JP4045688B2 - Phase correction liquid crystal cell for optical head device - Google Patents

Phase correction liquid crystal cell for optical head device Download PDF

Info

Publication number
JP4045688B2
JP4045688B2 JP10446299A JP10446299A JP4045688B2 JP 4045688 B2 JP4045688 B2 JP 4045688B2 JP 10446299 A JP10446299 A JP 10446299A JP 10446299 A JP10446299 A JP 10446299A JP 4045688 B2 JP4045688 B2 JP 4045688B2
Authority
JP
Japan
Prior art keywords
liquid crystal
phase correction
crystal cell
substrate
correction liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10446299A
Other languages
Japanese (ja)
Other versions
JP2000298873A (en
Inventor
弘昌 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10446299A priority Critical patent/JP4045688B2/en
Publication of JP2000298873A publication Critical patent/JP2000298873A/en
Application granted granted Critical
Publication of JP4045688B2 publication Critical patent/JP4045688B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、CD、CD−ROM、ビデオディスクなどに用いられる光ディスクや光磁気ディスクなどの光記録媒体に対して光学的情報を書き込んだり、光学的情報を読み取るための光ヘッド装置に関し、特に光ヘッド装置の位相補正液晶セルに関する。
【0002】
【従来の技術】
光ディスクや光磁気ディスクなどの光記録媒体に光学的情報を書き込んだり、光記録媒体から光学的情報を読み取ったりするのに光ヘッド装置が用いられる。光ヘッド装置は、ディスク状の光記録媒体の記録面に光源である半導体レーザの出射光を集光レンズにて集光して、情報の書き込み・読み出しを行っており、このとき、出射光を所望のサイズまで充分に絞り込むことが必要である。光記録媒体に反りがある場合は絞り込んだ光に収差が発生し、この収差をうち消すために位相補正素子を使用する。
【0003】
集光レンズは、アクチュエータに搭載されたレンズホルダと一体化され、レンズホルダの動きによって出射光の集光位置が調整される。この位相補正素子は、アクチュエータとは独立に光ヘッド装置に設置されている。
【0004】
したがって、アクチュエータのレンズホルダの動きに対し位相補正素子は充分追従できないので、両者の光軸は通常一致していないため、位相補正素子は充分な収差補正効果がない問題があった。また、位相補正素子が小型になるほど電極取り出し部の面積の割合が増加し、小型化の阻害要因となっていた。
【0005】
さらに、位相補正素子を、電極を有することで広く知られている液晶表示素子で作製した場合次の問題があった。
図8は、従来の電極の取り出し方法を有する分解した液晶表示素子の斜視図であり、図9は、従来の電極の取り出し方法を有する液晶表示素子の上面図である。
【0006】
この液晶表示素子は、従来例の図8と図9に示すように、電極501をITOの透明導電膜を加工して形成し、対向する2枚の基板502および基板503とのギャップを保持するためのスペーサ504と、2枚の基板間で導通をとるための導電性ビーズ505とを含有した封止用のシール剤506を基板周辺に印刷し、加熱・圧着して液晶が注入されて、作製される。
【0007】
このとき、基板503の電極501はトランスファー部507を通して基板502の電極取り出し部508(基板503よりも長めに作られている)に導電接続され、基板502の電極501はそのまま延長されて電極取り出し部508引き出され、いずれもここから外部に接続される。
【0008】
しかし、これらの電極を有する液晶表示素子を小型化する場合、基板が対向していない上記電極取り出し部508が阻害要因となっていた。さらに、このような電極取り出し部を有するために、基板502の重量が増加し軽量化の妨げになる問題があった。また、液晶表示素子の生産性を低下させていた。
【0009】
【発明が解決しようとする課題】
本発明の目的は、上述の各問題を解決した、光ヘッド装置の位相補正液晶セルの電極形成方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、光ヘッド装置に備えられたアクチュエータのレンズホルダに設置され、光記録媒体への入射光の位相を補正する位相補正液晶セルであって、位相補正液晶セルに備えられた対向する2枚の基板の長さは同じであり、2枚の基板のうち一方の基板はその周辺領域に凹部または貫通口による加工部を有し、加工部に導電性棒状端子が設けられ、導電性棒状端子と加工部に対応する他方の基板に設けられたパターン化電極とが導電接続されていることを特徴とする光ヘッド装置の位相補正液晶セルを提供する。
【0011】
また、加工部が一方の基板の内面の稜の1つに形成された凹部であり、加工部と他方の基板との間の間隙に導電性棒状端子が設置されている上記の位相補正液晶セルを提供する。
【0012】
また、光ヘッド装置に備えられたアクチュエータのレンズホルダに設置され、光記録媒体への入射光の位相を補正する位相補正液晶セルであって、位相補正液晶セルに備えられた対向する基板の長さは同じであり、2枚の基板の周辺領域に形成された封止用のシール帯の辺を横切って少なくとも2個所に電極用の導電性棒状端子が設置され、導電性棒状端子が基板の内面に設けられたパターン化電極と導電接続されていることを特徴とする光ヘッド装置の位相補正液晶セルを提供する。
【0013】
さらに、光ヘッド装置に備えられたアクチュエータのレンズホルダに設置され、光記録媒体への入射光の位相を補正する位相補正液晶セルであって、位相補正液晶セルに備えられた対向する2枚の基板の周辺領域に凹部または貫通口による加工部を有し、加工部に導電性棒状端子が設けられ、2枚の基板の少なくとも一方の基板の加工部にパターン化電極が設けられ、導電性棒状端子とパターン化電極とが導電接続されていることを特徴とする光ヘッド装置の位相補正液晶セルを提供する。
【0014】
【発明の実施の形態】
本発明は、光ヘッド装置に備えられた半導体レーザなどの光源からの出射光を、光ディスクなどの光記録媒体へ集光して入射するとき、入射光の位相を補正するための位相補正液晶セルに関するものである。本発明においては、位相補正液晶セルをアクチュエータのレンズホルダに設置するとき、位相補正液晶セルに備えられた対向する2枚の基板の一方の基板の周辺領域に電極用の導電性棒状端子を設置するように凹部または貫通口による加工部を設け、加工部に導電性棒状端子を設け、一方の基板の加工部に対応する他方の基板の領域には導電膜のパターン化電極を形成し、導電性棒状端子とパターン化電極とが導電接続している。
【0015】
導電性棒状端子とは、棒状の導電性電極端子であり断面形状は正方形や長方形などの角形、円形、楕円形などいずれでもよく、また先端部など一部が曲がっていてもよい。さらに、ここで断面形状が長方形とは、箔状のものであってもよい。基板などに固定されていなくとも変形しないものであればよい。凹部とは、彫り込まれた形状であり、以下、溝という。
