JP4045887B2 - Manufacturing method of fluorescent lamp - Google Patents

Manufacturing method of fluorescent lamp Download PDF

Info

Publication number
JP4045887B2
JP4045887B2 JP2002219356A JP2002219356A JP4045887B2 JP 4045887 B2 JP4045887 B2 JP 4045887B2 JP 2002219356 A JP2002219356 A JP 2002219356A JP 2002219356 A JP2002219356 A JP 2002219356A JP 4045887 B2 JP4045887 B2 JP 4045887B2
Authority
JP
Japan
Prior art keywords
glass
glass tube
bridge
fluorescent lamp
blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002219356A
Other languages
Japanese (ja)
Other versions
JP2004063244A (en
Inventor
正廣 武内
治行 有吉
和廣 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002219356A priority Critical patent/JP4045887B2/en
Publication of JP2004063244A publication Critical patent/JP2004063244A/en
Application granted granted Critical
Publication of JP4045887B2 publication Critical patent/JP4045887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光ランプの製造方法に関する。
【0002】
【従来の技術】
従来、隣り合うガラス管をブリッジ連結して1つの発光管を形成した蛍光ランプの製造方法として、例えば隣接するガラス管の連結予定部を外側からバーナーで加熱し軟化させ、ガラス管内に導入された気体によってこの軟化した部分を吹き破りカラーを形成して、このカラーを他方のガラス管に形成されたカラーと互いに融着する方法が知られている(特開昭55−133730号公報)。
【0003】
【発明が解決しようとする課題】
このような従来のブリッジ連結手段は生産性も良好で一般的に多く採用されているが、ブリッジ連結部の強度が不充分な面があることがわかった。すなわち、ブリッジ連結された部分の強度が不充分である蛍光ランプについて検討した結果、ブリッジ連結部を形成する際に、糸状またはフィルム状あるいは風船状をした多くの微細な浮遊状ガラス綿が発生しブリッジ連結部に存在していることがわかり、このような不純物が存在することによってブリッジ連結部の強度が低下してしまうことがわかった。また、ガラス管の吹き破りがなされる前の段階で風船状にガラスが膨らむ現象が生じ、この現象が生じたガラス管を融着して形成された蛍光ランプはブリッジ連結部に肉薄部や吹き破りされないまま溶着され電極間で放電路を形成しないもの等が形成されることがわかった。そして、このような肉薄部が存在するためブリッジ連結部の強度が低下してしまうことがわかった。また、このような浮遊状ガラス綿や肉薄部が存在するものや吹き破られないまま融着されたものは肉眼では確認できないため完成後試験等によって発見されることが多く、製造する上でロスとなっていた。
【0004】
本発明はこのような問題を解決するためになされたものであり、浮遊状ガラス綿の発生等を防止し、ブリッジ連結部の強度を向上することのできる蛍光ランプの製造方法を得ることを目的とするものである。
【0005】
【課題を解決するための手段】
本発明の蛍光ランプの製造方法は、複数のガラス管をブリッジ連結して1つの発光管を形成する蛍光ランプの製造方法であって、前記ガラス管のブリッジ連結予定部を加熱によって軟化させるとともに前記ガラス管内に不活性ガスの温風を流入して、軟化した前記ブリッジ連結予定部を前記ガラス管内部から加圧して吹き破って吹き破り部を形成し、この吹き破り部と、前記ガラス管と連結されるべき他方のガラス管に形成された吹き破り部とを互いに融着してブリッジ連結部を形成するものであり、前記ガラス管の肉厚が0.7〜1.3mmであり、かつ前記温風が60〜120℃の温度範囲にあり、かつ前記温風の流入圧力が0.2〜1.1kgf/cm の範囲である構成を有する。
【0006】
これにより、加熱軟化されたブリッジ連結予定部のガラス管内面と接触する不活性ガスが温かい雰囲気を有しているのでガラス表面での温度上の違和感を生じることなく平滑さを保ち、必要な寸度の径や長さの吹き破り部を形成し微細な浮遊状のガラス綿の発生を抑制する作用を発揮できる。特に温風が流れ続けることによって、ブリッジ連結部の形成後の除歪アニーリング作用を発揮するので微細な浮遊状のガラス綿の発生防止とともに歪残存によりクラックの発生防止作用を有する利点がある。
【0007】
【発明の実施の形態】
本発明の一実施形態である蛍光ランプの製造方法によって得られた蛍光ランプを図1に示す。
【0008】
図1に示す蛍光ランプは、一端部が閉塞され他端部に電極1を有するステム2が封着された2つのガラス管3,4がブリッジ連結部5で連結され一体化されている。ガラス管3と他方のガラス管4とはブリッジ連結部5によって内部空間が連結しており、これにより、電極1間において1つの放電路を形成している。ガラス管3,4内面には三波長域蛍光体3a,4a(図4参照)が被着されており、内部にはアルゴン等の封入ガスが封入されている。そして、図5に示すブリッジ連結部5の内面に被着あるいはブリッジ連結部5の部分にかみ込まれた浮遊物、例えば浮遊状ガラス綿11やフィルム状ガラス膜11aは存在しない構成を有している。
【0009】
本実施形態における蛍光ランプの製造方法は、まず、図2に示すように、内面に蛍光体(図示せず)が塗布され、一端部が閉塞されかつ他端部に開口部6を有するガラス管3におけるブリッジ連結予定部7を外側からガスバーナー8によって加熱軟化させるとともに、図3に示すように、ガラス管3内に窒素、アルゴン等の如き不活性ガスからなる60〜120℃の範囲の温風10を、約0.2〜1.1kgf/cm2の範囲の流入圧力で開口部6から流入し、加熱軟化したブリッジ連結予定部7のガラス管壁を加圧し吹き破って吹き破り部9を形成する。この吹き破り部9と、上述のとおり同様な方法で形成された他方のガラス管4の吹き破り部(図示せず)とを融着してブリッジ連結部5が形成され、ガラス管3とガラス管4とが一体化される(図1)。なお、ガラス管3の吹き破り部9と、ガラス管4との吹き破り部とを融着するためには吹き破り部がそれぞれ軟化している状態の時に吹き破り部同士を当接しあう必要があるため、これらガラス管3,4はそれぞれ近接した位置に配置されるとともに、吹き破り部9の形成はほぼ同時に形成されることが好ましく、吹き破り部9同士は吹き破られたのち、直ちに(融着可能な温度(状態)の時に)当接されることが好ましい。なお、ブリッジ連結予定部7を内側からガスバーナー8で加熱しても良い。また、ガスバーナー8以外にレーザー等で加熱軟化させても良い。レーザーを用いる場合は、加熱軟化させる部分(ブリッジ連結予定部7)に着色を施せば、着色部分のみ加熱軟化できるので、より精度良く吹き破り部9を形成できる。
【0010】
このように形成された蛍光ランプにおけるブリッジ連結部5は、図4に示すように、ガラスの残存歪も無く、肉厚も均等でかつ輸送時等における振動や衝撃に耐える厚みを有している。またブリッジ連結部3の内側付近に微細な浮遊状のガラス綿よりなるダスト物質の発生や存在もなく、ガラス内面のささくれ現象も確認されなかった。また、従来の技術において述べた方法ではガラス管の吹き破りがなされる前の段階で風船状にガラスが膨らむ現象が生じていたが、そのようなガラスが膨らむ現象も発生することがなく、このためブリッジ連結部に肉薄部は生じず、ブリッジ連結部の強度を向上することができる。
【0011】
以下、本発明の一実施形態である蛍光ランプの製造方法について説明する。
【0012】
内面に蛍光体を被着した管長約410mm、管外径20mm、ガラス肉厚1.2mmのソーダライムガラス管からなる片端閉塞の直管形ガラス管2本を、長さ17mm、外径6mm、肉厚1mmのブリッジ連結部にて一体化した36W形コンパクト形蛍光ランプ(FPL36)を製作した。
【0013】
まず、ガラス管3のブリッジ連結予定部7を外側からガスバーナー8により加熱軟化するとともに、ガラス管3の開口部6から窒素ガスを0.5kgf/cm2の流入圧力でガラス管3内に流入してその圧力でガラス管3の加熱軟化部分(ブリッジ連結予定部7)を吹き破り、ほぼ同時に形成された他方のガラス管4の吹き破り部と当接し、融着接合してブリッジ連結部5を形成した。
【0014】
ガラス管3内に流入される温風10である窒素ガスの温度を、(イ)20℃,(ロ)30℃,(ハ)50℃,(ニ)60℃,(ホ)100℃,(へ)120℃,(ト)130℃の各温度に各々設定して試作品として蛍光ランプを製作し、それぞれのブリッジ連結部の連結強度等を確認した。
【0015】
その結果、試作品(ニ)(ホ)(ヘ)においては、ブリッジ連結部の内面に微細凹凸、ささくれ現象および微細な浮遊状ガラス綿の発生は見られず、ガラス肉厚も1mm程度で均一でありブリッジ連結後のコンパクト形蛍光ランプFPL36形の製作工程や最終完成品ランプの点灯実験においてもクラック等のガラス破損は生じなかった。
【0016】
また、試作品(イ)(ロ)(ハ)においては、ガラス管の加熱軟化された部分の内面と接する窒素ガスとの温度差が大であるので、図5に示すようにガラス内壁面の細結晶化による微細浮遊状のガラス綿(ガラス粉)11の発生・付着が生じたり、ガラス肉厚のばらつきが大であったり、内面のささくれ現象や表面凹凸化等に起因する残存歪が生じたりして、ブリッジ連結部のクラックや折れ等が多く発生し実用に適さないことがわかった。
【0017】
また、試作品(ト)においては、ブリッジ連結部の形成は、試作品(ニ)(ホ)(ヘ)と同様に正常であったが、ブリッジ連結部の形成後の除歪アニーリングに際し高温窒素ガスの流入が続くので除歪の所要時間が温度徐下降により長くなるので生産性の面からも好ましくない結果となった。
【0018】
次に、窒素ガスの温度を60℃とし、ガラス管内への流入圧力を(A)0.1kgf/cm2としたもの、(B)0.2kgf/cm2としたもの、(C)1.1kgf/cm2としたもの、(D)1.2kgf/cm2としたもの、について試作品としてそれぞれブリッジ連結を試みたところ、試作品(B)(C)は正常なブリッジ連結部を形成し強度も正常であった。
【0019】
しかしながら、試作品(A)は流入窒素ガスの圧力が弱すぎてガラス管の加熱軟化部分の吹き破りが仲々進まず、さらには図6に示すように、ガラス肉厚が0.3mm以下の薄い膨れ風船状部12が形成され正常なブリッジ連結部は形成できなかった。また、試作品(D)は、窒素ガスのガラス管内への流入圧力が強すぎてブリッジ連結部付近の径やガラス肉厚にばらつきを生じて連結強度にもばらつきを生じ実用的でなかった。
【0020】
したがって、温風10の流入圧力を0.2〜1.1kgf/cm2の範囲とすることにより、ガラス管のブリッジ連結予定部における、加熱軟化から吹き破って開口するまでの時間を短縮し、ブリッジ連結部のガラス肉薄化を抑制し均一なガラス肉厚と残存歪の無いブリッジ連結部の形成ができるものである。つまり、加熱開始から吹き破りまでに要する時間を短くでき、このためガラス肉薄化および膨れ風船状の形態の生成を抑制することができる。
【0021】
なお、窒素ガスの温度を60〜120℃の範囲で、ガラス管内への温風の流入圧力を0.2〜1.1kgf/cm2の範囲として2回に分けて流入し、さらにガスの流入圧力を、最初は高目、次は低目に設定すれば、ガラスの吹き破り部形成、融着接合、ブリッジ連結部孔径の均一化等がスムーズに行われることもわかった。
【0022】
また、上記結果をふまえて、2本のガラス管をブリッジ連結したJIS規定の27Wおよび55W定格のコンパクト形蛍光ランプ、FPL27、FPL55等について同様に製作し、ブリッジ連結部について確認を行った。その結果、上記と同様にガラス管内に流入する窒素ガスを60〜120℃の範囲の温風とし、温風の流入圧力を0.2〜1.1kgf/cm2の範囲に設定して得られた試作品は、ブリッジ連結部のガラス内面異常や肉厚ばらつきや残存歪の発生等が全く発生せず、ブリッジ連結部の連結強度が低下する要因を排除することができた。
【0023】
しかしながら前記不活性ガスの温度範囲、流入圧範囲を満足しない場合には、ブリッジ連結部の内壁面における微細浮遊状ガラス綿、内面凹凸、内面ささくれ、ガラス肉厚不均一、ガラス肉の薄い風船状膨み等が発生して、残存歪によるクラックや折れがブリッジ連結部に発生し、実用に供することができなかった。
【0024】
また、本実施形態では、吹き破り部9を形成するガラス管3,4の肉厚として1.2mmのものを用いたが、0.7〜1.3mmのものにおいて、上記温度範囲の温風および流入圧力を満たしたものにおいても同様の効果が得られることが確認されている。
【0025】
【発明の効果】
以上のように、本発明は、ブリッジ連結部を備えたコンパクト形蛍光ランプのブリッジ連結部のガラス強度を高め安定した品質を得ることができる蛍光ランプの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態である蛍光ランプの製造方法によって得られた蛍光ランプを示す断面正面図
【図2】同じく蛍光ランプの製造方法を説明するための図
【図3】同じく蛍光ランプの製造方法を説明するための図
【図4】同じく蛍光ランプの製造方法により得られたブリッジ連結部の拡大断面正面図
【図5】不良と認められる蛍光ランプのブリッジ連結部を説明するための拡大断面正面図
【図6】不良と認められる蛍光ランプのブリッジ連結部を説明するための拡大断面正面図
【符号の説明】
3,4 ガラス管
5 ブリッジ連結部
6 開口部
7 ブリッジ連結予定部
9 吹き破り部
10 温風
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a fluorescent lamp.
[0002]
[Prior art]
Conventionally, as a method of manufacturing a fluorescent lamp in which adjacent glass tubes are bridge-connected to form one luminous tube, for example, a connection planned portion of adjacent glass tubes is heated by a burner from the outside and softened and introduced into the glass tube. A method is known in which a softened portion is blown off by gas to form a collar, and this collar is fused to the collar formed on the other glass tube (Japanese Patent Laid-Open No. 55-133730).
[0003]
[Problems to be solved by the invention]
Such conventional bridge connecting means have good productivity and are generally used in many cases, but it has been found that there is an insufficient strength of the bridge connecting portion. That is, as a result of studying a fluorescent lamp in which the strength of the bridge-connected portion is insufficient, many fine floating glass cottons in the form of threads, films, or balloons are generated when the bridge connection is formed. It was found that it was present in the bridge connecting portion, and it was found that the presence of such impurities would reduce the strength of the bridge connecting portion. In addition, a phenomenon occurs in which the glass swells in a balloon shape before the glass tube is blown through, and the fluorescent lamp formed by fusing the glass tube in which this phenomenon has occurred is thinned or blown at the bridge connecting portion. It has been found that, for example, those that are deposited without being broken and do not form a discharge path between the electrodes are formed. And since such a thin part exists, it turned out that the intensity | strength of a bridge | bridging connection part falls. In addition, such floating glass cotton or thin-walled parts or those fused without being blown through cannot be confirmed with the naked eye and are often found by post-completion tests. It was.
[0004]
The present invention has been made to solve such a problem, and an object of the present invention is to obtain a method of manufacturing a fluorescent lamp capable of preventing the occurrence of floating glass cotton and the like and improving the strength of the bridge connecting portion. It is what.
[0005]
[Means for Solving the Problems]
The fluorescent lamp manufacturing method of the present invention is a fluorescent lamp manufacturing method in which a plurality of glass tubes are bridge-connected to form one arc tube, and the bridge-connecting planned portion of the glass tube is softened by heating and A warm air of an inert gas is allowed to flow into the glass tube, and the softened bridge connection planned portion is pressurized and blown from the inside of the glass tube to form a blown-through portion. The blown-through portion, the glass tube, The blown portion formed on the other glass tube to be connected is fused together to form a bridge connecting portion , and the thickness of the glass tube is 0.7 to 1.3 mm, and The hot air is in a temperature range of 60 to 120 ° C., and the inflow pressure of the hot air is in a range of 0.2 to 1.1 kgf / cm 2 .
[0006]
As a result, the inert gas that comes in contact with the inner surface of the glass tube of the bridge connection planned portion that has been softened by heating has a warm atmosphere. An action of suppressing the generation of fine floating glass cotton by forming a blow-through portion having a diameter and a length of a predetermined degree can be exhibited. In particular, since the warm air continues to flow, the strain removal annealing effect after the formation of the bridge connecting portion is exhibited, so that there is an advantage of preventing the occurrence of cracks by preventing the generation of fine floating glass cotton and the remaining strain.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The fluorescent lamp obtained by the manufacturing method of the fluorescent lamp which is one Embodiment of this invention is shown in FIG.
[0008]
In the fluorescent lamp shown in FIG. 1, two glass tubes 3, 4 having one end closed and a stem 2 having an electrode 1 sealed at the other end are connected and integrated by a bridge connecting portion 5. The internal space of the glass tube 3 and the other glass tube 4 is connected by a bridge connecting portion 5, thereby forming one discharge path between the electrodes 1. Three-wavelength phosphors 3a and 4a (see FIG. 4) are deposited on the inner surfaces of the glass tubes 3 and 4, and a gas such as argon is sealed inside. And the floating substance, for example, the floating glass cotton 11 and the film-like glass film 11a which adheres to the inner surface of the bridge connection part 5 shown in FIG. Yes.
[0009]
In the fluorescent lamp manufacturing method according to the present embodiment, first, as shown in FIG. 2, a fluorescent tube (not shown) is coated on the inner surface, one end is closed, and the other end has an opening 6. 3 is heated and softened from the outside by a gas burner 8 and, as shown in FIG. 3, the glass tube 3 has a temperature in the range of 60 to 120 ° C. made of an inert gas such as nitrogen or argon. The wind 10 flows in from the opening 6 at an inflow pressure in the range of about 0.2 to 1.1 kgf / cm 2 , pressurizes and blows off the glass tube wall of the bridge connection scheduled portion 7 that has been heated and softened, and blows and blows 9 Form. This blow-through portion 9 and the blow-through portion (not shown) of the other glass tube 4 formed in the same manner as described above are fused to form the bridge connecting portion 5, and the glass tube 3 and the glass tube The tube 4 is integrated (FIG. 1). In order to fuse the blow-through portion 9 of the glass tube 3 and the blow-through portion with the glass tube 4, it is necessary to contact the blow-through portions with each other when the blow-through portions are softened. Therefore, it is preferable that these glass tubes 3 and 4 are disposed at positions close to each other and that the blow-through portions 9 are formed almost simultaneously, and immediately after the blow-through portions 9 are blown apart ( It is preferable that the contact is made at a temperature (state) at which fusion can be performed. In addition, you may heat the bridge connection scheduled part 7 with the gas burner 8 from an inner side. In addition to the gas burner 8, heat softening may be performed with a laser or the like. In the case of using a laser, if the portion to be softened by heating (the bridge connection scheduled portion 7) is colored, only the colored portion can be heated and softened, so that the blow-through portion 9 can be formed with higher accuracy.
[0010]
As shown in FIG. 4, the bridge connecting portion 5 in the fluorescent lamp thus formed has no residual distortion of the glass, has a uniform thickness, and has a thickness that can withstand vibration and impact during transportation. . Further, there was no generation or presence of dust material made of fine floating glass cotton in the vicinity of the inside of the bridge connecting portion 3, and no upset phenomenon of the inner surface of the glass was confirmed. Further, in the method described in the prior art, the phenomenon that the glass swells in a balloon shape before the glass tube is blown out has occurred, but such a phenomenon that the glass swells does not occur, and this phenomenon does not occur. Therefore, a thin portion does not occur in the bridge connecting portion, and the strength of the bridge connecting portion can be improved.
[0011]
Hereinafter, the manufacturing method of the fluorescent lamp which is one Embodiment of this invention is demonstrated.
[0012]
Two straight-end glass tubes with a length of 17 mm and an outer diameter of 6 mm, each consisting of a soda-lime glass tube with a tube length of about 410 mm, a tube outer diameter of 20 mm, and a glass wall thickness of 1.2 mm with a phosphor coated on the inner surface, A 36W compact fluorescent lamp (FPL36) integrated with a 1 mm thick bridge connecting part was manufactured.
[0013]
First, the bridge connection planned portion 7 of the glass tube 3 is heated and softened from the outside by the gas burner 8 and nitrogen gas flows into the glass tube 3 from the opening 6 of the glass tube 3 at an inflow pressure of 0.5 kgf / cm 2. Then, the heated and softened portion (the bridge connection scheduled portion 7) of the glass tube 3 is blown off by the pressure, and is brought into contact with the blown-out portion of the other glass tube 4 formed almost simultaneously, and is joined by fusion bonding. Formed.
[0014]
The temperature of the nitrogen gas which is the warm air 10 flowing into the glass tube 3 is as follows: (a) 20 ° C, (b) 30 ° C, (c) 50 ° C, (d) 60 ° C, (e) 100 ° C, ( F) Fluorescent lamps were manufactured as prototypes by setting the temperatures to 120 ° C. and (g) 130 ° C., and the connection strength and the like of each bridge connection portion were confirmed.
[0015]
As a result, in the prototypes (d), (e) and (f), no fine irregularities, wrinkles and fine floating glass cotton are observed on the inner surface of the bridge connecting portion, and the glass thickness is uniform at about 1 mm. In the manufacturing process of the compact fluorescent lamp FPL36 after the bridge connection and the lighting test of the final finished lamp, glass breakage such as cracks did not occur.
[0016]
In the prototypes (a), (b), and (c), the temperature difference between the inner surface of the heat-softened portion of the glass tube and the nitrogen gas that is in contact with the glass tube is large. Generation and adhesion of fine floating glass cotton (glass powder) 11 due to fine crystallization, large variation in glass wall thickness, residual strain due to internal surface wrinkling phenomenon, surface irregularity, etc. As a result, it was found that many cracks and breakage of the bridge connecting portion occurred and it was not suitable for practical use.
[0017]
In addition, in the prototype (g), the formation of the bridge connecting part was normal as in the prototypes (d) (e) (f), but the high temperature nitrogen was applied during the strain relief annealing after the bridge connecting part was formed. Since the inflow of gas continues, the time required for strain removal becomes longer due to the gradual decrease in temperature, which is undesirable from the viewpoint of productivity.
[0018]
The temperature of the nitrogen gas was 60 ° C., which was the inflow pressure to the glass tube and (A) 0.1kgf / cm 2, which was (B) 0.2kgf / cm 2, (C) 1. those with 1 kgf / cm 2, which was (D) 1.2kgf / cm 2, for was tried each bridge connection as prototype, prototype (B) (C) forms a normal bridge connecting portion The intensity was normal.
[0019]
However, in the prototype (A), the pressure of the inflowing nitrogen gas is too weak to blow through the heated and softened portion of the glass tube, and as shown in FIG. 6, the glass wall thickness is as thin as 0.3 mm or less. A bulging balloon-shaped part 12 was formed, and a normal bridge connecting part could not be formed. Moreover, the prototype (D) was not practical because the inflow pressure of nitrogen gas into the glass tube was too strong, resulting in variations in the diameter and thickness of the glass near the bridge connection portion, resulting in variations in the connection strength.
[0020]
Therefore, by setting the inflow pressure of the hot air 10 in the range of 0.2 to 1.1 kgf / cm 2 , the time until the glass tube bridge connection planned portion is blown through and opened from the heat softening is shortened. It is possible to suppress the thinning of the glass at the bridge connecting portion and to form a bridge connecting portion having a uniform glass thickness and no residual strain. That is, the time required from the start of heating to blow-off can be shortened, so that the glass thinning and the generation of a balloon-like shape can be suppressed.
[0021]
In addition, the temperature of nitrogen gas is in the range of 60 to 120 ° C., the inflow pressure of warm air into the glass tube is in the range of 0.2 to 1.1 kgf / cm 2 , and the gas flows in twice. It was also found that if the pressure is first set at a high level and then at a low level, formation of a glass blow-through part, fusion bonding, uniformization of the diameter of the bridge connection part and the like can be performed smoothly.
[0022]
Based on the above results, JIS-standard 27 W and 55 W rated compact fluorescent lamps, FPL27, FPL55, etc., in which two glass tubes are bridge-connected, were manufactured in the same manner, and the bridge connection portion was confirmed. As a result, similar to the above, the nitrogen gas flowing into the glass tube is warm air in the range of 60 to 120 ° C., and the inflow pressure of the warm air is set in the range of 0.2 to 1.1 kgf / cm 2. In the prototype, the glass inner surface abnormality of the bridge connection part, the thickness variation, the occurrence of the residual strain, etc. did not occur at all, and the cause of the decrease in the connection strength of the bridge connection part could be eliminated.
[0023]
However, when the temperature range of the inert gas and the inflow pressure range are not satisfied, the fine floating glass cotton on the inner wall surface of the bridge connecting portion, the inner surface unevenness, the inner surface rolling, the glass wall thickness unevenness, and the glass wall thin balloon shape Swelling or the like occurred, and cracks or creases due to residual strain occurred in the bridge connecting portion, which could not be put to practical use.
[0024]
In the present embodiment, the glass tubes 3 and 4 forming the blown portion 9 have a thickness of 1.2 mm. However, in the case of 0.7 to 1.3 mm, the warm air in the above temperature range is used. It has been confirmed that the same effect can be obtained even when the inflow pressure is satisfied.
[0025]
【The invention's effect】
As described above, the present invention can provide a method for manufacturing a fluorescent lamp capable of increasing the glass strength of the bridge connecting portion of the compact fluorescent lamp having the bridge connecting portion and obtaining stable quality.
[Brief description of the drawings]
FIG. 1 is a cross-sectional front view showing a fluorescent lamp obtained by a fluorescent lamp manufacturing method according to an embodiment of the present invention. FIG. 2 is a diagram for explaining the fluorescent lamp manufacturing method. FIG. 4 is an enlarged cross-sectional front view of a bridge connecting portion obtained by the same fluorescent lamp manufacturing method. FIG. 5 is a diagram illustrating a bridge connecting portion of a fluorescent lamp that is recognized as defective. Fig. 6 is an enlarged cross-sectional front view of the fluorescent lamp that is considered to be defective.
3,4 Glass tube 5 Bridge connection part 6 Opening part 7 Bridge connection scheduled part 9 Blow-through part 10 Hot air

Claims (1)

複数のガラス管をブリッジ連結して1つの発光管を形成する蛍光ランプの製造方法であって、前記ガラス管のブリッジ連結予定部を加熱によって軟化させるとともに前記ガラス管内に不活性ガスの温風を流入して、軟化した前記ブリッジ連結予定部を前記ガラス管内部から加圧して吹き破って吹き破り部を形成し、この吹き破り部と、前記ガラス管と連結されるべき他方のガラス管に形成された吹き破り部とを互いに融着してブリッジ連結部を形成するものであり、前記ガラス管の肉厚が0.7〜1.3mmであり、かつ前記温風が60〜120℃の温度範囲にあり、かつ前記温風の流入圧力が0.2〜1.1kgf/cm の範囲であることを特徴とする蛍光ランプの製造方法。A method of manufacturing a fluorescent lamp in which a plurality of glass tubes are bridge-connected to form a single arc tube, wherein a planned bridge connection portion of the glass tube is softened by heating and warm air of an inert gas is generated in the glass tube. Inflow and pressurize the softened bridge connection planned portion from the inside of the glass tube to blow and form a blow-through portion, and form the blow-through portion and the other glass tube to be connected to the glass tube And the blown part to be fused together to form a bridge connecting part , the glass tube has a thickness of 0.7 to 1.3 mm, and the hot air is at a temperature of 60 to 120 ° C. A method for manufacturing a fluorescent lamp, wherein the hot air inflow pressure is in a range of 0.2 to 1.1 kgf / cm 2 .
JP2002219356A 2002-07-29 2002-07-29 Manufacturing method of fluorescent lamp Expired - Fee Related JP4045887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002219356A JP4045887B2 (en) 2002-07-29 2002-07-29 Manufacturing method of fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219356A JP4045887B2 (en) 2002-07-29 2002-07-29 Manufacturing method of fluorescent lamp

Publications (2)

Publication Number Publication Date
JP2004063244A JP2004063244A (en) 2004-02-26
JP4045887B2 true JP4045887B2 (en) 2008-02-13

Family

ID=31940287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219356A Expired - Fee Related JP4045887B2 (en) 2002-07-29 2002-07-29 Manufacturing method of fluorescent lamp

Country Status (1)

Country Link
JP (1) JP4045887B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046343A1 (en) * 2007-09-27 2009-04-02 Osram Gesellschaft mit beschränkter Haftung Method for connecting a discharge vessel of a discharge lamp with a pipe section, in particular a pump tube

Also Published As

Publication number Publication date
JP2004063244A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
EP0866488B1 (en) Manufacturing method of a high-pressure discharge lamp
JPS6349334B2 (en)
JP4045887B2 (en) Manufacturing method of fluorescent lamp
JPS5816751B2 (en) Introductory seal assembly, small high pressure metal vapor discharge lamp and its sealing method
JP3327280B2 (en) Manufacturing method of fluorescent lamp
US4866341A (en) Discharge lamp with base for sealing the lamp
US1980840A (en) Seal for electric lamps and similar articles
US5090931A (en) Method of producing a lamp having a coated layer and the lamp produced thereby
JPWO2004064103A1 (en) Glass tube, method for producing the same, and method for bonding glass tube
US6568217B2 (en) Method for manufacturing fluorescent lamp
US20030034735A1 (en) Gas discharge lamp and method of its manufacture
JP3577521B2 (en) Fluorescent lamp
JPH08264162A (en) Incandescent lamp and its manufacture
JP4027252B2 (en) Manufacturing method of discharge lamp
JP2002163984A (en) Sealing device of cathode-ray tube
KR20030057619A (en) Apparatus and method of manufacturing for fluorescent lamp
JPH0138053B2 (en)
JP3549351B2 (en) Lamp and its manufacturing method
US20030222583A1 (en) High-pressure discharge lamp and fabrication method of the same
JPS58209856A (en) Electrode-supporting tube for high pressure sodium lamp
JPH09147747A (en) Manufacture of circular fluorescent lamp
JPH02148537A (en) Manufacture and metal mold of single metal mold flurorescent lamp
KR200222504Y1 (en) Improve sodium oxide glass tube lamp
JP2001357782A (en) Fabrication process of fluorescent lamp
JPH01173542A (en) Manufacture of single-base small fluorescent lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees