (1)

Country Link
JP (1) JP4049946B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893437B1 (en) 2003-03-24 2009-04-17 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 High-efficiency synthetic method for carbon nanostructure, apparatus and carbon nanostructure
KR101403989B1 (en) * 2010-11-09 2014-06-10 포항공과대학교 산학협력단 Graphene coated steel and method for preparing thereof
JP2014237890A (en) * 2013-05-10 2014-12-18 国立大学法人電気通信大学 Film deposition apparatus of diamond-like carbon film and formation method
KR102466935B1 (en) * 2020-12-22 2022-11-14 (주) 청호열처리 Sulfnitriding heat treatment apparatus

Also Published As

Publication number Publication date
JP2001011630A (en) 2001-01-16

Similar Documents

Publication Publication Date Title
Gräfen et al. New developments in thermo-chemical diffusion processes
KR100858598B1 (en) Method for activating surface of metal member
US4196233A (en) Process for coating inorganic substrates with carbides, nitrides and/or carbonitrides
EP0482992B1 (en) Process for the production of a thermic treatment atmosphere
KR870010211A (en) Improved Surface Wear Quality Metal Treatment
Küper et al. A novel approach to gas boronizing
JPH0547624B2 (en)
EP0471276A1 (en) Method of forming a nitride or carbonnitride layer
JPS6374954A (en) Manufacture of self-supporting ceramic mass
JPH08325701A (en) Vacuum carburization method and device and carburized product
JP4049946B2 (en) Method for forming carbon thin film
CN100552077C (en) A kind of Apparatus and method for of titanium or titanium alloy surface oxygen-carbon co-cementation
JP2000178710A (en) Method of carburizing and carbonitriding treatment
FR2549085A1 (en) PROCESS FOR HARDENING THE SURFACE OF OBJECTS OF FERROUS MATERIAL
JP2007131884A (en) Low-friction sliding member
KR890002162B1 (en) Sliding members coated ceramic and a method for manufacture thereof
RU2367716C1 (en) Processing method of steel products in gaseous medium
JP2006233261A (en) Gas nitriding method
US2344906A (en) Carbonizing metals
JP2001316819A (en) Hard amorphous carbon film and production method therefor
RU2692006C1 (en) Method for cyclic gas nitriding of parts from high-alloy steels
US5851314A (en) Method for plasma carburization of metal workpieces
Mouri et al. Improvement of the corrosion resistance of a low carbon steel using a two step plasma treatment
Reynoldson Advances in surface treatments using fluidised beds
JP2005232518A (en) Surface hardening treatment method for engine valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R151 Written notification of patent or utility model registration

Ref document number: 4049946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term