今後の議論は、対向する2枚の基板の長さは同じであるとし主に位相補正液晶セルの電極(パターン化電極と導電性棒状端子)について行う。また以下導電接続されていて電気的導通であることを単に導通という。
【0016】
本発明においては、位相補正液晶セルのパターン化電極として、基板上に形成された例えばITOの導電膜を用いる。この基板は2枚ともガラス基板やポリカーボネートなどのプラスック材料の透明基板を用いてもよい。基板上に形成された導電膜はフォトリソグラフィー法およびエッチング法などを用いて所望の電極の形状に加工し、パターン化電極としている。
【0017】
基板の一方の周辺領域にパターン化電極用の導電膜が設置されるように種々に切削加工された加工部を設ける場合には、2枚の基板を接着して位相補正液晶セルとする前に基板に電極取り出し部の加工を行う。貫通口および溝の加工は、ドリルを用いてもよいし、レーザ加工法を用いてもよいし、砥粒を用いたサンドブラスト法を用いてもよい。また、金属膜などをマスクに用いてエッチングすることにより加工を行ってもよい。
【0018】
射出成形加工する場合は、透明基板として例えばプラスチック系の材料を使用して、貫通口や溝の形成を行う。
溝の加工を行う場合、溝の形状は直線状でもよいし、電極取り出し部のみ溝を広げてもよい。
【0019】
基板の周辺領域に形成された封止用のシール帯の一辺を横切って少なくとも2個所に電極用の導電性棒状端子を設置することが、電極の設置場所を任意に選べるので好ましい。このとき、この電極取り出し方法として例えば加圧により変形しやすい導電性棒状端子をシール帯上に配置し圧着時に加圧変形させることにより基板上のパターン化電極と接触させる。ここで用いる導電性棒状端子としては、インジウム、銅、金などの比較的変形しやすい金属が適している。変形しやすい導電性棒状端子を選定することにより対向する基板間のギャップにばらつきを生じさせることなく基板上のパターン化電極と導通させることができる。
【0020】
本発明の1つの実施形態で、基板の周辺部に貫通口を形成する場合をさらに詳細に説明する。位相補正液晶セル形成前の基板の重ね合わせ前に貫通口部分に導電性棒状端子を予め圧入してもよく、また、重ね合わせの後に圧入してもよい。
【0021】
いずれも場合も、基板のパターン化電極と確実に導通を得るためにシール帯用のエポキシシール剤には変形しやすい樹脂ビーズに導電膜をコーティングした導電ビーズを混合しておくことが好ましい。また、周辺のシール帯以外から電極に接触させるときには、柱状などの導電性棒状端子を貫通口に設置すればよい。いずれも場合も、確実に接触させるためには位相補正液晶セル側のパターン化電極の電極取り出し部に金属を用いることが好ましく、金属としてはアルミニウム、クロム、金などが好ましい。
【0022】
本発明の他の実施形態で、基板の内側面の稜に溝を形成する場合について詳細に説明する。この形態ではパターン化電極の電極部は予め設けるが、位相補正液晶セル用の基板をチップ化した後に導電性棒状端子を取り付けてもよい、すなわち導電性棒状端子を後付けできるというメリットがあって好ましい。したがって、導電性棒状端子である例えば金属を、一つの基板に設けた溝と他の基板の内面との間にできた空隙にチップ化した後に圧入すればよい。
【0023】
溝の空隙の部分に、変形しやすい金属を圧入することで導通は得られるが、安定な導通を得るためには、導電性ペーストなどを用いて基板のパターン化電極と導電性棒状端子(配線または金属チップなど)とを接着することが望ましい。このとき、基板のパターン化電極側に金属膜をつけるとより接着性が向上し導通がとりやすく望ましい。
【0024】
また、溝の加工はパターン化電極の電極取り出し部を形成した基板(今までの基板とは反対)に設けてもよく、このときは溝にも透明な導電膜を成膜しパターン化電極とすればよい。
【0025】
本発明における位相補正液晶セルは、小型化が図れて、配線の自由度が高いというメリットを有する。合わせて、レンズホルダへの設置時に可動範囲・方向への制約がないという効果も合わせて有する。
【0026】
また、導電性棒状端子の取り出し方向は位相補正液晶セルの4辺のいずれからでもよく、一方向には限定されない。このため、位相補正液晶セルがレンズホルダに設置されるとき、最適な方向に導電性棒状端子の配置が採れるので配線方法の自由度が上がるというメリットも合わせ持つ。
【0027】
また、対向する基板の一方を長くした電極用の余分の面積部を不要とできるので、一枚の大きな基板から、位相補正液晶セル用の小さな基板を多数個取りする場合に取り数が多くなり切断工程も簡略化できることから位相補正液晶セルの量産性が向上し、製造コストも下がるという効果も合わせて有する。
【0028】
本発明の位相補正液晶セルの電極は、CD、CD−ROM、DVDなどの光ディスク、およびMOなどの光磁気ディスク、相変化型光ディスクなどに情報を記録・再生する光ヘッド装置で使用される。
【0029】
【実施例】
[例1]
まず、本例の電極の構造を図1と図2を参照しつつ説明する。ここで、図1は、一方の基板に2つの貫通口を設けた導電性棒状端子を有する位相補正液晶セルのセル化前の構成を示す斜視図であり、図2はこの方式に用いる位相補正液晶セルの上面図である。
【0030】
図1に示すように、対向するガラス基板101とガラス基板102の内面にITO透明導電膜を厚さ30nmに成膜し、フォトリソグラフィ法およびウエットエッチング法により成形してパターン化電極103を形成した。基板101には、パターン化電極103の一部で基板101からの電極取り出し部103aと基板102からの電極取り出し部103bを設け、基板102のパターン化電極103には上下の基板間の導通に用いるトランスファー部104を設けた。
【0031】
基板102には、炭酸ガスレーザ光を使用するレーザ加工により、直径約0.5mmの貫通口105を2カ所成した。基板101と基板102のITOのパターン化電極103上には厚さ50nmのポリイミド膜をフレキソ印刷法により塗布し、250℃にて1時間焼成してポリイミド膜に対して布によるラビングの配向処理を施しポリイミド配向膜とした後、基板101にスクリーン印刷法によりエポキシシール剤のシール帯107を印刷した。
【0032】
エポキシシール剤には、重量比で3%のファイバースペーサ(直径5μm:図2の108)と重量比で2%のアクリル球(直径5.5μm:図2の109)とを混合した。ファイバースペーサは2枚の基板間のギャップを維持するためのものであり、アクリル球は導電性コーティングが施されており2枚の基板間の間の導通をとるためのものである。
【0033】
基板101と基板102との位置合わせをし重ねた後に、基板102の2個所の貫通口105には、直径0.45mmのインジウム線110を長さ約0.6mmに切断したものを配置し電圧用の導電性棒状端子とした。
【0034】
基板101と基板102とを別のガラス基板間に挟んだ後に170℃にて、0.6kg/cm2の圧力をかけて圧着し位相補正液晶セルを形成した。このとき、インジウム110は変形し、直接および導電ビーズ109を介して基板101の取り出し電極部103a、103bと接触しており、また貫通口105からはみ出したインジウムは容易に除去できた。
【0035】
した位相補正液晶セルに真空注入法により液晶(図2の111)を注入し、注入口(図2の112)をUV接着剤にて封止した。これにより幅約1mmの周辺シール帯(図2の107)に取り出し電極がほぼ覆われた、外形7mm角の最終的な位相補正液晶セルを作できた。
【0036】
図3はアクチュエータのレンズホルダに位相補正液晶セルが設置される様子を示す斜視図であり、上記のようにして作製した位相補正液晶セル604を図3に示すように、アクチュエータのレンズホルダ601に形成されたレンズホルダの電極602と異方性導電テープ603を介してインジウム線110とが接合された。その後、位相補正液晶セル604のインジウム線110の部分を上から加熱圧着し、熱硬化型接着剤を位相補正液晶セル604の周辺部に塗布硬化して、位相補正液晶セルとアクチュエータのレンズホルダの設置を強固なものとし、同時に導電性補強した。
【0037】
このアクチュエータのレンズホルダはアクチュエータ本体に組み込まれた後、光ヘッド装置の光源からの出射光光軸上に設置された。
これにより、アクチュエータのレンズホルダの電極部を経由して位相補正液晶セル駆動し、光ディスクの反りを補正する位相差を発生させることができた。位相補正素子はアクチュエータのレンズホルダと一体に動き、光ディスクのトラックに集光するためのレンズ位置の補正をアクチュエータのレンズホルダで行ったときにも、位相補正素子の位相補正の効果が低下せず良好な集光特性を示した。
【0038】
[例2]
本例を図4を参照しつつ説明する。ここで、図4は、一方の基板に2つの貫通口を設けた例1とは異なる導電性棒状端子を有する位相補正液晶セルのセル化前の構成を示す斜視図である。
【0039】
図4に示す、ガラス基板201およびガラス基板202の内面のパターン化電極203、上下の基板間の導通に用いるトランスファー部204、貫通口205、周辺シール帯207、パターン化電極203上へのポリイミド配向膜の形成や、セル部への液晶の注入などは例1と同様に行った。
【0040】
基板201と基板202とを別のガラス基板で挟み、例1と同様の温度、圧力条件で圧着するとき、貫通口205がシール剤に接触しない配置にして、先端径が、0.3mmの金属ピン210を貫通口205に圧入し、接着固定し電圧用の導電性棒状端子とした。
その後に金属ピン周辺を封止した上で、セル部に真空注入法によりやはり例1と同様に液晶を注入した。
【0041】
このように、作製した、位相補正液晶セルを例1と同様にアクチュエータのレンズホルダに設置し、レンズホルダはアクチュエータ本体に組み込まれた後、光ヘッド装置の光源からの出射光光軸上に設置された。この場合も、位相補正液晶セルの良好な位相補正の効果が確認された。
【0042】
[例3]
本例を図5を参照しつつ説明する。ここで、図5は、一方の基板の稜に溝を設け、この溝と他方の基板との間隙に導電性棒状端子を圧入した位相補正液晶セルのセル化前の構成を示す斜視図である。
【0043】
図5に示すように、ガラス基板301とガラス基板302との内面のパターン化電極303を例1と同様にして形成した。パターン化電極303は、ガラス基板301のための電極取り出し部303bと基板302のための電極取り出し部303aを設け、基板302には上下の両基板間の導通に用いるトランスファー部304を設けた。
【0044】
その後に、ガラス基板302にはスパッタ法にてクロム膜を200nm成膜し、フォトリソグラフィ法およびウエットエッチング法でガラス基板のエッチング用の金属マスクを作した。フッ酸をエッチャントにガラス面のウエットエッチングを行い電極取り出しを行う稜上に、幅200μm深さ80μmの溝305を形成した。
【0045】
パターン化電極303上へのポリイミド配向膜の形成や、位相補正液晶セルへの液晶の注入などは例1と同様に行った。
このとき、エッチングにより加工した溝305はシール帯の外側となるようにしたので電極取り出し部303a、303bには空隙が形成された。この空隙へ導電性棒状端子312が圧入される(実際には、図6のアクチュエータのレンズホルダに固定された、導電性棒状端子702(312)が空隙へ圧入される)。
【0046】
図6は、上記のように作製した、位相補正液晶セルのアクチュエータのレンズホルダへの設置の様子を示す斜視図である。導電性棒状端子702はアクチュエータのレンズホルダ701に固定されており、導電性棒状端子702が位相補正液晶セル804の溝の空隙へ圧入され、熱硬化型接着剤を位相補正液晶セル704の周辺部に塗布硬化して、位相補正液晶セルとアクチュエータのレンズホルダへの設置を強固なものとし、同時に導電性を補強した。
【0047】
このように、作製したレンズホルダはアクチュエータ本体に組み込まれた後、光ヘッド装置の光源からの出射光光軸上に設置された。この場合も例1と同様に、位相補正液晶セルの良好な位相補正の効果が確認された。
【0048】
[例4]
本例を図7を参照しつつ説明する。ここで、図7は、一方の基板の周辺に封止用のシール帯を形成し、シール帯の一辺を横切った導電性棒状端子を有する位相補正液晶セルのセル化前の構成を示す斜視図である。
【0049】
図7に示すように、ガラス基板401およびガラス基板402の内面のパターン化電極403、上下の基板間の導通に用いるトランスファー部404の形成やパターン化電極403上へのポリイミド配向膜の形成や、位相補正液晶セルへの液晶の注入などは例1と同様に行った。
【0050】
電極取り出し部には、圧延して作成した厚さ10μm、幅0.1mmのインジウム箔409をシール帯406を横切って配置した後に、ガラス基板401とガラス基板402の位置合わせし重ね合わせた。
【0051】
その後、例1と同様に別のガラス基板に位相補正液晶セルを挟めて圧着したが、このときインジウム箔409の導電性棒状端子の周辺は補強のためにUV接着剤を塗布した。
【0052】
このように、作製した、位相補正液晶セルは例1と同様にして、アクチュエータのレンズホルダに設置し、レンズホルダはアクチュエータ本体に組み込まれた後、光ヘッド装置の光源からの出射光光軸上に設置された。この場合も例1と同様に、位相補正液晶セルの良好な位相補正の効果が確認された。
【0053】
【発明の効果】
以上説明したように、本発明における光ヘッド装置用の位相補正液晶セルは、位相補正液晶セル内のパターン化電極との導通の方式を自由に選べることができ、かつ小型化・軽量化が可能であるためアクチュエータのレンズホルダに設置したとき、アクチュエータに与える負荷を低減できる。
【0054】
この、位相補正液晶セルを設置したアクチュエータのレンズホルダを光ディスク装置に組み込むと、光記録媒体への優れた光集光特性を示す。
【図面の簡単な説明】
【図1】一方の基板に2つの貫通口を設けた導電性棒状端子を有する位相補正液晶セルのセル化前の構成を示す斜視図。
【図2】図1の方式に用いる位相補正液晶セルの上面図。
【図3】アクチュエータのレンズホルダに位相補正液晶セルが設置される様子を示す斜視図。
【図4】一方の基板に2つの貫通口を設けた他の例の導電性棒状端子を有する位相補正液晶セルのセル化前の構成を示す斜視図。
【図5】一方の基板の稜に溝を設け、この溝と他方の基板との間隙に導電性棒状端子を圧入した位相補正液晶セルのセル化前の構成を示す斜視図。
【図6】図5のように作製し位相補正液晶セルのアクチュエータのレンズホルダへの設置の様子を示す斜視図。
【図7】一方の基板の周辺に封止用のシール帯を形成し、シール帯の一辺を横切った導電性棒状端子の電極を有する位相補正液晶セルの構成を示す斜視図。
【図8】従来の電極の取り出し方法を有する液晶表示素子の構成を示す斜視図。
【図9】従来の電極の取り出し方法を有する液晶表示素子の上面図。
【符号の説明】
101、102、201、202、301、302、401、402、502、503:ガラス基板
103、203、303、403、501:パターン化電極
103a、103b、303a、303b:電極取り出し部
104、204、304、404、507:トランスファー部
107、207、307、406、506:シール帯
108、504:ファイバースペーサ
109、505:導電ビーズ
111:液晶
112:注入口
110:インジウム線
210:金属ピン
312、702:導電性棒状端子
409:インジウム箔
601、701:アクチュエータのレンズホルダ
604、704:位相補正液晶セル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device for writing optical information on an optical recording medium such as an optical disk or a magneto-optical disk used for CDs, CD-ROMs, video disks, etc., and particularly for reading optical information. The present invention relates to a phase correction liquid crystal cell of a head device.
[0002]
[Prior art]
An optical head device is used to write optical information on an optical recording medium such as an optical disk or a magneto-optical disk, and to read optical information from the optical recording medium. The optical head device collects the emitted light of a semiconductor laser as a light source on a recording surface of a disk-shaped optical recording medium by a condensing lens and writes / reads information. It is necessary to sufficiently narrow down to the desired size. When the optical recording medium is warped, an aberration occurs in the narrowed light, and a phase correction element is used to eliminate this aberration.
[0003]
The condensing lens is integrated with a lens holder mounted on the actuator, and the condensing position of the emitted light is adjusted by the movement of the lens holder. This phase correction element is installed in the optical head device independently of the actuator.
[0004]
Accordingly, since the phase correction element cannot sufficiently follow the movement of the lens holder of the actuator, the optical axes of the two do not normally coincide with each other, so that the phase correction element does not have a sufficient aberration correction effect. Further, as the phase correction element becomes smaller, the ratio of the area of the electrode extraction portion increases, which has been an obstacle to downsizing.
[0005]
Further, when the phase correction element is made of a liquid crystal display element that is widely known to have an electrode, the following problems have occurred.
FIG. 8 is a perspective view of a disassembled liquid crystal display element having a conventional electrode extraction method, and FIG. 9 is a top view of the liquid crystal display element having a conventional electrode extraction method.
[0006]
In this liquid crystal display element, as shown in FIGS. 8 and 9 of the conventional example, an electrode 501 is formed by processing a transparent conductive film of ITO, and a gap between two opposing substrates 502 and 503 is maintained. A sealing agent 506 for sealing containing a spacer 504 for conducting and a conductive bead 505 for conducting between two substrates is printed around the substrate, and heated and pressed to inject liquid crystal, Produced.
[0007]
At this time, the electrode 501 of the substrate 503 is conductively connected through the transfer unit 507 to the electrode extraction unit 508 of the substrate 502 (made longer than the substrate 503), and the electrode 501 of the substrate 502 is extended as it is to extract the electrode extraction unit. 508 is pulled out and both are connected to the outside from here.
[0008]
However, when the liquid crystal display element having these electrodes is downsized, the electrode take-out portion 508 that is not opposed to the substrate has been an obstacle. Further, since such an electrode lead-out portion is provided, there is a problem that the weight of the substrate 502 is increased and the weight reduction is hindered. In addition, the productivity of the liquid crystal display element has been reduced.
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a method of forming an electrode of a phase correction liquid crystal cell of an optical head device that solves the above-described problems.
[0010]
[Means for Solving the Problems]
The present invention is a phase correction liquid crystal cell that is installed in a lens holder of an actuator provided in an optical head device and corrects the phase of incident light on an optical recording medium, and is a two-phase opposed liquid crystal cell provided in the phase correction liquid crystal cell. The length of one substrate is the same, and one of the two substrates has a processed part by a recess or a through-hole in its peripheral region, and a conductive bar-like terminal is provided in the processed part, Provided is a phase correction liquid crystal cell of an optical head device, characterized in that a terminal and a patterned electrode provided on the other substrate corresponding to a processed portion are conductively connected.
[0011]
The phase correction liquid crystal cell according to the above, wherein the processed portion is a recess formed in one of the ridges on the inner surface of one substrate, and the conductive rod-shaped terminal is installed in the gap between the processed portion and the other substrate. I will provide a.
[0012]
The phase correction liquid crystal cell is installed in the lens holder of the actuator provided in the optical head device and corrects the phase of the incident light on the optical recording medium, and is the length of the opposing substrate provided in the phase correction liquid crystal cell. The conductive rod-shaped terminals for electrodes are installed in at least two locations across the sides of the sealing band for sealing formed in the peripheral region of the two substrates, and the conductive rod-shaped terminals are connected to the substrates. Provided is a phase correction liquid crystal cell for an optical head device, wherein the phase correction liquid crystal cell is conductively connected to a patterned electrode provided on an inner surface.
[0013]
Furthermore, a phase correction liquid crystal cell that is installed in a lens holder of an actuator provided in the optical head device and corrects the phase of the incident light on the optical recording medium, the two opposing sheets provided in the phase correction liquid crystal cell. It has a processed part with a recess or a through-hole in the peripheral area of the substrate, a conductive bar terminal is provided in the processed part, a patterned electrode is provided in a processed part of at least one of the two substrates, and a conductive bar shape Provided is a phase correction liquid crystal cell for an optical head device, wherein a terminal and a patterned electrode are conductively connected.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a phase correction liquid crystal cell for correcting the phase of incident light when light emitted from a light source such as a semiconductor laser provided in an optical head device is collected and incident on an optical recording medium such as an optical disk. It is about. In the present invention, when the phase correction liquid crystal cell is installed in the lens holder of the actuator, the conductive rod terminal for the electrode is installed in the peripheral region of one of the two opposing substrates provided in the phase correction liquid crystal cell. A conductive part is provided in the processed part, and a patterned electrode of the conductive film is formed in the region of the other substrate corresponding to the processed part of one substrate. The conductive rod-shaped terminal and the patterned electrode are conductively connected.
[0015]
The conductive rod-shaped terminal is a rod-shaped conductive electrode terminal, and the cross-sectional shape may be any of a square shape such as a square or a rectangle, a circle, an ellipse, etc., and a part such as a tip portion may be bent. Furthermore, a foil having a cross-sectional shape may be a foil. Any material that does not deform even if it is not fixed to a substrate or the like may be used. The concave portion is a carved shape and is hereinafter referred to as a groove.
In the future discussion, the lengths of the two opposing substrates are assumed to be the same, and mainly the electrodes (patterned electrodes and conductive rod terminals) of the phase correction liquid crystal cell will be described. Further, hereinafter, the conductive connection and electrical conduction are simply referred to as conduction.
[0016]
In the present invention, for example, an ITO conductive film formed on a substrate is used as the patterned electrode of the phase correction liquid crystal cell. The substrate may be a transparent substrate of the plastisol click material such as both the two glass substrates and polycarbonate. The conductive film formed on the substrate is processed into a desired electrode shape by using a photolithography method, an etching method, or the like to form a patterned electrode.
[0017]
In the case of providing a processed portion that is variously cut so that the conductive film for the patterned electrode is provided in one peripheral region of the substrate, before bonding the two substrates to form a phase correction liquid crystal cell The electrode extraction part is processed on the substrate. For processing the through hole and the groove, a drill may be used, a laser processing method may be used, or a sand blast method using abrasive grains may be used. Further, the processing may be performed by etching using a metal film or the like as a mask.
[0018]
In the case of injection molding processing, for example, a plastic material is used as the transparent substrate to form a through hole and a groove.
When processing the groove, the shape of the groove may be linear, or the groove may be widened only at the electrode extraction portion.
[0019]
It is preferable to install conductive rod-shaped terminals for electrodes in at least two places across one side of the sealing band for sealing formed in the peripheral region of the substrate, since the installation location of the electrodes can be arbitrarily selected. At this time, as this electrode extraction method, for example, a conductive rod-shaped terminal that is easily deformed by pressurization is placed on the seal band, and pressurized and deformed at the time of pressure bonding to contact with the patterned electrode on the substrate. As the conductive rod-shaped terminal used here, a metal that is relatively easily deformed, such as indium, copper, and gold, is suitable. By selecting a conductive rod-like terminal that is easily deformed, it is possible to conduct with a patterned electrode on the substrate without causing a variation in the gap between the opposing substrates.
[0020]
In one embodiment of the present invention, a case where a through hole is formed in the peripheral portion of the substrate will be described in more detail. A conductive rod-shaped terminal may be press-fitted into the through-hole portion before the substrate before the phase correction liquid crystal cell is formed, or may be press-fitted after the overlay.
[0021]
In either case, in order to ensure electrical connection with the patterned electrode of the substrate, it is preferable to mix conductive beads coated with a conductive film on easily deformable resin beads in the epoxy sealant for the seal band. In addition, when the electrode is contacted from other than the peripheral sealing band, a conductive rod-like terminal such as a columnar shape may be installed in the through-hole. In either case, in order to ensure contact, it is preferable to use a metal for the electrode extraction portion of the patterned electrode on the phase correction liquid crystal cell side, and the metal is preferably aluminum, chromium, gold or the like.
[0022]
In another embodiment of the present invention, a case where a groove is formed in the ridge on the inner surface of the substrate will be described in detail. In this embodiment, the electrode portion of the patterned electrode is provided in advance, but the conductive rod-shaped terminal may be attached after the phase correction liquid crystal cell substrate is chipped, that is, there is a merit that the conductive rod-shaped terminal can be retrofitted. . Therefore, for example, a metal that is a conductive rod-like terminal may be press-fitted after being chipped into a gap formed between a groove provided on one substrate and the inner surface of another substrate.
[0023]
Conduction can be obtained by press-fitting a deformable metal into the gap of the groove, but in order to obtain stable conduction, the patterned electrode and the conductive rod terminal (wiring) of the substrate using a conductive paste or the like can be obtained. Alternatively, it is desirable to adhere to a metal chip or the like. At this time, it is desirable to apply a metal film on the patterned electrode side of the substrate to improve the adhesion and facilitate conduction.
[0024]
Further, the groove may be formed on a substrate (as opposed to the conventional substrate) on which the electrode extraction portion of the patterned electrode is formed. In this case, a transparent conductive film is also formed on the groove to form the patterned electrode. do it.
[0025]
The phase correction liquid crystal cell according to the present invention has an advantage that it can be miniaturized and has a high degree of freedom in wiring. In addition, there is an effect that there is no restriction on the movable range and direction when the lens holder is installed.
[0026]
Further, the direction of taking out the conductive rod-shaped terminal may be from any of the four sides of the phase correction liquid crystal cell, and is not limited to one direction. For this reason, when the phase correction liquid crystal cell is installed in the lens holder, the conductive rod-shaped terminals can be arranged in the optimum direction, so that the degree of freedom of the wiring method is increased.
[0027]
In addition, since it is possible to eliminate the need for an extra area for an electrode in which one of the opposing substrates is lengthened, the number is increased when a large number of small substrates for phase correction liquid crystal cells are taken from one large substrate. Since the cutting process can be simplified, the mass productivity of the phase correction liquid crystal cell is improved and the manufacturing cost is also reduced.
[0028]
The electrode of the phase correction liquid crystal cell of the present invention is used in an optical head device for recording / reproducing information on / from an optical disk such as a CD, CD-ROM, or DVD, a magneto-optical disk such as an MO, or a phase change optical disk.
[0029]
【Example】
[Example 1]
First, the structure of the electrode of this example will be described with reference to FIGS. Here, FIG. 1 is a perspective view showing a configuration of a phase correction liquid crystal cell having a conductive rod-like terminal provided with two through-holes on one substrate before the cell formation, and FIG. 2 is a phase correction used in this method. It is a top view of a liquid crystal cell.
[0030]
As shown in FIG. 1, an ITO transparent conductive film having a thickness of 30 nm was formed on the inner surfaces of the glass substrate 101 and the glass substrate 102 facing each other, and formed by a photolithography method and a wet etching method to form a patterned electrode 103. . The substrate 101 is provided with an electrode extraction portion 103a from the substrate 101 and an electrode extraction portion 103b from the substrate 102 as a part of the patterned electrode 103, and the patterned electrode 103 of the substrate 102 is used for conduction between the upper and lower substrates. A transfer unit 104 was provided.
[0031]
The substrate 102, the laser processing using a carbon dioxide laser light to form a through-hole 105 having a diameter of about 0.5 mm 2 locations form. A polyimide film having a thickness of 50 nm is applied on the ITO patterned electrodes 103 of the substrate 101 and the substrate 102 by a flexographic printing method, and baked at 250 ° C. for 1 hour to perform a rubbing alignment treatment with a cloth on the polyimide film. After applying the polyimide alignment film, an epoxy sealant seal band 107 was printed on the substrate 101 by screen printing.
[0032]
The epoxy sealant was mixed with 3% by weight fiber spacer (diameter 5 μm: 108 in FIG. 2) and 2% by weight acrylic sphere (diameter 5.5 μm: 109 in FIG. 2). The fiber spacer is for maintaining a gap between the two substrates, and the acrylic sphere is provided with a conductive coating to establish conduction between the two substrates.
[0033]
After the substrate 101 and the substrate 102 are aligned and overlapped, two through holes 105 of the substrate 102 are arranged by cutting indium wires 110 having a diameter of 0.45 mm into a length of about 0.6 mm. Conductive rod-shaped terminals.
[0034]
After sandwiching the substrate 101 and the substrate 102 between different glass substrates, a pressure correction of 0.6 kg / cm 2 was applied at 170 ° C. to form a phase correction liquid crystal cell. At this time, the indium 110 was deformed and contacted with the extraction electrode portions 103a and 103b of the substrate 101 directly and through the conductive beads 109, and the indium protruding from the through hole 105 could be easily removed.
[0035]
And injecting liquid crystal (111 in FIG. 2) by a vacuum injection method to create made the phase-correcting the liquid crystal cell, the inlet and (112 in FIG. 2) was sealed with a UV adhesive. Thus peripheral sealing strip having a width of about 1mm is the extraction electrode (107 in FIG. 2) were almost covered, it could create made a final phase correction liquid crystal cells of the outer 7mm square.
[0036]
FIG. 3 is a perspective view showing a state where the phase correction liquid crystal cell is installed in the lens holder of the actuator. The phase correction liquid crystal cell 604 manufactured as described above is mounted on the lens holder 601 of the actuator as shown in FIG. The indium wire 110 was bonded to the formed lens holder electrode 602 via the anisotropic conductive tape 603. Thereafter, the portion of the indium wire 110 of the phase correction liquid crystal cell 604 is heat-pressed from above, and a thermosetting adhesive is applied and cured on the periphery of the phase correction liquid crystal cell 604, and the phase correction liquid crystal cell and the lens holder of the actuator are bonded. The installation was strengthened and at the same time reinforced with conductivity.
[0037]
The lens holder of this actuator was installed on the optical axis of the emitted light from the light source of the optical head device after being incorporated into the actuator body.
Thereby, the phase correction liquid crystal cell was driven via the electrode part of the lens holder of the actuator, and a phase difference for correcting the warp of the optical disk could be generated. The phase correction element moves integrally with the lens holder of the actuator, and the effect of phase correction of the phase correction element does not deteriorate even when the lens position for focusing on the track of the optical disc is corrected by the lens holder of the actuator. Good condensing characteristics were shown.
[0038]
[Example 2]
This example will be described with reference to FIG. Here, FIG. 4 is a perspective view showing a configuration of the phase correction liquid crystal cell having a conductive rod-like terminal different from Example 1 in which two through-holes are provided on one substrate before being formed into a cell.
[0039]
As shown in FIG. 4, patterned electrodes 203 on the inner surfaces of the glass substrate 201 and the glass substrate 202, a transfer portion 204 used for conduction between the upper and lower substrates, a through-hole 205, a peripheral seal band 207, and polyimide orientation on the patterned electrode 203 Film formation, liquid crystal injection into the cell portion, and the like were performed in the same manner as in Example 1.
[0040]
When the substrate 201 and the substrate 202 are sandwiched between different glass substrates, and the pressure bonding is performed under the same temperature and pressure conditions as in Example 1, the through hole 205 is disposed so as not to contact the sealant, and the tip diameter is 0.3 mm. The pin 210 was press-fitted into the through-hole 205 and adhered and fixed to form a conductive bar terminal for voltage.
Thereafter, the periphery of the metal pin was sealed, and liquid crystal was injected into the cell portion in the same manner as in Example 1 by vacuum injection.
[0041]
Thus, the produced phase correction liquid crystal cell is installed in the lens holder of the actuator similarly to Example 1, and after the lens holder is incorporated in the actuator body, it is installed on the optical axis of the outgoing light from the light source of the optical head device. It was done. Also in this case, the effect of favorable phase correction of the phase correction liquid crystal cell was confirmed.
[0042]
[Example 3]
This example will be described with reference to FIG. Here, FIG. 5 is a perspective view showing a configuration of the phase-correcting liquid crystal cell before cell formation in which a groove is provided at the edge of one substrate and a conductive rod-shaped terminal is press-fitted into the gap between the groove and the other substrate. .
[0043]
As shown in FIG. 5, patterned electrodes 303 on the inner surfaces of the glass substrate 301 and the glass substrate 302 were formed in the same manner as in Example 1. The patterned electrode 303 is provided with an electrode extraction portion 303b for the glass substrate 301 and an electrode extraction portion 303a for the substrate 302, and the substrate 302 is provided with a transfer portion 304 used for conduction between the upper and lower substrates.
[0044]
Thereafter, the glass substrate 302 is a chromium film was 200nm formed by sputtering, was created made of metal mask for etching of a glass substrate by photolithography and wet etching. A groove 305 having a width of 200 μm and a depth of 80 μm was formed on a ridge where wet etching of the glass surface was performed using hydrofluoric acid as an etchant to extract an electrode.
[0045]
Formation of a polyimide alignment film on the patterned electrode 303, injection of liquid crystal into the phase correction liquid crystal cell, and the like were performed in the same manner as in Example 1.
At this time, since the groove 305 processed by etching was located outside the seal band, voids were formed in the electrode extraction portions 303a and 303b. The conductive rod-shaped terminal 312 is press-fitted into the gap (actually, the conductive rod-shaped terminal 702 (312) fixed to the lens holder of the actuator in FIG. 6 is pressed into the gap).
[0046]
FIG. 6 is a perspective view showing a state where the actuator of the phase correction liquid crystal cell manufactured as described above is installed in the lens holder. The conductive rod-shaped terminal 702 is fixed to the lens holder 701 of the actuator. The conductive rod-shaped terminal 702 is press-fitted into the gap in the groove of the phase correction liquid crystal cell 804, and a thermosetting adhesive is applied to the peripheral portion of the phase correction liquid crystal cell 704. The phase correction liquid crystal cell and the actuator were firmly installed on the lens holder, and at the same time the conductivity was reinforced.
[0047]
Thus, the produced lens holder was installed on the optical axis of the light emitted from the light source of the optical head device after being assembled into the actuator body. Also in this case, as in Example 1, the effect of favorable phase correction of the phase correction liquid crystal cell was confirmed.
[0048]
[Example 4]
This example will be described with reference to FIG. Here, FIG. 7 is a perspective view showing a configuration of a phase correction liquid crystal cell before cell formation, in which a sealing band for sealing is formed around one substrate and a conductive rod-shaped terminal crossing one side of the sealing band is formed. It is.
[0049]
As shown in FIG. 7, the glass substrate 401 and the patterned electrode 403 on the inner surface of the glass substrate 402, the formation of the transfer portion 404 used for conduction between the upper and lower substrates, the formation of the polyimide alignment film on the patterned electrode 403, The liquid crystal was injected into the phase correction liquid crystal cell in the same manner as in Example 1.
[0050]
In the electrode extraction portion, an indium foil 409 having a thickness of 10 μm and a width of 0.1 mm formed by rolling was disposed across the seal band 406, and then the glass substrate 401 and the glass substrate 402 were aligned and overlapped.
[0051]
Thereafter, the phase correction liquid crystal cell was sandwiched and pressure-bonded to another glass substrate in the same manner as in Example 1. At this time, a UV adhesive was applied around the conductive rod-shaped terminal of the indium foil 409 for reinforcement.
[0052]
Thus, the produced phase correction liquid crystal cell was installed in the lens holder of the actuator in the same manner as in Example 1, and after the lens holder was incorporated in the actuator body, the optical axis emitted from the light source of the optical head device Was installed. Also in this case, as in Example 1, the effect of favorable phase correction of the phase correction liquid crystal cell was confirmed.
[0053]
【The invention's effect】
As described above, the phase correction liquid crystal cell for the optical head device according to the present invention can freely select a conduction method with the patterned electrode in the phase correction liquid crystal cell, and can be reduced in size and weight. Therefore, when it is installed on the lens holder of the actuator, the load applied to the actuator can be reduced.
[0054]
When the lens holder of the actuator provided with the phase correction liquid crystal cell is incorporated in the optical disk device, excellent light condensing characteristics to the optical recording medium are exhibited.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a phase correction liquid crystal cell having a conductive rod-like terminal provided with two through-holes on one substrate before being made into a cell.
FIG. 2 is a top view of a phase correction liquid crystal cell used in the method of FIG.
FIG. 3 is a perspective view showing a state in which a phase correction liquid crystal cell is installed in a lens holder of an actuator.
FIG. 4 is a perspective view showing a configuration of a phase correction liquid crystal cell having another example of a conductive rod-shaped terminal in which two through-holes are provided on one substrate before being formed into a cell.
FIG. 5 is a perspective view showing a configuration of a phase correction liquid crystal cell before cell formation in which a groove is provided at the edge of one substrate and a conductive rod-like terminal is press-fitted into a gap between the groove and the other substrate.
6 is a perspective view showing a state where the actuator of the phase correction liquid crystal cell manufactured as shown in FIG. 5 is installed in the lens holder. FIG.
FIG. 7 is a perspective view showing a configuration of a phase correction liquid crystal cell in which a sealing band for sealing is formed around one substrate and an electrode of a conductive rod-shaped terminal is formed across one side of the sealing band.
FIG. 8 is a perspective view showing a configuration of a liquid crystal display element having a conventional electrode extraction method.
FIG. 9 is a top view of a liquid crystal display element having a conventional electrode extraction method.
[Explanation of symbols]
101, 102, 201, 202, 301, 302, 401, 402, 502, 503: Glass substrates 103, 203, 303, 403, 501: Patterned electrodes 103a, 103b, 303a, 303b: Electrode extraction units 104, 204, 304, 404, 507: Transfer portions 107, 207, 307, 406, 506: Seal bands 108, 504: Fiber spacers 109, 505: Conductive beads 111: Liquid crystal 112: Injection port 110: Indium wire 210: Metal pins 312 and 702 : Conductive rod-shaped terminal 409: Indium foil 601 and 701: Lens holder 604 and 704 of the actuator: Phase correction liquid crystal cell

Claims (3)

光ヘッド装置に備えられたアクチュエータのレンズホルダに設置され、光記録媒体への入射光の位相を補正する位相補正液晶セルであって、位相補正液晶セルに備えられた対向する2枚の基板の長さは同じであり、2枚の基板のうち一方の基板はその周辺領域に凹部または貫通口による加工部を有し、加工部に導電性棒状端子が設けられ、導電性棒状端子と加工部に対応する他方の基板に設けられたパターン化電極とが導電接続されていることを特徴とする光ヘッド装置の位相補正液晶セル。A phase correction liquid crystal cell that is installed in a lens holder of an actuator provided in an optical head device and corrects the phase of incident light on an optical recording medium, and includes two opposing substrates provided in the phase correction liquid crystal cell. The length is the same, and one of the two substrates has a processed part with a recess or a through-hole in the peripheral area, and the processed part is provided with a conductive bar-shaped terminal. A phase correction liquid crystal cell of an optical head device, wherein the patterned electrode provided on the other substrate corresponding to the above is electrically connected. 加工部が一方の基板の内面の稜の1つに形成された凹部であり、加工部と他方の基板との間の間隙に導電性棒状端子が設置されている請求項1に記載の位相補正液晶セル。  The phase correction according to claim 1, wherein the processing portion is a recess formed in one of the ridges on the inner surface of one substrate, and a conductive rod-shaped terminal is installed in a gap between the processing portion and the other substrate. Liquid crystal cell. 光ヘッド装置に備えられたアクチュエータのレンズホルダに設置され、光記録媒体への入射光の位相を補正する位相補正液晶セルであって、位相補正液晶セルに備えられた対向する基板の長さは同じであり、2枚の基板の周辺領域に形成された封止用のシール帯の辺を横切って少なくとも2個所に電極用の導電性棒状端子が設置され、導電性棒状端子が基板の内面に設けられたパターン化電極と導電接続されていることを特徴とする光ヘッド装置の位相補正液晶セル。A phase correction liquid crystal cell that is installed in a lens holder of an actuator provided in the optical head device and corrects the phase of incident light on the optical recording medium, and the length of the opposing substrate provided in the phase correction liquid crystal cell is It is the same, and conductive bar-shaped terminals for electrodes are installed in at least two places across the sides of the sealing band for sealing formed in the peripheral region of the two substrates, and the conductive bar-shaped terminals are formed on the inner surfaces of the substrates. A phase correction liquid crystal cell for an optical head device, wherein the phase correction liquid crystal cell is conductively connected to a provided patterned electrode.
JP10446299A 1999-04-12 1999-04-12 Phase correction liquid crystal cell for optical head device Expired - Fee Related JP4045688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10446299A JP4045688B2 (en) 1999-04-12 1999-04-12 Phase correction liquid crystal cell for optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10446299A JP4045688B2 (en) 1999-04-12 1999-04-12 Phase correction liquid crystal cell for optical head device

Publications (2)

Publication Number Publication Date
JP2000298873A JP2000298873A (en) 2000-10-24
JP4045688B2 true JP4045688B2 (en) 2008-02-13

Family

ID=14381267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10446299A Expired - Fee Related JP4045688B2 (en) 1999-04-12 1999-04-12 Phase correction liquid crystal cell for optical head device

Country Status (1)

Country Link
JP (1) JP4045688B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184017A (en) * 2000-10-06 2002-06-28 Asahi Glass Co Ltd Optical head device
JP4678151B2 (en) * 2004-07-21 2011-04-27 ソニー株式会社 Light control device, method of manufacturing the same, and imaging device
JP2015064490A (en) * 2013-09-25 2015-04-09 Tdk株式会社 Liquid crystal optical element
CN112555201B (en) * 2020-11-30 2021-11-16 西安理工大学 Visual multistage mixed transportation pump for experiments

Also Published As

Publication number Publication date
JP2000298873A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP2934126B2 (en) Magnetic head unit for magnetic disk drive
JPH08255450A (en) Integral assembly and its creation method as well as disk drive
US20020043894A1 (en) Piezoelectric actuator
JP4045688B2 (en) Phase correction liquid crystal cell for optical head device
US6653761B2 (en) Micro-actuator and method of producing the same
JP3811014B2 (en) Magnetic head device
US7518833B2 (en) Micro-actuator with electric spark preventing structure, HGA, and disk drive unit with the same, and manufacturing method thereof
JP4419229B2 (en) Optical head device
JP4370723B2 (en) Optical head device
KR100761951B1 (en) Liquid crystal aberration correcting element, and production method therefore
JPH0822015A (en) Liquid crystal display panel and its production
JPS6179270A (en) Piezoelectric type displacement device
JPH06130408A (en) Liquid crystal display device
JPH10197887A (en) Liquid crystal display cell and its manufacture
JP2002100064A (en) Optical head device
US20020059717A1 (en) Method of assembling micro-actuator
JP3788150B2 (en) Liquid crystal display element
JP2005339290A (en) Touch panel and manufacturing method of touch panel
JP2005215358A (en) Liquid crystal optical element and method for manufacturing the same
JP2005004388A (en) Touch panel and its manufacturing method, and screen input type display device equipped therewith
JPH05100232A (en) Liquid crystal display device
JP2003270656A (en) Liquid crystal optical element
JPH0792482A (en) Production of liquid crystal display device
WO2005036242A1 (en) Liquid crystal aberration correcting element
JP2002367306A (en) Magnetic head positioning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees