JP4046926B2 - Contact ultrasonic sensor with delay material - Google Patents

Contact ultrasonic sensor with delay material Download PDF

Info

Publication number
JP4046926B2
JP4046926B2 JP2000106776A JP2000106776A JP4046926B2 JP 4046926 B2 JP4046926 B2 JP 4046926B2 JP 2000106776 A JP2000106776 A JP 2000106776A JP 2000106776 A JP2000106776 A JP 2000106776A JP 4046926 B2 JP4046926 B2 JP 4046926B2
Authority
JP
Japan
Prior art keywords
wave
ultrasonic
delay material
specimen
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000106776A
Other languages
Japanese (ja)
Other versions
JP2001289625A (en
Inventor
正 駒井
純 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000106776A priority Critical patent/JP4046926B2/en
Publication of JP2001289625A publication Critical patent/JP2001289625A/en
Application granted granted Critical
Publication of JP4046926B2 publication Critical patent/JP4046926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超音波によって供試体の特定層の厚さや傷等を測定する超音波センサに関し、特には、超音波振動子と接するカップリング液で音響レンズを画成するとともに供試体に接触して供試体への超音波の入射と供試体からの反射波の受け入れとを行うディレイ材を具えるディレイ材付き接触型超音波センサに関するものである。
【0002】
【従来の技術】
超音波は、伝播する媒体の密度によって伝播速度(音速)が異なり、密度の異なる媒体同士の境界で反射する性質を持つ。それゆえ、供試体と超音波振動子との間に空気層があるとその空気層と供試体との境界で超音波が反射してしまって供試体内部に超音波を入射させられないことから、従来、供試体に接触して供試体への超音波の入射と供試体からの反射波の受け入れとを行うディレイ材を具えたディレイ材付き接触型超音波センサが知られており、かかる超音波センサでは通常、そのディレイ材と超音波振動子との間にカップリング液が満たされるとともに、超音波振動子に向くディレイ材の端面に凹曲面が形成され、その凹曲面がそれと超音波振動子と接するカップリング液で音響レンズを画成し、その音響レンズが、超音波振動子から発生する超音波を所定の焦点に収束させる。
【0003】
しかしながら、従来の通常のディレイ材付き接触型超音波センサでは超音波の焦点がディレイ材内に設定されていたため、ディレイ材内で超音波の乱反射が発生することから、それによる遅れ反射波を検出しないように不感時間を設定して使用しており、これがため薄い供試体には使用できないという問題があった。そこで本願出願人は、先に特開平8−247751号にて、超音波の焦点がディレイ材の外側すなわち供試体内に位置するようにディレイ材の高さを設定することで上記の問題を解決したディレイ材付き接触型超音波センサを開示した。
【0004】
【発明が解決しようとする課題】
ところで、上記従来のディレイ材付き接触型超音波センサについて本願発明者が研究したところ、ディレイ材付き接触型超音波センサでは、超音波の伝播経路上にディレイ材と供試体との間の境界に加えてセンサ内部のディレイ材とカップリング液との間の境界もあるため、それらの境界での反射波も検出されるので信号/ノイズ(S/N)比が悪いという不都合があるということが判明した。そしてこのことは、例えばエンジンのシリンダヘッド等の鋳物部品の表面に強化のために形成したリメルト強化層(再溶融により結晶粒を緻密化した層)とその奥の通常の結晶粒部分との境界等の、供試体内の境界からの散乱波を反射波として検出する場合、従来検出していた供試体底面からの反射波よりも弱いため特に問題となり、センサ出力をより増幅しなければ検出することができず、一方増幅度を高めるとノイズも大きくなって散乱波の検出を妨げてしまうという不都合があった。そこでこれにつき本願発明者がさらに研究を進めた結果、音響レンズの回転体形状の設定および、ディレイ材とカップリング液の高さの設定を改善すれば、弱い散乱波でも明確に検出し得るという点に想到した。
【0005】
【課題を解決するための手段およびその作用・効果】
この発明は、上述の点に鑑みてなされたものであり、請求項1記載のこの発明のディレイ材付き接触型超音波センサは、超音波振動子と接するカップリング液で音響レンズを画成するとともに供試体に接触してその供試体への超音波の入射とその供試体からの反射波の受け入れとを行うディレイ材を具えるディレイ材付き接触型超音波センサにおいて、前記超音波振動子から発生した超音波の、前記ディレイ材と前記供試体との間の境界および前記ディレイ材と前記カップリング液との間の境界からの逐次に帰着する複数の縦波反射波の後に、またはそれら複数の縦波反射波のうち最後のものと同時に、前記超音波の、前記ディレイ材と前記供試体との間の境界からの横波反射波が帰着するとともに、前記複数の縦波反射波のうちその横波反射波の帰着の一つ前または同時の縦波反射波とさらに一つ前の縦波反射波との間に、前記超音波の、前記供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が帰着する寸法に前記音響レンズの高さおよび前記ディレイ材の高さが設定されていることを特徴とするものである。
【0006】
かかる超音波センサにあっては、超音波振動子から発生した超音波の、ディレイ材と供試体との間の境界およびディレイ材とカップリング液との間の境界からの逐次に帰着する複数の縦波反射波のうち、ディレイ材と供試体との間の境界からの、縦波よりも伝播速度が遅い横波反射波の帰着の一つ前または同時の縦波反射波と、それよりさらに一つ前の縦波反射波との間に、上記超音波の、供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が帰着するように、音響レンズおよびディレイ材の高さが設定されているので、供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が、ディレイ材と供試体との間の境界およびディレイ材とカップリング液との間の境界からの逐次に帰着する縦波反射波にも、またディレイ材と供試体との間の境界からの横波反射波にも重ならずに検出される。
【0007】
従ってこの超音波センサによれば、供試体の表面から所定測定範囲内の深さの境界からの弱い散乱波でも明確に検出し得て、S/N比の良い、精度の高い検出を行うことができる。
【0008】
一方、請求項2記載のこの発明のディレイ材付き接触型超音波センサは、超音波振動子と接するカップリング液で音響レンズを画成するとともに供試体に接触してその供試体への超音波の入射とその供試体からの反射波の受け入れとを行うディレイ材を具えるディレイ材付き接触型超音波センサにおいて、前記超音波振動子から発生した超音波の、前記ディレイ材と前記供試体との間の境界および前記ディレイ材と前記カップリング液との間の境界からの逐次に帰着する複数の縦波反射波の間に、前記超音波の、前記ディレイ材と前記供試体との間の境界からの横波反射波が帰着するとともに、前記複数の縦波反射波のうちその横波反射波の帰着の一つ前の縦波反射波とその横波反射波との間に、前記超音波の、前記供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が帰着する寸法に前記音響レンズの高さおよび前記ディレイ材の高さが設定されていることを特徴とするものである。
【0009】
かかる超音波センサにあっては、超音波振動子から発生した超音波の、ディレイ材と供試体との間の境界およびディレイ材とカップリング液との間の境界からの逐次に帰着する複数の縦波反射波の間に帰着する、ディレイ材と供試体との間の境界からの、縦波よりも伝播速度が遅い横波反射波と、前記複数の縦波反射波のうち、その横波反射波の帰着の一つ前の縦波反射波との間に、上記超音波の、供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が帰着するように、音響レンズおよびディレイ材の高さが設定されているので、供試体の表面から所定測定範囲内の深さの境界からの縦波反射波が、ディレイ材と供試体との間の境界およびディレイ材とカップリング液との間の境界からの逐次に帰着する縦波反射波にも、またディレイ材と供試体との間の境界からの横波反射波にも重ならずに検出される。
【0010】
従ってこの超音波センサによれば、供試体の表面から所定測定範囲内の深さの境界からの弱い散乱波でも明確に検出し得て、S/N比の良い、精度の高い検出を行うことができる。
【0011】
そして請求項1または2記載のこの発明のディレイ材付き接触型超音波センサは、さらに、前記超音波振動子と前記音響レンズとその超音波振動子に対し中心軸線同士が角度を持つ前記ディレイ材とを保持するホルダと、前記ホルダを所定軸線周りに回動させるホルダ回動機構と、を具え、前記所定軸線に対し傾斜した向きに超音波ビームを放射することを特徴とするものである。
【0012】
ディレイ材付き接触型超音波センサでは、音響レンズは超音波振動子とディレイ材とで画成されることから、一般に、その超音波振動子とディレイ材との配置誤差によりそれらの中心軸線同士が一致せず僅かに角度を持ち、それゆえディレイ材の中心軸線に対し僅かに傾斜した向きに超音波が放射される。この点に鑑みてこの発明の超音波センサにあっては、超音波振動子と音響レンズとディレイ材とを保持するホルダを、ホルダ回動機構が所定軸線周りに回動させる。
【0013】
従ってこの発明の超音波センサによれば、その回動軸線が供試体表面と交差する向きに超音波センサを配置することで、その回動軸線と交差する供試体上の点の周囲を環状に超音波で走査することができ、これによりその回動軸線を中心とした一定範囲内の境界の深さ変化を検出することができる。
【0014】
また、請求項3記載のこの発明のディレイ材付き接触型超音波センサは、請求項1または2記載のディレイ材付き接触型超音波センサにおいて、前記超音波振動子の振動面上の所定発生位置から発生した超音波が前記供試体内の所定焦点位置で反射して戻る帰着位置と、前記振動面の中心点に関し前記発生位置と対称の位置との間の距離を、前記所定発生位置を前記振動面の中心点から外周端まで移動させながら求めて積算した値が最小となる形状に前記音響レンズの回転体形状が設定されていることを特徴とするものである。
【0015】
一般に、超音波振動子では、超音波の発生位置と帰着位置とが振動面の中心に対し点対称になっていると反射波を最も効率良く検出し得るとされており、上述した従来の超音波センサでは振動面の一方の外周端から発生した超音波が供試体内の焦点位置で反射して反対側の外周端に帰着するように音響レンズの球面の半径が設定されていたが、かかる設定では振動面全体について反射波を効率良く検出することはできなかった。これに対し上記本願発明の超音波センサによれば、超音波振動子の振動面全体として超音波の発生位置と帰着位置との対称性の誤差が最も少ない形状に音響レンズの回転体形状が設定されているので、焦点位置からの反射波を最も効率良く振動面で検出することができる。
【0016】
従ってこの超音波センサによれば、供試体内の焦点位置付近の境界からの散乱波を、センサ出力の増幅度をさほど高めなくても明確に検出し得て、供試体内の境界につき、S/N比の良い、精度の高い検出を行うことができる。
【0017】
【発明の実施の形態】
以下に、この発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明のディレイ材付き接触型超音波センサの一実施例を示す構成図であり、この実施例の超音波センサは、円盤状の通常の超音波振動子1と、先端面(図では下端面)で供試体2の表面に接触する倒立裁頭円錐状の通常のディレイ材3と、それら超音波振動子1とディレイ材3との間に介挿されてそれら超音波振動子1とディレイ材3との間隔を設定するスペーサ4と、それら超音波振動子1とディレイ材3との間の空間に満たされてそれら超音波振動子1とディレイ材3とに接するカップリング液で形成された音響レンズ5と、を具えており、ここにおけるディレイ材3はその凹球面状の後端面(図では上端面)3aにより、音響レンズ5の曲率半径Rの凸球面を画成している。
【0018】
かかる実施例の超音波センサにあっては、図1中に矢印Aで示すように、超音波振動子1の振動面1aの例えば点P1から発生した超音波は、音響レンズ5で屈折してディレイ材3を通り、さらに供試体2の表面から供試体2内に入って、供試体2の表面から深さFPの位置にある、例えば鋳造部品のリメルト強化層とその奥の通常の結晶粒部分との境界等の境界2aで散乱波として反射し、再びディレイ材3を通った後、音響レンズ5で屈折して振動面1aの例えば点P2に帰着し、超音波振動子1で検出される。
【0019】
ところで、上記音響レンズ5の曲率半径Rは、従来のディレイ材付き接触型超音波センサでは、振動面1aの一方の外周端から発生した超音波が供試体2内に設定した所定焦点位置で反射して振動面1aの反対側の(振動面1aの中心点Oに関し点対称の)外周端に帰着するように設定されていた(逆にいえば、振動面1aの外周端を規準に焦点位置が決められていた)が、かかる設定では、図1に示すように振動面1aの外周端よりも内側の位置で発生した超音波は、焦点位置で反射すると振動面1aの中心点Oに関し点対称の位置に帰着しないため、測定したい境界付近に焦点位置がくるように曲率半径Rを設定しても振動面1a全体について反射波を効率良く検出することはできなかった。
【0020】
そこで上記実施例の超音波センサでは、上記音響レンズ5の曲率半径Rは、以下の如くして、超音波振動子1の振動面1a全体として超音波の発生位置と帰着位置との対称性の誤差が最も少ない形状に設定されている。すなわち、この実施例では音響レンズ5の供試体側の表面は曲率半径Rの球面であるので、図2に模式的に示すように、y軸を中心軸線とした超音波振動子1の半径をr、ある超音波発生点の半径をr0、音響レンズ5の球面の中心点のy座標を−Rとするとともに、超音波の、音響レンズ5の球面への入射角をθ1、その球面からの出射角をθ2、供試体内への入射角をθ3とし、さらに、音響レンズ5の高さをS、ディレイ材3の高さをH、供試体2内の焦点位置の深さをFP、超音波の縦波の、音響レンズ5内の音速をVLC、ディレイ材3内の音速をVLD、供試体2内の音速をVLM、Cを係数とすると、超音波の経路がy軸に関して対称となる際には、以下の〔数1〕の関係式が成り立つ。但し(2)、(3)式はスネルの法則による。
【0021】
【数1】

Figure 0004046926
【0022】
上記の関係式では、高さS,H、音速VLC,VLD,VLM、そして半径rは基本的に定数である。従って、所望の焦点位置深さFPを設定すれば、曲率半径Rに対して対称性が成立する半径r0が定まり、そこから係数Cが定まることになる。ここで、超音波発生点の半径raを上記r0から変化させると、音響レンズ5が球面であるゆえ、深さFPの境界で反射した反射波は振動面1a上の、y軸に関してその超音波発生点と対称の点には戻らず、その対称点からずれて位置する。この位置ずれ量を、超音波発生点の位置をra=0からra=rまで変化させながら求めていって、位置ずれ量の積分値(積算値)を求め、かかる積分値を、曲率半径Rひいては対称性が成立する半径r0を変化させながら調べて、その積分値が最小となる場合すなわち振動面1a全体について最も位置ずれ量が少なくなる場合の対称性が成立する半径r0を求め、その半径r0から、係数Cの最適値を求める。
【0023】
この係数Cの最適値は、焦点位置の深さFPによって異なるが、超音波センサでの通常の測定深さの範囲では0.65≦C≦0.85となり、このCの値の範囲から逆算して求めた音響レンズ曲率半径Rは、音響レンズ5(カップリング液)内の音速VLC=1516m/sec 、ディレイ材3(合成樹脂)内の音速VLD=2330m/sec 、供試体2(アルミニウム合金鋳造物のリメルト強化層)内の音速VLM=6544m/sec の場合に、図3〜図7の如くになる。ここに、図3〜図5は、測定可能範囲の最大深さに焦点位置の深さFPを合わせた場合であり、また図6,図7は、測定可能範囲の1/2の深さに焦点位置の深さFPを合わせた場合である。
【0024】
図8は、対称性が成立する半径r0を変化させた場合の位置ずれ量の積算値の変化と、超音波の第1反射波の強度との関係を例示するものであり、図示のように、反射波強度は、積算値が最小のときに最大となっている。また図9(a)および(b)は、従来の超音波センサおよび上記実施例の超音波センサでそれぞれ検出した供試体表面からの反射波WSと供試体内の境界からの散乱波WBとを示すものであり、図示のように上記実施例の超音波センサでは散乱波WBがはっきりと検出されている。
【0025】
従って、上述の如くして音響レンズ5の球面の曲率半径Rが設定されたこの実施例の超音波センサによれば、焦点位置からの反射波を最も効率良く振動面1aで検出し得ることから、供試体2内の焦点位置付近の境界2aからの散乱波を、センサ出力の増幅度をさほど高めなくても明確に検出することができるので、供試体2内の境界2aの深さについて、S/N比の良い、精度の高い検出を行うことができる。
【0026】
なお、上記実施例では音響レンズ5が球面を有していたが、音響レンズ5が回転楕円面を有している場合も同様にして、対称点からの位置ずれ量の積算値が最小となる場合を求めることで、焦点位置からの反射波を最も効率良く振動面で検出し得るような、回転楕円面の長径や短径等の形状パラメータを求めることができる。
【0027】
図10は、上記実施例の超音波センサでの超音波の伝播状況を模式的に示す説明図であり、説明の便宜上音響レンズ5の表面は平坦に描かれている。また超音波の経路のうち実線は縦波、破線は横波を示している。図示のように、超音波振動子1の振動面1a上の例えば点P1で発生した超音波は、音響レンズ5とディレイ材3との境界上の点R1で反射すると縦波反射波LW1として振動面1a上の点P2に帰着し、その縦波反射波LW1はその後、音響レンズ5の両面すなわち振動面1a上の点とディレイ材3上の点R2, R3とで反射を繰り返して縦波反射波LW2,LW3として振動面1a上の点P3, P4に逐次帰着する。また上記超音波は、ディレイ材3と供試体2の表面との境界上の点R4で反射すると縦波反射波LW4として点P2に帰着し、さらに供試体2内の必要測定深さ範囲D内に位置する境界2a上の点R5で反射すると縦波反射波LW5として縦波反射波LW4の後に点P2に帰着する。さらに上記超音波は、ディレイ材3と供試体2の表面との境界上の点R4で反射する際に入射角が大きいことから横波反射波TWにもなり、その横波反射波TWも振動面1a上の点P5に帰着する。
【0028】
ところで、従来のディレイ材付き接触型超音波センサでは、かかる縦波反射波LW1〜LW5および横波反射波TWの帰着のタイミングを調整していなかったことから、検出すべき境界2aの深さに対応してその境界2aからの縦波反射波LW5が帰着するタイミング付近で他の反射波も帰着してしまい、検出すべき縦波反射波LW5が他の反射波と区別がつきづらかったり他の反射波と重なってしまったりしてその縦波反射波LW5を明確に検出するのが困難であった。
【0029】
そこでこの実施例の超音波センサでは、以下の二種類の方法の何れかにより音響レンズ5の高さSとディレイ材3の高さHとを設定することで、上記の問題を解決している。先ず、第1の方法は、図11に示すように、音響レンズ5内で反射を繰り返している縦波反射波(縦波繰り返し反射波)のうちN+1番目の縦波反射波、すなわち図示例では3番目の縦波反射波LW3の後またはそれと同時に横波反射波TWが帰着するようにして、その横波反射波TWの一つ前または同時の縦波反射波である上記N+1番目の縦波繰り返し反射波LW3の帰着と、その前の、供試体2の表面からの縦波反射波LW4の帰着との間の時間を、所望の測定深さ範囲を測定するための測定エリアSAとし、その測定エリアSA内に供試体2内の必要測定深さ範囲D内に位置する境界2aからの縦波反射波LW5が帰着するようにしたものである。
【0030】
このように必要測定深さ範囲Dとの関係で測定エリアSAを設定するには、以下の〔数2〕の関係式から音響レンズ5の高さSとディレイ材3の高さHとを求める。ここでは、音響レンズ5内の縦波超音波の音速をVLC、ディレイ材3内の縦波超音波の音速をVLD、ディレイ材3内の横波超音波の音速をVSD、供試体2内の縦波超音波の音速をVLMとし、また図11に示すように、供試体2の表面からの縦波反射波LW4と縦波繰り返し反射波との時間差Aを、それらが重ならないように縦波繰り返し反射波の減衰時間を考慮して決めてある。
【0031】
【数2】
Figure 0004046926
【0032】
なお、N=1とすると、Sが大きくなり過ぎ、またN=4以上とするとHが大きくなり過ぎるため、Nは2または3が好ましく、図11の例のようにN=2とするのが最も妥当である。図12は、上記の方法で求めた必要測定深さ範囲Dと高さ寸法HおよびSとの関係を示すものである。
【0033】
図13(a)および(b)は、従来の超音波センサおよび上記実施例の超音波センサでそれぞれ検出した縦波繰り返し反射波RW1(1番目),RW2(2番目)・・と供試体表面からの縦波反射波LWと供試体表面からの横波反射波TWとを示しており、また図14(a)および(b)は、図13(a)および(b)を時間軸を拡大して示すものであり、図示のように、従来の超音波センサでは測定エリアSA内にかなりのノイズが入り込んでいるが、上記実施例の超音波センサでは測定エリアSAにノイズがほとんど存在しない。
【0034】
第2の方法は、図15に示すように、音響レンズ5内で反射を繰り返している縦波反射波(縦波繰り返し反射波)のうちN+1番目の縦波反射波、すなわち図示例では3番目の縦波反射波LW3の直前に横波反射波TWが帰着するようにして、その横波反射波TWの帰着と、その一つ前の縦波反射波である供試体2の表面からの縦波反射波LW4の帰着との間の時間を、所望の測定深さ範囲を測定するための測定エリアSAとし、その測定エリアSA内に供試体2内の必要測定深さ範囲D内に位置する境界2aからの縦波反射波LW5が帰着するようにしたものである。
【0035】
このように必要測定深さ範囲Dとの関係で測定エリアSAを設定するには、以下の〔数3〕の関係式から音響レンズ5の高さSとディレイ材3の高さHとを求める。ここで、音速VLC,VLD,VSD,VLMは先の方法におけると同一である。
【0036】
【数3】
Figure 0004046926
【0037】
なお、この場合もN=1とすると、Sが大きくなり過ぎ、またN=4以上とするとHが大きくなり過ぎるため、Nは2または3が好ましく、図15の例のようにN=2とするのが最も妥当である。
【0038】
上記第2の方法で音響レンズ5の高さSとディレイ材3の高さHとを求めた場合でも、先の第1の方法の場合と同様、上記実施例の超音波センサで測定エリアSAからノイズをなくすことができる。
【0039】
図16(a)および(b)は、上記実施例のディレイ材付き接触型超音波センサの応用例を模式的に示す説明図であり、ここでは上記実施例の超音波センサが、超音波振動子1と音響レンズ5とディレイ材3とを保持するホルダ6を具えるとともに、そのホルダ6を、ディレイ材3の中心軸線と実質上一致する所定軸線TA周りに回動させる、モータ駆動のホルダ回動機構7を具えている。
【0040】
上記実施例のディレイ材付き接触型超音波センサでは、音響レンズ5は超音波振動子1とディレイ材3とで画成されることから、その超音波振動子1とディレイ材3との配置誤差によりそれらの中心軸線同士が一致せず僅かに角度を持ち、それゆえ、図16(a)に示すように、ディレイ材3の中心軸線ひいては上記回動軸線TAに対し僅かに傾斜し向きに超音波ビームSBが放射される。
【0041】
従って上記応用例の超音波センサによれば、図16(b)に示すように、その回動軸線TAが供試体2表面と実質上直交する向きに超音波センサを配置してホルダ回動機構7でホルダ6を回動させることで、その回動軸線TAと交差する供試体2上の点の周囲を環状に超音波ビームSBで走査することができ、これによりその回動軸線TAを中心とした一定範囲内の境界2aの深さ変化ひいてはその範囲内の例えばリメルト強化層の最小厚さを検出することができる。
【0042】
以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく、例えば、供試体やディレイ材の材質等を所要に応じて変更することもでき、また超音波センサの使用目的も境界の検出のみならず探傷等にも用いることができる。
【図面の簡単な説明】
【図1】 この発明のディレイ材付き接触型超音波センサの一実施例を模式的に示す構成図である。
【図2】 上記実施例の超音波センサにおける超音波の伝播経路を示す説明図である。
【図3】 上記実施例の超音波センサにおける音響レンズの曲率半径を所定の測定可能範囲について焦点位置がその測定可能範囲の最大深さの場合で示す関係線図である。
【図4】 上記実施例の超音波センサにおける音響レンズの曲率半径を他の所定の測定可能範囲について焦点位置がその測定可能範囲の最大深さの場合で示す関係線図である。
【図5】 上記実施例の超音波センサにおける音響レンズの曲率半径を他の所定の測定可能範囲について焦点位置がその測定可能範囲の最大深さの場合で示す関係線図である。
【図6】 上記実施例の超音波センサにおける音響レンズの曲率半径を所定の測定可能範囲について焦点位置がその測定可能範囲の最大深さの1/2の場合で示す関係線図である。
【図7】 上記実施例の超音波センサにおける音響レンズの曲率半径を他の所定の測定可能範囲について焦点位置がその測定可能範囲の最大深さの1/2の場合で示す関係線図である。
【図8】 上記実施例の超音波センサにおける対称性が成立する超音波発射点半径と反射波強度との関係を示す関係線図である。
【図9】 (a)および(b)は、従来の超音波センサおよび上記実施例の超音波センサでそれぞれ検出した供試体表面からの反射波と供試体内の境界からの散乱波とを示す特性図である。
【図10】 上記実施例の超音波センサでの超音波の伝播状況を模式的に示す説明図である。
【図11】 上記実施例の超音波センサでの音響レンズの高さとディレイ材の高さとを設定する第1の方法を示す説明図である。
【図12】 上記第1の方法で設定した音響レンズの高さとディレイ材の高さとを必要測定深さ範囲との関係で示す関係線図である。
【図13】 (a)および(b)は、従来の超音波センサおよび上記実施例の超音波センサでそれぞれ検出した縦波繰り返し反射波と供試体表面からの縦波反射波と供試体表面からの横波反射波とを示しす説明図である。
【図14】 (a)および(b)は、図13(a)および(b)をそれぞれ時間軸を拡大して示す説明図である。
【図15】 上記実施例の超音波センサでの音響レンズの高さとディレイ材の高さとを設定する第2の方法を示す説明図である。
【図16】 (a)および(b)は、上記実施例のディレイ材付き接触型超音波センサの応用例を模式的に示す説明図である。
【符号の説明】
1 超音波振動子
2 供試体
2a 境界
3 ディレイ材
4 スペーサ
5 音響レンズ
6 ホルダ
7 ホルダ回動機構
SB 超音波ビーム
D 必要測定深さ範囲
FP 焦点位置の深さ
H ディレイ材の高さ
R 音響レンズの曲率半径
S 音響レンズの高さ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor that measures the thickness and scratches of a specific layer of a specimen by ultrasonic waves, and in particular, defines an acoustic lens with a coupling liquid in contact with an ultrasonic transducer and contacts the specimen. In particular, the present invention relates to a contact-type ultrasonic sensor with a delay material, which includes a delay material that performs the incidence of an ultrasonic wave on a specimen and reception of a reflected wave from the specimen.
[0002]
[Prior art]
Ultrasonic waves have the property that the propagation speed (sound speed) varies depending on the density of the medium to propagate, and is reflected at the boundary between media having different densities. Therefore, if there is an air layer between the specimen and the ultrasonic transducer, the ultrasonic waves are reflected at the boundary between the air layer and the specimen, and the ultrasonic waves cannot enter the specimen. Conventionally, a contact-type ultrasonic sensor with a delay material that includes a delay material that makes contact with the specimen and receives ultrasonic waves on the specimen and receives reflected waves from the specimen is known. In an acoustic wave sensor, a coupling liquid is usually filled between the delay material and the ultrasonic transducer, and a concave curved surface is formed on the end surface of the delay material facing the ultrasonic transducer. An acoustic lens is defined by the coupling liquid in contact with the child, and the acoustic lens converges the ultrasonic wave generated from the ultrasonic transducer to a predetermined focal point.
[0003]
However, in the conventional contact ultrasonic sensor with a delay material, the focal point of the ultrasonic wave is set in the delay material, so that the diffused reflection of the ultrasonic wave is generated in the delay material. The dead time was set so as not to be used, and there was a problem that it could not be used for thin specimens. Therefore, the applicant of the present application previously solved the above-mentioned problem by setting the height of the delay material so that the focal point of the ultrasonic wave is located outside the delay material, that is, in the specimen, in Japanese Patent Laid-Open No. 8-247775. A contact type ultrasonic sensor with a delay material is disclosed.
[0004]
[Problems to be solved by the invention]
By the way, the inventor of the present application has studied the conventional contact type ultrasonic sensor with a delay material. In the contact type ultrasonic sensor with a delay material, the boundary between the delay material and the specimen is located on the ultrasonic propagation path. In addition, since there is a boundary between the delay material inside the sensor and the coupling liquid, a reflected wave at the boundary is also detected, so that there is a disadvantage that the signal / noise (S / N) ratio is poor. found. This is because, for example, a boundary between a remelt strengthened layer (layer in which crystal grains are densified by remelting) formed on the surface of a cast part such as an engine cylinder head and a normal crystal grain portion in the back thereof. When detecting a scattered wave from the boundary of the specimen as a reflected wave, it is particularly problematic because it is weaker than the reflected wave from the bottom of the specimen, which has been detected in the past. On the other hand, when the amplification degree is increased, the noise increases and the detection of scattered waves is hindered. Therefore, as a result of further research by the inventor of the present application, if the setting of the shape of the rotating body of the acoustic lens and the setting of the height of the delay material and the coupling liquid are improved, even a weak scattered wave can be clearly detected. I came up with a point.
[0005]
[Means for solving the problems and their functions and effects]
The present invention has been made in view of the above points, and the contact type ultrasonic sensor with a delay material according to claim 1 defines an acoustic lens with a coupling liquid in contact with an ultrasonic transducer. A contact-type ultrasonic sensor with a delay material comprising a delay material that makes contact with the test specimen and receives ultrasonic waves on the test specimen and receives reflected waves from the test specimen. A plurality of longitudinal wave reflection waves resulting from the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid are sequentially generated from the generated ultrasonic wave. later, Or those plural Longitudinal wave reflected wave The last one At the same time, a transverse wave reflected from the boundary between the delay material and the specimen of the ultrasonic wave results, Of the plurality of longitudinal reflected waves The depth of the ultrasonic wave within a predetermined measurement range from the surface of the specimen between the longitudinal reflected wave immediately before or simultaneously with the return of the transverse reflected wave and the longitudinal reflected wave immediately before. To dimensions that result in longitudinal wave reflection from the boundary of , The height of the acoustic lens and the height of the delay material are set.
[0006]
In such an ultrasonic sensor, the ultrasonic wave generated from the ultrasonic vibrator, Among a plurality of longitudinal reflected waves that result sequentially from the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid, From the boundary between the delay material and the specimen, one time before or at the same time as the return of the transverse reflected wave whose propagation speed is slower than the longitudinal wave Longitudinal reflected wave And one more before that Longitudinal reflected wave and Since the height of the acoustic lens and the delay material is set so that the longitudinal wave reflected from the boundary of the depth within the predetermined measurement range from the surface of the test object is reduced during Longitudinal wave reflected waves from the boundary of the depth within the predetermined measurement range from the surface of the specimen are sequentially reduced from the boundary between the delay material and the specimen and from the boundary between the delay material and the coupling liquid. It is detected without overlapping the longitudinal wave reflected wave and the transverse wave reflected wave from the boundary between the delay material and the specimen.
[0007]
Therefore, according to this ultrasonic sensor, it is possible to clearly detect even a weak scattered wave from the boundary of a depth within a predetermined measurement range from the surface of the specimen, and to perform a highly accurate detection with a good S / N ratio. Can do.
[0008]
On the other hand, the contact-type ultrasonic sensor with a delay material according to the second aspect of the present invention defines an acoustic lens with a coupling liquid in contact with an ultrasonic transducer, and contacts the test piece with ultrasonic waves applied to the test piece. In a contact-type ultrasonic sensor with a delay material, which includes a delay material that performs incidence of light and reception of a reflected wave from the specimen, the delay material of the ultrasonic wave generated from the ultrasonic transducer, and the specimen Between the delay material and the specimen between the delay material and the specimen, between a plurality of longitudinal reflected waves that result sequentially from the boundary between the delay material and the boundary between the delay material and the coupling liquid. As the shear wave reflected from the boundary, Of the plurality of longitudinal reflected waves Longitudinal reflection of the ultrasonic wave from the boundary of the depth within a predetermined measurement range from the surface of the specimen between the longitudinal reflected wave and the transverse reflected wave immediately before the return of the transverse reflected wave To the dimensions that the wave will return to , The height of the acoustic lens and the height of the delay material are set.
[0009]
In such an ultrasonic sensor, the ultrasonic wave generated from the ultrasonic transducer is sequentially reduced from the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid. plural A transverse reflected wave whose propagation speed is slower than the longitudinal wave from the boundary between the delay material and the specimen, resulting in the longitudinal reflected wave, Among the plurality of longitudinal reflected waves, One of the consequences of the reflected waves previous The height of the acoustic lens and the delay material is set so that the longitudinal wave reflected from the boundary of the depth within the predetermined measurement range from the surface of the specimen is returned to the longitudinal reflected wave. Therefore, the longitudinal wave reflected from the boundary of the depth within the predetermined measurement range from the surface of the specimen is caused by the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid. In this way, the longitudinal wave reflected wave resulting from the above and the transverse wave reflected wave from the boundary between the delay material and the specimen are detected without overlapping.
[0010]
Therefore, according to this ultrasonic sensor, it is possible to clearly detect even a weak scattered wave from the boundary of a depth within a predetermined measurement range from the surface of the specimen, and to perform a highly accurate detection with a good S / N ratio. Can do.
[0011]
The contact-type ultrasonic sensor with a delay material according to claim 1 or 2 further includes the ultrasonic transducer, the acoustic lens, and the ultrasonic transducer. The central axes are A holder that holds the delay material having an angle; and a holder rotation mechanism that rotates the holder around a predetermined axis, and radiates an ultrasonic beam in a direction inclined with respect to the predetermined axis. It is what.
[0012]
In a contact-type ultrasonic sensor with a delay material, an acoustic lens is defined by an ultrasonic transducer and a delay material. Therefore, in general, due to an arrangement error between the ultrasonic transducer and the delay material, their central axes are aligned with each other. The ultrasonic waves are radiated in a slightly inclined direction with respect to the center axis of the delay material. In view of this point, in the ultrasonic sensor of the present invention, the holder rotating mechanism rotates the holder holding the ultrasonic transducer, the acoustic lens, and the delay material around a predetermined axis.
[0013]
Therefore, according to the ultrasonic sensor of the present invention, by arranging the ultrasonic sensor in the direction in which the rotation axis intersects the surface of the specimen, the circumference of the point on the specimen intersecting with the rotation axis is made annular. It is possible to scan with ultrasonic waves, and thereby it is possible to detect a change in the depth of the boundary within a certain range around the rotation axis.
[0014]
A contact ultrasonic sensor with a delay material according to a third aspect of the present invention is the contact ultrasonic sensor with a delay material according to the first or second aspect, wherein the predetermined generation position on the vibration surface of the ultrasonic vibrator is used. The distance between the return position where the ultrasonic wave generated from the reflected object returns from the predetermined focal position in the specimen and the center position of the vibration surface is symmetrical with the generated position. The shape of the rotating body of the acoustic lens is set to a shape in which a value obtained and accumulated while moving from the center point of the vibration surface to the outer peripheral end is minimized.
[0015]
In general, in an ultrasonic transducer, it is said that the reflected wave can be detected most efficiently when the ultrasonic generation position and the return position are point-symmetric with respect to the center of the vibration surface. In the acoustic wave sensor, the radius of the spherical surface of the acoustic lens was set so that the ultrasonic wave generated from one outer peripheral end of the vibration surface was reflected at the focal position in the specimen and returned to the outer peripheral end on the opposite side. In the setting, the reflected wave could not be detected efficiently for the entire vibration surface. On the other hand, according to the ultrasonic sensor of the present invention described above, the shape of the rotating body of the acoustic lens is set to a shape in which the symmetry error between the ultrasonic wave generation position and the return position is minimized on the entire vibration surface of the ultrasonic transducer. Therefore, the reflected wave from the focal position can be detected most efficiently on the vibration surface.
[0016]
Therefore, according to this ultrasonic sensor, it is possible to clearly detect scattered waves from the boundary in the vicinity of the focal position in the specimen without increasing the amplification degree of the sensor output. High-precision detection with a good / N ratio can be performed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a contact-type ultrasonic sensor with a delay material according to the present invention. The ultrasonic sensor of this embodiment includes a disk-shaped normal ultrasonic transducer 1, Inverted truncated conical normal delay material 3 that contacts the surface of the specimen 2 at the front end surface (the lower end surface in the figure), and the ultrasonic transducer 1 and the delay material 3 are inserted between these A spacer 4 that sets the interval between the ultrasonic transducer 1 and the delay material 3 and a space between the ultrasonic transducer 1 and the delay material 3 are filled and contact the ultrasonic transducer 1 and the delay material 3. An acoustic lens 5 made of a coupling liquid, and the delay member 3 here has a concave spherical rear end surface (upper end surface in the drawing) 3a, and the acoustic lens 5 has a convex spherical surface with a radius of curvature R. It is defined.
[0018]
In the ultrasonic sensor of this embodiment, as indicated by an arrow A in FIG. 1, the ultrasonic wave generated from, for example, the point P1 on the vibration surface 1a of the ultrasonic vibrator 1 is refracted by the acoustic lens 5. For example, a remelt-strengthened layer of a cast part and normal crystal grains in the back of the specimen 2 enter the specimen 2 from the surface of the specimen 2 and enter the specimen 2 at a depth FP from the surface of the specimen 2. Boundaries such as boundaries with parts 2a Is reflected as a scattered wave, passes through the delay material 3 again, and is refracted by the acoustic lens 5, resulting in, for example, a point P 2 on the vibration surface 1 a and detected by the ultrasonic transducer 1.
[0019]
By the way, the radius of curvature R of the acoustic lens 5 is reflected at a predetermined focal position set in the specimen 2 by the ultrasonic wave generated from one outer peripheral end of the vibration surface 1a in the conventional contact ultrasonic sensor with a delay material. Thus, it was set so as to result in the outer peripheral end opposite to the vibrating surface 1a (point-symmetric with respect to the center point O of the vibrating surface 1a) (in other words, the focal position with reference to the outer peripheral end of the vibrating surface 1a) However, in this setting, as shown in FIG. 1, when the ultrasonic wave generated at a position inside the outer peripheral edge of the vibration surface 1a is reflected at the focal position, the point is related to the center point O of the vibration surface 1a. Since it does not result in a symmetric position, even if the radius of curvature R is set so that the focal position is near the boundary to be measured, the reflected wave cannot be efficiently detected for the entire vibration surface 1a.
[0020]
Therefore, in the ultrasonic sensor of the above-described embodiment, the radius of curvature R of the acoustic lens 5 is symmetrical between the ultrasonic generation position and the return position of the entire vibration surface 1a of the ultrasonic vibrator 1 as follows. The shape with the least error is set. That is, in this embodiment, since the surface of the acoustic lens 5 on the specimen side is a spherical surface having a radius of curvature R, the radius of the ultrasonic transducer 1 with the y-axis as the central axis is schematically shown in FIG. r, the radius of a certain ultrasonic wave generation point is r0, the y coordinate of the central point of the spherical surface of the acoustic lens 5 is -R, the incident angle of the ultrasonic wave to the spherical surface of the acoustic lens 5 is θ1, and The exit angle is θ2, the incident angle to the specimen is θ3, the acoustic lens 5 is height S, the delay material 3 is height H, the focal position depth in the specimen 2 is FP, When the acoustic velocity of the longitudinal wave of the acoustic wave is VLC, the acoustic velocity in the delay member 3 is VLD, the acoustic velocity in the specimen 2 is VLM, and C is a coefficient, the ultrasonic path is symmetric with respect to the y-axis. In this case, the following relational expression [Equation 1] holds. However, (2) and (3) are based on Snell's law.
[0021]
[Expression 1]
Figure 0004046926
[0022]
In the above relational expression, the height S, H, the sound speeds VLC, VLD, VLM, and the radius r are basically constants. Accordingly, when the desired focal position depth FP is set, the radius r0 that establishes symmetry with respect to the curvature radius R is determined, and the coefficient C is determined therefrom. Here, when the radius ra of the ultrasonic wave generation point is changed from the above r0, since the acoustic lens 5 is a spherical surface, the reflected wave reflected at the boundary of the depth FP is the ultrasonic wave on the vibration surface 1a with respect to the y axis. It does not return to the point of symmetry with respect to the generation point, but is shifted from the point of symmetry. This positional deviation amount is obtained while changing the position of the ultrasonic wave generation point from ra = 0 to ra = r, an integral value (integrated value) of the positional deviation amount is obtained, and this integral value is obtained as the curvature radius R. As a result, the radius r0 at which the symmetry is established is examined while being changed, and the radius r0 at which the symmetry is obtained when the integral value is minimum, that is, when the displacement amount is the smallest for the entire vibration surface 1a is obtained. The optimum value of the coefficient C is obtained from r0.
[0023]
The optimum value of the coefficient C varies depending on the depth FP of the focal position, but is 0.65 ≦ C ≦ 0.85 in the range of the normal measurement depth with the ultrasonic sensor, and is calculated from this C value range by back calculation. The radius of curvature R of the acoustic lens is as follows: sound velocity VLC in the acoustic lens 5 (coupling liquid) = 1516 m / sec, sound velocity VLD in the delay material 3 (synthetic resin) = 2330 m / sec, specimen 2 (remelted aluminum alloy casting) In the case of the sound velocity VLM = 6544 m / sec in the enhancement layer), the results are as shown in FIGS. Here, FIGS. 3 to 5 show the case where the depth FP of the focal position is adjusted to the maximum depth of the measurable range, and FIGS. 6 and 7 show the half of the measurable range. This is the case where the depth FP of the focal position is matched.
[0024]
FIG. 8 exemplifies the relationship between the change in the integrated value of the positional deviation amount and the intensity of the first reflected wave of the ultrasonic wave when the radius r0 at which symmetry is established is changed. The reflected wave intensity is maximum when the integrated value is minimum. FIGS. 9A and 9B show the reflected wave WS from the surface of the specimen and the scattered wave WB from the boundary of the specimen detected by the conventional ultrasonic sensor and the ultrasonic sensor of the above embodiment, respectively. As shown, the scattered wave WB is clearly detected in the ultrasonic sensor of the above embodiment as shown in the figure.
[0025]
Therefore, according to the ultrasonic sensor of this embodiment in which the radius of curvature R of the spherical surface of the acoustic lens 5 is set as described above, the reflected wave from the focal position can be detected most efficiently by the vibration surface 1a. Since the scattered wave from the boundary 2a near the focal position in the specimen 2 can be clearly detected without increasing the amplification of the sensor output, the depth of the boundary 2a in the specimen 2 is High-precision detection with a good S / N ratio can be performed.
[0026]
In the above embodiment, the acoustic lens 5 has a spherical surface. However, when the acoustic lens 5 has a spheroidal surface, the integrated value of the amount of positional deviation from the symmetry point is minimized in the same manner. By obtaining the case, it is possible to obtain shape parameters such as the major axis and minor axis of the spheroid that can most efficiently detect the reflected wave from the focal position on the vibration surface.
[0027]
FIG. 10 is an explanatory view schematically showing the propagation state of ultrasonic waves in the ultrasonic sensor of the above embodiment, and the surface of the acoustic lens 5 is drawn flat for convenience of explanation. In the ultrasonic path, a solid line indicates a longitudinal wave and a broken line indicates a transverse wave. As shown in the figure, when the ultrasonic wave generated at the point P1 on the vibration surface 1a of the ultrasonic vibrator 1 is reflected at a point R1 on the boundary between the acoustic lens 5 and the delay material 3, it vibrates as a longitudinal wave reflected wave LW1. This results in a point P2 on the surface 1a, and the longitudinal wave reflected wave LW1 is then reflected repeatedly on both surfaces of the acoustic lens 5, that is, on the vibration surface 1a and points R2 and R3 on the delay material 3. The waves LW2 and LW3 are sequentially reduced to points P3 and P4 on the vibration surface 1a. Further, when the above ultrasonic wave is reflected at the point R4 on the boundary between the delay material 3 and the surface of the specimen 2, it returns to the point P2 as the longitudinal wave reflected wave LW4, and further within the required measurement depth range D in the specimen 2. When reflected at a point R5 on the boundary 2a located at, a longitudinal wave reflected wave LW5 results in a point P2 after the longitudinal wave reflected wave LW4. Furthermore, the ultrasonic wave becomes a transverse wave reflected wave TW due to a large incident angle when reflected at a point R4 on the boundary between the delay member 3 and the surface of the specimen 2, and the transverse wave reflected wave TW is also the vibration surface 1a. Top point P5 To return to.
[0028]
By the way, in the conventional contact-type ultrasonic sensor with a delay material, the return timing of the longitudinal wave reflected waves LW1 to LW5 and the transverse wave reflected wave TW is not adjusted, so that it corresponds to the depth of the boundary 2a to be detected. Then, other reflected waves are also returned in the vicinity of the timing when the longitudinal reflected wave LW5 from the boundary 2a is returned, and it is difficult for the longitudinal reflected wave LW5 to be detected to be distinguished from other reflected waves. It was difficult to detect the longitudinal reflected wave LW5 clearly because it overlapped with the wave.
[0029]
Therefore, in the ultrasonic sensor of this embodiment, the above problem is solved by setting the height S of the acoustic lens 5 and the height H of the delay member 3 by one of the following two methods. . First, as shown in FIG. 11, the first method is an N + 1-th longitudinal wave reflected wave (longitudinal wave repeated reflected wave) repeatedly reflected in the acoustic lens 5, that is, in the illustrated example. After the third longitudinal wave reflected wave LW3 or at the same time, the transverse wave reflected wave TW is reduced so that the N + 1th longitudinal wave repetitive reflection is the longitudinal wave reflected immediately before or simultaneously with the transverse wave reflected wave TW. The time between the return of the wave LW3 and the return of the longitudinal reflected wave LW4 from the surface of the specimen 2 before that is defined as a measurement area SA for measuring a desired measurement depth range, and the measurement area The longitudinal wave reflected wave LW5 from the boundary 2a located in the required measurement depth range D in the specimen 2 is returned to the SA.
[0030]
In this way, in order to set the measurement area SA in relation to the necessary measurement depth range D, the height S of the acoustic lens 5 and the height H of the delay material 3 are obtained from the following relational expression [Equation 2]. . Here, the velocity of longitudinal ultrasonic waves in the acoustic lens 5 is VLC, the velocity of longitudinal ultrasonic waves in the delay member 3 is VLD, the velocity of transverse ultrasonic waves in the delay member 3 is VSD, and the longitudinal velocity in the specimen 2 is vertical. The sound velocity of the ultrasonic wave is VLM, and as shown in FIG. 11, the time difference A between the longitudinal reflected wave LW4 and the longitudinal repeated wave from the surface of the specimen 2 is repeated longitudinally so that they do not overlap. It is determined in consideration of the decay time of the reflected wave.
[0031]
[Expression 2]
Figure 0004046926
[0032]
Note that when N = 1, S becomes too large, and when N = 4 or more, H becomes too large. Therefore, N is preferably 2 or 3, and N = 2 as in the example of FIG. Most reasonable. FIG. 12 shows the relationship between the required measurement depth range D and the height dimensions H and S obtained by the above method.
[0033]
13 (a) and 13 (b) show the longitudinal wave repetitive reflected waves RW1 (first), RW2 (second) detected by the conventional ultrasonic sensor and the ultrasonic sensor of the above embodiment, and the surface of the specimen. 14 shows the longitudinal wave reflected wave LW and the transverse wave reflected wave TW from the surface of the specimen, and FIGS. 14 (a) and 14 (b) expand the time axis of FIGS. 13 (a) and 13 (b). As shown in the figure, the conventional ultrasonic sensor has a considerable amount of noise in the measurement area SA, but the ultrasonic sensor of the above embodiment has almost no noise in the measurement area SA.
[0034]
As shown in FIG. 15, the second method is the (N + 1) th longitudinal wave reflected wave (longitudinal wave repeated reflected wave) repeatedly reflected in the acoustic lens 5, that is, the third wave in the illustrated example. The longitudinal wave reflected wave TW returns immediately before the longitudinal wave reflected wave LW3, and the transverse wave reflected wave TW returns, and the longitudinal wave reflected from the surface of the specimen 2 which is the preceding longitudinal wave reflected wave. The time between the return of the wave LW4 is defined as a measurement area SA for measuring a desired measurement depth range, and the boundary 2a located within the required measurement depth range D in the specimen 2 within the measurement area SA. The longitudinal wave reflected wave LW5 from is returned.
[0035]
In this way, in order to set the measurement area SA in relation to the necessary measurement depth range D, the height S of the acoustic lens 5 and the height H of the delay member 3 are obtained from the following relational expression [Equation 3]. . Here, the sound velocities VLC, VLD, VSD, and VLM are the same as in the previous method.
[0036]
[Equation 3]
Figure 0004046926
[0037]
In this case, too, when N = 1, S becomes too large, and when N = 4 or more, H becomes too large. Therefore, N is preferably 2 or 3, and N = 2 as in the example of FIG. It is most reasonable to do this.
[0038]
Even when the height S of the acoustic lens 5 and the height H of the delay member 3 are obtained by the second method, as in the case of the first method, the ultrasonic sensor of the above embodiment is used to measure the measurement area SA. Can eliminate noise.
[0039]
FIGS. 16A and 16B are explanatory views schematically showing an application example of the contact-type ultrasonic sensor with a delay material of the above-described embodiment, in which the ultrasonic sensor of the above-described embodiment is an ultrasonic vibration. A motor-driven holder that includes a holder 6 that holds the child 1, the acoustic lens 5, and the delay member 3, and that rotates the holder 6 around a predetermined axis TA that substantially coincides with the central axis of the delay member 3. A rotation mechanism 7 is provided.
[0040]
In the contact-type ultrasonic sensor with a delay material of the above embodiment, since the acoustic lens 5 is defined by the ultrasonic transducer 1 and the delay material 3, an arrangement error between the ultrasonic transducer 1 and the delay material 3 is present. Accordingly, the central axes do not coincide with each other and have a slight angle. Therefore, as shown in FIG. 16 (a), the central axis of the delay member 3 and the rotation axis TA are slightly inclined. The An ultrasonic beam SB is emitted in the direction.
[0041]
Therefore, according to the ultrasonic sensor of the above application example, as shown in FIG. 16 (b), the holder rotation mechanism is arranged by arranging the ultrasonic sensor so that the rotation axis TA is substantially perpendicular to the surface of the specimen 2. 7, by rotating the holder 6, it is possible to scan the circumference of the point on the specimen 2 intersecting with the rotation axis TA with the ultrasonic beam SB in an annular manner, and thereby center the rotation axis TA. It is possible to detect the change in the depth of the boundary 2a within a certain range and, for example, the minimum thickness of the remelt reinforcing layer within the range.
[0042]
Although the present invention has been described based on the illustrated examples, the present invention is not limited to the above-described examples. For example, the material of the specimen and the delay material can be changed as necessary, and the ultrasonic sensor The purpose of use can be used not only for boundary detection but also for flaw detection.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing an embodiment of a contact-type ultrasonic sensor with a delay material according to the present invention.
FIG. 2 is an explanatory diagram showing an ultrasonic propagation path in the ultrasonic sensor of the embodiment.
FIG. 3 is a relationship diagram showing the radius of curvature of the acoustic lens in the ultrasonic sensor of the above embodiment when the focal position is the maximum depth of the measurable range for a predetermined measurable range.
FIG. 4 is a relationship diagram showing the radius of curvature of the acoustic lens in the ultrasonic sensor of the above embodiment when the focal position is the maximum depth of the measurable range for another predetermined measurable range.
FIG. 5 is a relationship diagram showing the radius of curvature of the acoustic lens in the ultrasonic sensor of the embodiment when the focal position is the maximum depth of the measurable range for another predetermined measurable range.
FIG. 6 is a relationship diagram illustrating the radius of curvature of the acoustic lens in the ultrasonic sensor according to the embodiment when the focal position is ½ of the maximum depth of the measurable range with respect to a predetermined measurable range.
FIG. 7 is a relationship diagram showing the radius of curvature of the acoustic lens in the ultrasonic sensor of the embodiment when the focal position is ½ of the maximum depth of the measurable range for another predetermined measurable range. .
FIG. 8 is a relationship diagram showing the relationship between the ultrasonic launch point radius and the reflected wave intensity at which symmetry is established in the ultrasonic sensor of the above embodiment.
FIGS. 9A and 9B show the reflected wave from the surface of the specimen and the scattered wave from the boundary of the specimen respectively detected by the conventional ultrasonic sensor and the ultrasonic sensor of the above embodiment. FIG.
FIG. 10 is an explanatory diagram schematically showing an ultrasonic wave propagation state in the ultrasonic sensor of the embodiment.
FIG. 11 is an explanatory diagram showing a first method for setting the height of the acoustic lens and the height of the delay material in the ultrasonic sensor of the embodiment.
FIG. 12 is a relationship diagram showing the height of the acoustic lens and the height of the delay material set by the first method in relation to the required measurement depth range.
FIGS. 13A and 13B are a longitudinal wave repetitive reflected wave detected by a conventional ultrasonic sensor and the ultrasonic sensor of the above embodiment, a longitudinal wave reflected wave from the specimen surface, and a specimen surface, respectively. It is explanatory drawing which shows these transverse wave reflected waves.
FIGS. 14A and 14B are explanatory diagrams showing FIGS. 13A and 13B with the time axis enlarged. FIG.
FIG. 15 is an explanatory diagram showing a second method for setting the height of the acoustic lens and the height of the delay material in the ultrasonic sensor of the embodiment.
FIGS. 16A and 16B are explanatory views schematically showing an application example of the contact-type ultrasonic sensor with a delay material of the embodiment.
[Explanation of symbols]
1 Ultrasonic transducer
2 Specimen
2a boundary
3 Delay material
4 Spacer
5 Acoustic lens
6 Holder
7 Holder rotation mechanism
SB ultrasonic beam
D Required measurement depth range
FP depth of focus position
H Delay material height
R Radius of curvature of acoustic lens
S Height of acoustic lens

Claims (3)

超音波振動子(1)と接するカップリング液で音響レンズ(5)を画成するとともに供試体(2)に接触してその供試体への超音波の入射とその供試体からの反射波の受け入れとを行うディレイ材(3)を具えるディレイ材付き接触型超音波センサにおいて、
前記超音波振動子から発生した超音波の、前記ディレイ材と前記供試体との間の境界および前記ディレイ材と前記カップリング液との間の境界からの逐次に帰着する複数の縦波反射波(LW1,LW2,LW4,LW3)後に、またはそれら複数の縦波反射波のうち最後のもの(LW3)と同時に、前記超音波の、前記ディレイ材と前記供試体との間の境界からの横波反射波(TW)が帰着するとともに、前記複数の縦波反射波のうちその横波反射波(TW)の帰着の一つ前または同時の縦波反射波(LW3)とさらに一つ前の縦波反射波(LW4)との間に、前記超音波の、前記供試体の表面から所定測定範囲内の深さの境界からの縦波反射波(LW5)が帰着する寸法に、前記音響レンズの高さ(S)および前記ディレイ材の高さ(H)が設定されており、
前記超音波振動子(1)と前記音響レンズ(5)とその超音波振動子に対し中心軸線同士が角度を持つ前記ディレイ材(3)とを保持するホルダ(6)と、
前記ホルダ(6)を所定軸線(TA)周りに回動させるホルダ回動機構(7)と、を具え、
前記所定軸線に対し傾斜した向きに超音波ビーム(SB)を放射することを特徴とする、ディレイ材付き接触型超音波センサ。
The acoustic lens (5) is defined by a coupling liquid in contact with the ultrasonic transducer (1), and the ultrasonic wave is incident on the specimen (2) and reflected waves from the specimen. In the contact type ultrasonic sensor with a delay material comprising the delay material (3) for receiving,
A plurality of longitudinal wave reflected waves of the ultrasonic wave generated from the ultrasonic transducer are sequentially reduced from the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid. After (LW1, LW2, LW4, LW3) or at the same time as the last of the longitudinal reflected waves (LW3) , the ultrasonic wave from the boundary between the delay material and the specimen A transverse wave reflected wave (TW) is reduced, and the longitudinal wave reflected wave (LW3) immediately before the return of the transverse wave reflected wave (TW) among the plurality of longitudinal wave reflected waves (TW) and a longitudinal wave immediately before it are returned. between the waves reflected wave (LW4), the ultrasonic, the dimensions of the longitudinal wave reflected wave (LW5) is results from the depth of the boundary within the predetermined measuring range from the surface of the specimen, the acoustic lens Height (S) and height of the delay material (H There has been set,
A holder (6) for holding the ultrasonic transducer (1), the acoustic lens (5), and the delay material (3) whose central axes are angled with respect to the ultrasonic transducer;
A holder rotation mechanism (7) for rotating the holder (6) about a predetermined axis (TA),
A contact-type ultrasonic sensor with a delay material, which emits an ultrasonic beam (SB) in a direction inclined with respect to the predetermined axis.
超音波振動子(1)と接するカップリング液で音響レンズ(5)を画成するとともに供試体(2)に接触してその供試体への超音波の入射とその供試体からの反射波の受け入れとを行うディレイ材(3)を具えるディレイ材付き接触型超音波センサにおいて、
前記超音波振動子から発生した超音波の、前記ディレイ材と前記供試体との間の境界および前記ディレイ材と前記カップリング液との間の境界からの逐次に帰着する複数の縦波反射波(LW4,LW3)の間に、前記超音波の、前記ディレイ材と前記供試体との間の境界からの横波反射波(TW)が帰着するとともに、前記複数の縦波反射波のうちその横波反射波(TW)の帰着の一つ前の縦波反射波(LW4)とその横波反射波(TW)との間に、前記超音波の、前記供試体の表面から所定測定範囲内の深さの境界からの縦波反射波(LW5)が帰着する寸法に、前記音響レンズの高さ(S)および前記ディレイ材の高さ(H)が設定されており、
前記超音波振動子(1)と前記音響レンズ(5)とその超音波振動子に対し中心軸線同士が角度を持つ前記ディレイ材(3)とを保持するホルダ(6)と、
前記ホルダ(6)を所定軸線(TA)周りに回動させるホルダ回動機構(7)と、を具え、
前記所定軸線に対し傾斜した向きに超音波ビーム(SB)を放射することを特徴とする、ディレイ材付き接触型超音波センサ。
The acoustic lens (5) is defined by a coupling liquid in contact with the ultrasonic transducer (1), and the ultrasonic wave is incident on the specimen (2) and reflected waves from the specimen. In the contact type ultrasonic sensor with a delay material comprising the delay material (3) for receiving,
A plurality of longitudinal wave reflected waves of the ultrasonic wave generated from the ultrasonic transducer are sequentially reduced from the boundary between the delay material and the specimen and the boundary between the delay material and the coupling liquid. During (LW4, LW3) , a transverse wave (TW) of the ultrasonic wave from the boundary between the delay material and the specimen is reduced, and the transverse wave of the plurality of longitudinal wave reflected waves is obtained. during the previous longitudinal wave reflected waves return of the reflected wave (TW) and (LW4) and its transverse reflected wave (TW), said ultrasonic depth within a predetermined measuring range of the surface of the specimen of the dimensions of the longitudinal wave reflected wave (LW5) is results from the boundary, the are set height of the acoustic lens (S) and the height of the delay member (H) is,
A holder (6) for holding the ultrasonic transducer (1), the acoustic lens (5), and the delay material (3) whose central axes are angled with respect to the ultrasonic transducer;
A holder rotation mechanism (7) for rotating the holder (6) about a predetermined axis (TA),
A contact-type ultrasonic sensor with a delay material, which emits an ultrasonic beam (SB) in a direction inclined with respect to the predetermined axis.
前記超音波振動子の振動面上の所定発生位置から発生した超音波が前記供試体内の所定焦点位置で反射して戻る帰着位置と、前記振動面の中心点に関し前記発生位置と対称の位置との間の距離を、前記所定発生位置を前記振動面の中心点から外周端まで移動させながら求めて積算した値が最小となる形状に、前記音響レンズの回転体形状(R)が設定されていることを特徴とする、請求項1または2記載のディレイ材付き接触型超音波センサ。  A return position where the ultrasonic wave generated from a predetermined generation position on the vibration surface of the ultrasonic transducer is reflected at a predetermined focal position in the specimen and a position symmetrical to the generation position with respect to the center point of the vibration surface The shape of the rotating body (R) of the acoustic lens is set to a shape that minimizes a value obtained by integrating the distance between the predetermined generation position while moving the predetermined generation position from the center point of the vibration surface to the outer peripheral end. The contact-type ultrasonic sensor with a delay material according to claim 1, wherein the contact-type ultrasonic sensor has a delay material.
JP2000106776A 2000-04-07 2000-04-07 Contact ultrasonic sensor with delay material Expired - Fee Related JP4046926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106776A JP4046926B2 (en) 2000-04-07 2000-04-07 Contact ultrasonic sensor with delay material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106776A JP4046926B2 (en) 2000-04-07 2000-04-07 Contact ultrasonic sensor with delay material

Publications (2)

Publication Number Publication Date
JP2001289625A JP2001289625A (en) 2001-10-19
JP4046926B2 true JP4046926B2 (en) 2008-02-13

Family

ID=18619890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106776A Expired - Fee Related JP4046926B2 (en) 2000-04-07 2000-04-07 Contact ultrasonic sensor with delay material

Country Status (1)

Country Link
JP (1) JP4046926B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113686967B (en) * 2021-09-03 2024-02-27 中国电建集团华东勘测设计研究院有限公司 Method for reducing influence of boundary reflection effect on stress wave propagation test data

Also Published As

Publication number Publication date
JP2001289625A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
US5094108A (en) Ultrasonic contact transducer for point-focussing surface waves
JP4046926B2 (en) Contact ultrasonic sensor with delay material
JPH10227775A (en) Electronic scan type probe for angle beam method
JP2000146921A (en) Method and device for ultrasonic crack detection
JPH08261997A (en) Surface wave probe
JP2008216125A (en) Ultrasonic probe
US4787126A (en) Method of fabricating dark field coaxial ultrasonic transducer
JP3726067B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP3761292B2 (en) Ultrasonic measurement method of welded part with wheel assembly
JPH07229798A (en) Residual stress measuring method and its device
JP2778510B2 (en) Ultrasonic thickness measurement sensor
JPH08313496A (en) Ultrasonic probe
JP3121430B2 (en) Ultrasonic flaw detection method and ultrasonic probe
JPS63186143A (en) Ultrasonic wave probe
JP2912639B2 (en) Ultrasonic angle beam probe
JP2667684B2 (en) Focus transducer
JP2758654B2 (en) Ultrasonic surface roughness measurement method for solids
JP3261827B2 (en) Ultrasound spectrum microscope
SU1201752A1 (en) Ultrasound transducer
JPH11241960A (en) Bolt
JPH0375557A (en) Ultrasonic probe
JP2630393B2 (en) Ultrasonic flaw detector
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
JP3606146B2 (en) Ultrasonic flaw detection method and apparatus
Every et al. Angular spectrum method and ray algorithm for the acoustic field of a focusing transducer in an anisotropic solid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050704

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050826

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071121

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees