JP4042560B2 - Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same - Google Patents

Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same Download PDF

Info

Publication number
JP4042560B2
JP4042560B2 JP2002366749A JP2002366749A JP4042560B2 JP 4042560 B2 JP4042560 B2 JP 4042560B2 JP 2002366749 A JP2002366749 A JP 2002366749A JP 2002366749 A JP2002366749 A JP 2002366749A JP 4042560 B2 JP4042560 B2 JP 4042560B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
cold
plane anisotropy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002366749A
Other languages
Japanese (ja)
Other versions
JP2004197155A (en
JP2004197155A5 (en
Inventor
勝己 中島
貴之 二塚
透 稲積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002366749A priority Critical patent/JP4042560B2/en
Publication of JP2004197155A publication Critical patent/JP2004197155A/en
Publication of JP2004197155A5 publication Critical patent/JP2004197155A5/ja
Application granted granted Critical
Publication of JP4042560B2 publication Critical patent/JP4042560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は優れた焼付硬化性を有し、かつr値の面内異方性が小さい自動車外板パネル部品用冷延鋼板およびその製造方法に関する。
【0002】
【従来の技術】
現在、いくつかの自動車メーカーでは、自動車の外板パネル(例えば、ドア、フード等)に、面内異方性の小さい冷延鋼板を適用している。プレス成形時の板取り方向が任意となることで、表面の縞模様欠陥の発生抑制等にメリットがあると考えられる。また、自動車、家電製品等で回転対称形状の部品では、面内異方性が小さい鋼板が要望されている。面内異方性を小さくすることにより、深絞り成形後の耳形成が小さくなり、板厚分布等の品質が均一化するとともに、耳切り作業による作業コストの増加および材料歩留まりの低下を抑制することができる。また、材料の板取り方向が任意に可能となり、ユーザーの使い勝手も向上するという大きなメリットがある。
【0003】
この場合、面内異方性としては、特に塑性歪比r値の面内異方性が大きく影響しており、そのパラメータとして、圧延方向に対し0°、45°、90°方向のr値であるr、r45,r90を使って計算されるΔr=(r+r90−2r45)/2が知られている。通常、冷延鋼板のΔrは、冷圧率の増加に伴い低下することが知られている。例えば、低炭素鋼において、Δr=0となるのは、極めて高い冷圧率(例えば85%超)である。しかしながら、実操業上、自動車用鋼板等に対して、1回の冷間圧延でこれほど高い冷間圧延率を付与することは、圧延荷重、圧延能率、通板性、製造コストさらには圧延後の板形状・性状の観点から非常に難しい。
【0004】
冷延鋼板の面内異方性の低減については、例えば、特許文献1には、チタン含有鋼を用いて、準等方性の変形特性を有する冷間圧延薄板又は帯板を製造する方法が提案されている。この技術は、低炭素鋼に、0.01〜0.04%のチタン、最大0.15%の銅、バナジウム、ニッケル群の一つ又はそれ以上の元素を添加した鋼を、スラブ加熱温度、熱延仕上温度、巻取温度を規定して熱間圧延するとともに、チタン含有量に応じて冷圧率を規定して冷間圧延を行い、束にしてA点以下の温度で再結晶焼鈍(コイルにして焼鈍するの意味と思われる)するというものである。この場合に、バッチ焼鈍により鋼の組織はフェライト組織となる。
【0005】
また、例えば、特許文献2には、熱延における仕上圧延板厚比(圧下比)を13以上、熱延終了後は冷却速度20〜65℃/secの強制冷却を行い、その際、仕上圧延入口温度と熱延終了後の強制冷却の温度域をC、Mn、P含有量の式で規定することで、深絞り性、面内異方性を改善する方法が提案されている。この場合、鋼の組織は、フェライト組織もしくはフェライト+パーライト組織である。
【0006】
【特許文献1】
特公平8−14003号公報
【特許文献】
特公昭61−7455号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載された技術は、バッチ焼鈍を前提としているため、連続焼鈍に比べて生産性が低いという問題がある。バッチ焼鈍材の場合、特に記載技術のようにTi添加鋼の場合、プレス成形時に、表面に縞模様欠陥(ゴーストバンド)が発生することがあり、自動車の外板用途等には不適である。さらに、バッチ焼鈍材の場合、焼付硬化性が極めて小さく、ドア、フード等の自動車外板に適用した場合、耐デント性が十分でないという大きな問題点がある。
【0008】
特許文献2に記載された技術は、結局のところC、Mn、P量等を規定した一般的な低炭素冷延鋼板の製造方法にすぎない。そのため、この従来技術により得られるΔrは、その実施例(第2表発明例)に見られるように0.15〜0.25であり、これでは面内異方性が十分に改善されているとは言えず、さらに成形性等においても、本発明が目的とする自動車外板用低面内異方性冷延鋼板の特性を満足しない。
【0009】
以上のように、冷延鋼板の従来技術では、面内異方性が十分に改善されていない、あるいはバッチ焼鈍に限定された技術で、焼付硬化性が不十分であるため、、本発明が目的とする、十分な焼付硬化性を有し、かつr値の面内異方性が小さい低面内異方性冷延鋼板を得ることができていない。
【0010】
本発明はかかる事情に鑑みてなされたものであって、15MPa以上の焼付硬化性を有し、r値の面内異方性の小さい自動車外板パネル部品用冷延鋼板およびその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、従来技術では達成困難であった、焼付硬化性を有し、面内異方性の小さい冷延鋼板を得るべく、特に化学成分および鋼組織に着目して詳細な検討を行った。その結果、フェライト相中に、微細分散したマルテンサイト相が均一分布する組織に制御することにより、面内異方性が小さく、かつ優れた焼付硬化性を有する冷延鋼板が製造可能であることを知見した。
【0012】
本発明は、このような知見に基づいて完成されたものであり、mass%で、C:0.008%以上0.05%未満、Si:2.0%以下、Mn:1%以上3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部Feおよび不可避的不純物からなり、ミクロ組織がフェライトと低温変態相からなる複合組織であり、15MPa以上の焼付硬化性を有し、r値の面内異方性Δrが、|Δr|<0.15および下記条件式を満たすことを特徴とする、焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板を提供する。
C≦0.025%の場合、Δr<−0.05×CR+4.25
C>0.025%の場合、Δr<−0.03×CR+2.40
ただし、CRは冷間圧延率(%)である。
【0013】
この場合に、上記組成に、さらにCr:1%以下、Mo:1%以下、V:1%以下、Ti:0.1%以下のうち1種以上を含有してもよい。
【0014】
また、本発明は、上記成分組成を有する鋼に、仕上温度がAr 点以上の熱間圧延を施し、熱間圧延後2秒以内に冷却を開始し、その冷却を70℃/s以上の冷却速度で100℃以上の温度域にわたって行い、得られた熱延鋼板に下記の条件式を満たす冷間圧延率CR(%)で冷間圧延を施した後、(α+γ)二相域にて焼鈍し、最終ミクロ組織をフェライトと低温変態相からなる複合組織とすることを特徴とする、焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法を提供する。
C≦0.025%の場合、Δr<−0.05×CR+4.25
C>0.025%の場合、Δr<−0.03×CR+2.40
ただし、Δrはr値の面内異方性であり|Δr|<0.15を満たす。
本発明の冷延鋼板において、前記焼鈍後、電気亜鉛系めっきを施してもよいし、溶融亜鉛系めっきを施してもよい。また、前記溶融亜鉛系めっきを施した後に合金化処理を施してもよい。さらに、前記めっき後にさらに有機被膜処理を施してもよい。
【0015】
【発明の実施の形態】
以下、本発明について詳細に説明する。
まず、成分組成について説明する。
本発明に係る冷延鋼板は、mass%で、C:0.008%以上0.05%未満、Si:2.0%以下、Mn:1%以上3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部Feおよび不可避的不純物からなる。さらにCr:1%以下、Mo:1%以下、V:1%以下、Ti:0.1%以下のうち1種以上を含有してもよい。
【0016】
C:0.05%未満
Cは、鋼の引張強度を確保するために必須な元素であるが、0.05%以上の場合加工性の低下が著しく、本発明が主対象とする自動車用鋼板としての成形性を有しない。さらには溶接性の観点からも好ましくない。したがって、C量は0.05%未満とする。なお、Cは自動車外板等の成形性の観点からはできるだけ低減することが望ましく、0.04%以下とすることが好ましい。しかし、一定体積率の低温変態相を形成させるためには、一定量含有することが必要である。そのため、他の元素の含有量にもよるが、C量を0.008%以上とすることが望ましい。
【0017】
Si:2.0%以下
Siは、強度確保および低温変態相を安定して得るために有効な元素であるが、2.0%を超えると、表面性状が劣化し、めっき鋼板とした場合にめっき密着性が著しく劣化する。したがって、Si量を2.0%以下とする。さらに優れた表面性状を得るためには1.5%以下とすることが望ましい。
【0018】
Mn:3.0%以下
Mnは、一般に鋼中のSをMnSとして析出させてスラブの熱間割れを防止するのに有効である。Mn量が3.0%を超えると、スラブコストの著しい上昇を招くことだけでなく、加工性の劣化を招く。したがって、Mn量は3.0%以下とする。本発明では、マルテンサイト相を形成させるために、オーステナイト安定化元素であるMnを一定量添加することが必須である。そのため、他の元素の含有量にもよるが、Mn量を1%以上とすることが望ましい。
【0019】
P:0.08%以下
Pは、強度確保に有効な元素であるが、0.08%を超えて添加するとプレス成形後の耐二次加工脆性を劣化させ、亜鉛めっき鋼板とした場合に合金化処理性の低下を引き起こす。したがって、P量を0.08%以下とする。
【0020】
S:0.03%以下
Sは、熱間加工性を低下させ、スラブの熱間割れ感受性を高め、0.03%を超えると微細なMnSの析出により加工性を劣化させる。したがって、S量を0.03%以下とする。
【0021】
Al:0.01〜0.1%
Alは鋼の脱酸に寄与するとともに、鋼中の不要な固溶Nを窒化物として固定する役割がある。この効果は、Alが0.01%未満では十分ではなく、0.1%を超えても添加量に見合う効果が得られない。したがって、Al量を0.01〜0.1%の範囲内とする。
【0022】
N:0.01%以下
N量が0.01%を超えると、過剰な窒化物の存在により延性、靱性が劣化する。したがって、N量を0.01%以下とする。なお、N量は成形性の観点からはできるだけ低減することが望ましい。コスト面とのバランスを考慮すると、0.004%以下とするのが好ましい。
【0023】
Cr,Mo,V:それぞれ1%以下
Cr,Mo,Vは、オーステナイト相の焼入性を向上させるため、低温変態相を安定して得るのに大変有効である。また、溶接の際の熱影響部(HAZ)の軟化抑制にも効果があるため、必要に応じて添加する。しかし、添加量がそれぞれ1%を超えると、HAZの硬度上昇が大きくなりすぎる。したがって、Cr,Mo,Vを添加する場合は、それぞれ1%以下とする。
【0025】
i:0.1%以下
iは、窒化物を形成し、Nを固定化する働きがある。Alに代わって、TiによりNを固定することにより、成形性の向上が期待できるので、必要に応じて添加する。しかし、0.1%を超えて添加しても、コストに見合う効果が得られないので、添加する場合には0.1%以下とする。ただし、N固定に必要な量より過剰にTi添加することは好ましくない。これは過剰Tiが炭化物を形成し、低温変態相を安定して生成するのが困難になるためである。
【0026】
本発明において、上記成分の他、残部はFeおよび不可避的不純物からなる。
【0027】
次に、焼付硬化性について説明する。
現状、ドアやフードのような自動車外板パネルに適用されている、バッチ焼鈍による低面内異方性冷延鋼板は、十分な焼付硬化性を有しておらず、耐デント性が不十分である。本発明は、優れた焼付硬化性を有する、面内異方性の小さい冷延鋼板を提供することを目的としているため、焼付硬化性を15MPa以上と規定する。ここで、焼付硬化性とは、2%予歪付加後、170℃×20分の熱処理を施した場合のYP増加量をいう。焼付硬化性が15MPa未満の場合、十分な耐デント性が得られない。さらに、耐デント性を改善するには、焼付硬化性を、25MPa以上にすることがより望ましい。本発明鋼板は、耐時効性に極めて優れており、自動車外板パネル等に適する。本発明鋼板は、30℃×14ヶ月相当の促進時効後にも、YPEL復活、YP上昇は見られない。
【0028】
次に、面内異方性について説明する。
面内異方性Δr:絶対値で0.15未満
r値の面内異方性指数Δrの絶対値|Δr|を小さくすることにより、回転対称形状の部品を均一に成形することができるとともに、材料の板取り方向が任意に可能となる。この|Δr|が0.15以上となると、深絞り成形後の耳形成が大きくなり、板厚分布等の品質が不均一となる。さらに、耳切り作業による作業コストの増加と、材料歩留まりの低下を招く。以上の理由から本発明においては、|Δr|<0.15と規定する。なお、板幅方向(圧延方向に対し90°方向)のr値r90を1.3以下とすることが望ましい。これはr<r45<r90の大小関係の場合、Δrは計算上減少するが、rとr90の差(LC差)が拡大するので、r90に上限を設けることにより、LC差を低く抑えるためである。実用上は、r90を1.3以下とすれば、このLC差も考慮した面内異方性が十分に小さくなると言える。
【0029】
Δrの条件式:
C≦0.025%の場合 Δr<−0.05×CR+4.25
C>0.025%の場合 Δr<−0.03×CR+2.40
上記Δrの条件式は、本発明において極めて重要である。上述したように、一般的に、冷圧率を増加させることにより、Δrを低減することが可能である。しかしながら、自動車外板パネル用途のような広幅材の場合、1回の冷間圧延で高い冷間圧延率を付与することは、圧延荷重、圧延能率、通板性、さらには圧延後の板形状・性状の観点から非常に難しい。したがって、低い圧延率で、面内異方性を低減させることができなければ、実用上意味がない。本発明者らは、実機テストを重ね検討した結果、C≦0.025%の場合、Δr<−0.05×CR+4.25の条件式を満足するような冷圧率で、面内異方性を低減させなければ、事実上、営業生産が困難であることを見出した。C量がさらに増加した場合、圧延負荷が高くなるので、Δr<−0.03×CR+2.40の条件式を満足する冷圧率で面内異方性を低減させる必要がある。したがって、圧延負荷を低減させ、さらに生産性を改善するために、本発明では、上記条件式を満足する冷圧率とする。なお、上記条件式中、CRは冷間圧延率(%)である。
【0030】
次に、ミクロ組織について説明する。
ミクロ組織は、本発明が目的とする焼付硬化性を有し、かつ低冷圧率で、面内異方性を|Δr|<0.15に制御するために、非常に重要である。フェライト単相組織(またはフェライト+パーライト組織)の場合、|Δr|を低減するには極めて高い冷圧率を付与して集合組織を制御する必要があり、|Δr|<0.15を達成することは極めて困難であったが、本発明では、ミクロ組織をフェライト+低温変態相とし、低温変態相を利用することにより、より低い冷圧率でΔrを制御することができ、従来技術のフェライト(+パーライト)組織の鋼では困難であった面内異方性の低減が可能となる。これは、フェライト単相組織の場合には、集合組織に依存した塑性変形が起こるのに対し、本発明鋼では、硬質の低温変態相が塑性変形に影響を及ぼすためと推定される。このようにミクロ組織を制御することにより、実機生産上可能な低冷圧率で、面内異方性を低減することが可能となる。ここで、低温変態相とは、マルテンサイト相を主対象とするが、ベイナイト相、残留γ相、不可避的な炭化物が含まれても良い。上記の硬化を発揮させ、かつ成形性の劣化を抑制するためには、低温変態相の体積率を1%以上、10%以下、さらには2%以上、8%未満とすることが望ましい。
【0031】
次に、本発明の製造方法について説明する。
上述の面内異方性の小さい冷延鋼板を得ることが可能な製造方法は、上述の化学成分組成を有する鋼に、仕上温度がAr 点以上の熱間圧延を施し、仕上圧延終了後2秒以内に冷却を開始し、その冷却を70℃/s以上の冷却速度で100℃以上の温度域にわたって行い、得られた熱延鋼板に上記Δrの条件式を満たす冷間圧延率で冷間圧延を施し、(α+γ)二相域にて焼鈍し、最終ミクロ組織をフェライトと低温変態相からなる複合組織とする。
【0033】
焼鈍温度:(α+γ)二相域
最終ミクロ組織:フェライト+低温変態相
本焼鈍条件は、本発明が目的とする焼付硬化性を有し、かつ低冷圧率で、面内異方性を|Δr|<0.15に制御するために、非常に重要である。すなわち、このように焼鈍温度を(α+γ)二相域とすることにより、最終ミクロ組織をフェライト+低温変態相に制御することができ、上述したように実機生産上可能な低冷圧率で、面内異方性を低減することを可能とした。低温変態相をより安定して得るには、均熱温度を800℃以下とすることが望ましい。
【0034】
熱間圧延後の冷却開始時間:仕上圧延終了後2秒以内
熱間圧延の仕上圧延終了後、冷却開始までの時間は、焼鈍後に好ましい集合組織を得るために特に重要であり、この時間が2秒を超えると熱延板が低温変態相主体の組織とならず、最終製品の|Δr|が低減しない場合がある。したがって、仕上圧延終了後2秒以内に冷却を開始する。また、面内異方性を低減するためには、さらに冷却開始までの時間を短縮することが効果的であり、1秒以内とすることが望ましい。
【0035】
熱間圧延後の冷却条件:100℃以上の温度域を冷却速度70℃/s以上
熱間圧延後の冷却においては、冷却を行う温度域の温度幅ΔTおよび冷却速度の制御が極めて重要である。これは、本発明の化学成分組成を有する鋼から、実機を用いて種々の冷却条件で熱延鋼板を製造し、それらの冷延鋼板について詳細に検討した結果得られた知見である。冷却温度幅ΔTが100℃以上になると、面内異方性|Δr|が顕著に低下する。また、冷却速度が70℃/s以上になると、|Δr|が顕著に低下しており、これは、熱延鋼板の組織が変化したためと考えられる。以上より、本発明では、圧延後の冷却条件として、100℃以上の温度域(冷却温度幅)について冷却速度70℃/s以上とする。
【0036】
本発明の冷延鋼板は、電気亜鉛系めっき鋼板あるいは溶融亜鉛系めっき鋼板としても、目的の効果が得られることは言うまでもない。溶融亜鉛系めっき鋼板の場合、合金化処理を施してもよい。また、これらの本発明の亜鉛系めっき鋼板においては、めっき後にさらに有機被膜処理を施してもよい。
【0037】
本発明においては、スラブを熱間圧延するにあたって、加熱炉で再加熱後に圧延するか、または加熱することなく直接圧延することができる。また、焼鈍後の冷却速度については、最終的なミクロ組織をフェライト+低温変態相とするために、成分系に適応した冷却速度が必要なのはいうまでもない。要は、最終的なミクロ組織をフェライト+低温変態相の複合組織とすればよい。
【0038】
なお、本発明者らの検討の結果、本発明の冷延鋼板の製造過程において、熱延鋼板の組織を低温変態相主体の組織とすることが最終製品の面内異方性|Δr|の低減のために望ましいという知見が得られた。ここで低温変態相とは、アシキュラーフェライト、ベイニティックフェライト、ベイナイト、マルテンサイトおよびそれらの混合組織である。この熱延鋼板の組織制御による面内異方性|Δr|の低減については、現在メカニズムを解明中であるが、通常冷却で製造されたフェライト+パーライト組織の熱延鋼板と比較して、集合組織が大きく変化していることが確認された。したがって、この熱延鋼板の集合組織変化が、最終的な冷延鋼板の再結晶集合組織の形成において、面内異方性|Δr|の低減に有利に作用しているものと考えられる。
【0039】
【実施例】
表1に示す鋼番No.1〜10の鋼を溶製後、連続鋳造によりスラブとした。表1に示すように、本発明鋼No.1〜6は、いずれも、規定した成分範囲内にあるのに対し、比較例No.7〜10は、規定した成分範囲外である。すなわち、No.7〜10はそれぞれC量、Si量、Mn量、P量が上限値を上回るため、規定の成分範囲を外れる例である。
【0040】
これらスラブを1200℃に加熱後、通常操業の仕上温度(Ar点以上)、巻取温度の範囲内で熱間圧延を行い、熱延鋼板を製造した。この際、仕上圧延後の冷却速度、冷却温度幅(ΔT)を変化させた。この熱延鋼板を酸洗後、約65〜90%の範囲の冷圧率で冷間圧延を行った。その後、連続焼鈍ライン、連続溶融亜鉛めっきライン、もしくはバッチ焼鈍ラインに通板した。一部は、連続焼鈍後に、電気亜鉛めっきラインに通板した。最後に、圧下率0.5〜1.5%の調質圧延を施した。
【0041】
これらの鋼板のBH(焼付硬化)量とr値を調査した。それらの試験結果を製造条件、熱延板ミクロ組織、冷圧率、焼鈍・めっき条件、最終ミクロ組織とともに表2に示す。
【0042】
表2に示す通り、規定成分範囲内にあり、最終ミクロ組織がフェライト+低温変態相であり、かつ15MPa以上のBH量を有し、かつ所定の冷圧率以下でΔrの絶対値が0.15未満を満足するNo.1〜3、8〜11が本発明鋼である。一方、このうち一つでも、規定範囲を外れると、本発明の対象外となる。例えば、No.4は、成分、熱延板組織は、規定範囲内にあるものの、最終ミクロ組織が本発明の範囲から外れるため、Δrを所定の範囲内に低減するには、大きな冷圧率を必要とする例である。No.5は、成分、Δrは、規定範囲内にあるものの、焼付硬化量が小さいため、耐デント性に問題があり、本発明範囲外となる。No.6、7は、熱延条件が不適なため、Δrが規定範囲を外れた例である。
【0043】
【表1】

Figure 0004042560
【0044】
【表2】
Figure 0004042560
【0045】
【発明の効果】
以上説明したように、本発明によれば、化学成分を特定の範囲内に制御するとともに、熱延板を組織制御した上で、最終的にフェライト+低温変態相からなる組織とすることにより、従来達成することのできなかった焼付硬化性を有し、かつ面内異方性の小さい冷延鋼板(亜鉛系めっき鋼板を含む)を製造することが可能となる。このため、本発明の鋼板は、自動車用鋼板をはじめ、家庭用電化製品等に広く活用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-rolled steel sheet for automotive outer panel components having excellent bake hardenability and small in-plane anisotropy of r value, and a method for producing the same.
[0002]
[Prior art]
At present, some automobile manufacturers apply cold-rolled steel sheets with small in-plane anisotropy to automobile outer panel (for example, doors, hoods, etc.). It is considered that there is a merit in suppressing the occurrence of surface stripe pattern defects, etc., by making the plate-cutting direction during press molding arbitrary. In addition, steel plates with small in-plane anisotropy are desired for rotationally symmetric parts such as automobiles and home appliances. By reducing the in-plane anisotropy, the ear formation after deep drawing is reduced, the quality of the plate thickness distribution and the like is made uniform, and the increase in work costs and the decrease in material yield due to the ear cutting work are suppressed. be able to. Further, there is a great merit that the direction of cutting the material can be arbitrarily selected, and user convenience is improved.
[0003]
In this case, as the in-plane anisotropy, the in-plane anisotropy of the plastic strain ratio r value has a great influence, and the r value in the 0 °, 45 °, and 90 ° directions with respect to the rolling direction is used as the parameter. Δr = (r 0 + r 90 −2r 45 ) / 2 calculated using r 0 , r 45 and r 90 is known. In general, it is known that Δr of a cold-rolled steel sheet decreases as the cold pressure ratio increases. For example, in low carbon steel, Δr = 0 is a very high cold pressure ratio (for example, more than 85%). However, in actual operation, giving such a high cold rolling rate to a steel plate for automobiles by one cold rolling is that rolling load, rolling efficiency, sheet passability, manufacturing cost, and also after rolling It is very difficult from the viewpoint of plate shape and properties.
[0004]
Regarding reduction of in-plane anisotropy of cold-rolled steel sheet, for example, Patent Document 1 discloses a method of manufacturing a cold-rolled thin sheet or strip having quasi-isotropic deformation characteristics using titanium-containing steel. Proposed. This technique involves the addition of 0.01 to 0.04% titanium, up to 0.15% copper, vanadium, or one or more elements of the nickel group to low carbon steel, and the slab heating temperature, The hot rolling finish temperature and the coiling temperature are specified and hot rolling is performed, the cold pressure ratio is specified according to the titanium content, the cold rolling is performed, and the bundle is recrystallized and annealed at a temperature of A 1 point or less. (It seems to mean that the coil is annealed). In this case, the structure of the steel becomes a ferrite structure by batch annealing.
[0005]
Further, for example, in Patent Document 2, forcible cooling is performed at a finish rolling sheet thickness ratio (rolling ratio) of 13 or more in hot rolling, and at a cooling rate of 20 to 65 ° C./sec after completion of hot rolling. A method for improving deep drawability and in-plane anisotropy has been proposed by defining the inlet temperature and the temperature range of forced cooling after the end of hot rolling with the formulas of C, Mn, and P contents. In this case, the steel structure is a ferrite structure or a ferrite + pearlite structure.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 8-14003 [Patent Literature]
Japanese Examined Patent Publication No. 61-7455 [0007]
[Problems to be solved by the invention]
However, since the technique described in Patent Document 1 is premised on batch annealing, there is a problem that productivity is low compared to continuous annealing. In the case of batch-annealed materials, particularly in the case of Ti-added steel as in the described technology, striped pattern defects (ghost bands) may occur on the surface during press molding, which is unsuitable for automotive outer panel applications. Furthermore, in the case of a batch annealed material, the bake hardenability is extremely small, and when applied to an automobile outer plate such as a door or a hood, there is a big problem that the dent resistance is not sufficient.
[0008]
The technique described in Patent Document 2 is merely a general method for producing a low-carbon cold-rolled steel sheet that defines the amounts of C, Mn, P, and the like. Therefore, Δr obtained by this prior art is 0.15 to 0.25 as seen in the examples (Table 2 invention examples), which sufficiently improves the in-plane anisotropy. However, in terms of formability and the like, the characteristics of the low in-plane anisotropic cold-rolled steel sheet for automobile outer sheets, which is the object of the present invention, are not satisfied.
[0009]
As described above, in the conventional technology of cold-rolled steel sheet, the in-plane anisotropy is not sufficiently improved, or the technology limited to batch annealing is insufficient for bake hardenability. The intended low in-plane anisotropic cold-rolled steel sheet having sufficient bake hardenability and small r-plane in-plane anisotropy has not been obtained.
[0010]
The present invention has been made in view of such circumstances, and has a bake hardenability of 15 MPa or more and a cold rolled steel sheet for automotive outer panel components having a small in-plane anisotropy of r value and a method for producing the same. The purpose is to provide.
[0011]
[Means for Solving the Problems]
In order to obtain a cold-rolled steel sheet having bake hardenability and small in-plane anisotropy, which has been difficult to achieve with the prior art, the present inventors have conducted detailed studies, particularly focusing on the chemical composition and steel structure. went. As a result, by controlling to a structure in which the finely dispersed martensite phase is uniformly distributed in the ferrite phase, it is possible to produce a cold-rolled steel sheet having small in-plane anisotropy and excellent bake hardenability. I found out.
[0012]
The present invention has been completed based on such findings, and in mass%, C: 0.008% or more and less than 0.05%, Si: 2.0% or less, Mn: 1% or more . 0% or less, P: 0.08% or less, S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, the balance being Fe and inevitable impurities, The structure is a composite structure composed of ferrite and a low-temperature transformation phase, has bake hardenability of 15 MPa or more, and the in-plane anisotropy Δr of r value satisfies | Δr | <0.15 and the following conditional expression: Disclosed is a cold-rolled steel sheet for an automotive outer panel component having excellent bake hardenability and small in-plane anisotropy.
In the case of C ≦ 0.025%, Δr <−0.05 × CR + 4.25
When C> 0.025%, Δr <−0.03 × CR + 2.40
However, CR is a cold rolling rate (%).
[0013]
In this case, the above composition further Cr: 1% or less, Mo: 1% or less, V: 1% or less, T i: may contain one or more of the under 0.1% or less.
[0014]
In the present invention, the steel having the above composition is subjected to hot rolling at a finishing temperature of Ar 3 points or more, and cooling is started within 2 seconds after hot rolling, and the cooling is performed at 70 ° C./s or more. It is performed over a temperature range of 100 ° C. or higher at a cooling rate, and the obtained hot-rolled steel sheet is cold-rolled at a cold rolling rate CR (%) satisfying the following conditional expression, and then in the (α + γ) two-phase region. A method for producing cold-rolled steel sheets for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy, characterized by annealing and making the final microstructure a composite structure consisting of ferrite and a low-temperature transformation phase I will provide a.
In the case of C ≦ 0.025%, Δr <−0.05 × CR + 4.25
When C> 0.025%, Δr <−0.03 × CR + 2.40
However, Δr is the in-plane anisotropy of the r value and satisfies | Δr | <0.15.
In the cold-rolled steel sheet of the present invention, after the annealing, electrogalvanizing or hot dip galvanizing may be performed. Further, after the hot dip galvanizing, the alloying treatment may be performed. Furthermore, an organic coating treatment may be further performed after the plating.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
First, the component composition will be described.
The cold-rolled steel sheet according to the present invention is mass%, C: 0.008% or more and less than 0.05%, Si: 2.0% or less, Mn: 1% or more and 3.0% or less, P: 0.08. %: S: 0.03% or less, Al: 0.01 to 0.1%, N: 0.01% or less, and the balance is Fe and inevitable impurities . Further Cr: 1% or less, Mo: 1% or less, V: 1% or less, T i: may contain one or more of the under 0.1% or less.
[0016]
C: Less than 0.05% C is an essential element for securing the tensile strength of steel. However, when it is 0.05% or more, the workability is remarkably lowered, and the steel sheet for automobiles to which the present invention is mainly applied. It does not have moldability as Furthermore, it is not preferable from the viewpoint of weldability. Therefore, the C content is less than 0.05%. Note that C is desirably reduced as much as possible from the viewpoint of moldability of an automobile outer plate or the like, and is preferably 0.04% or less. However, in order to form a low temperature transformation phase having a constant volume ratio, it is necessary to contain a certain amount. Therefore, although depending on the content of other elements, it is desirable that the C content be 0.008% or more.
[0017]
Si: 2.0% or less Si is an effective element for ensuring strength and stably obtaining a low-temperature transformation phase. However, if it exceeds 2.0%, surface properties deteriorate and a plated steel sheet is obtained. Plating adhesion is significantly deteriorated. Therefore, the Si amount is set to 2.0% or less. Further, in order to obtain excellent surface properties, the content is desirably 1.5% or less.
[0018]
Mn: 3.0% or less Mn is generally effective for preventing hot cracking of a slab by precipitating S in steel as MnS. If the amount of Mn exceeds 3.0%, not only will the slab cost increase significantly, but workability will be degraded. Therefore, the Mn content is 3.0% or less. In the present invention, in order to form a martensite phase, it is essential to add a certain amount of Mn, which is an austenite stabilizing element. Therefore, although it depends on the content of other elements, the Mn content is preferably 1% or more.
[0019]
P: 0.08% or less P is an element effective for securing the strength, but if added over 0.08%, the secondary work brittleness resistance after press forming deteriorates and an alloy is formed when a galvanized steel sheet is obtained. Cause degradation of chemical treatment. Therefore, the P content is 0.08% or less.
[0020]
S: 0.03% or less S decreases the hot workability and increases the hot cracking susceptibility of the slab. If it exceeds 0.03%, the workability is deteriorated due to the precipitation of fine MnS. Therefore, the S content is 0.03% or less.
[0021]
Al: 0.01 to 0.1%
Al contributes to deoxidation of steel and also has a role of fixing unnecessary solid solution N in the steel as a nitride. This effect is not sufficient when Al is less than 0.01%, and even if it exceeds 0.1%, an effect commensurate with the amount of addition cannot be obtained. Therefore, the Al content is set within a range of 0.01 to 0.1%.
[0022]
N: 0.01% or less When the N amount exceeds 0.01%, ductility and toughness deteriorate due to the presence of excess nitride. Therefore, the N content is 0.01% or less. Note that the amount of N is desirably reduced as much as possible from the viewpoint of moldability. Considering the balance with the cost, it is preferably 0.004% or less.
[0023]
Cr, Mo, V: 1% or less respectively Cr, Mo, V improves the hardenability of the austenite phase, and is very effective in stably obtaining a low temperature transformation phase. Moreover, since it is effective also in the softening suppression of the heat affected zone (HAZ) in the case of welding, it adds as needed. However, if the addition amount exceeds 1%, the hardness increase of HAZ becomes too large. Therefore, when adding Cr, Mo, V, it is 1% or less respectively.
[0025]
T i: 0.1% or less T i has a function of forming nitrides and fixing N. On behalf of the Al, by fixing the more N to T i, improvement in moldability since it can be expected, are added if necessary. However, even if added over 0.1%, an effect commensurate with the cost cannot be obtained, so when added, the content is made 0.1% or less. However, it excessively T i added pressure than that required to N fixation is not preferable. This excess T i forms a carbide is because it is difficult to produce stably a low temperature transformation phase.
[0026]
In the present invention , in addition to the above components, the balance consists of Fe and inevitable impurities.
[0027]
Next, bake curability will be described.
Currently, low in-plane anisotropic cold-rolled steel sheets by batch annealing, which are applied to automotive exterior panels such as doors and hoods, do not have sufficient bake hardenability and have insufficient dent resistance. It is. The purpose of the present invention is to provide a cold-rolled steel sheet having excellent bake hardenability and small in-plane anisotropy, and therefore the bake hardenability is defined as 15 MPa or more. Here, bake hardenability refers to the amount of increase in YP when heat treatment is performed at 170 ° C. for 20 minutes after 2% pre-strain is added. When the bake hardenability is less than 15 MPa, sufficient dent resistance cannot be obtained. Furthermore, in order to improve the dent resistance, it is more desirable that the bake hardenability is 25 MPa or more. The steel sheet of the present invention is extremely excellent in aging resistance and is suitable for automobile outer panel and the like. The steel sheet of the present invention does not show YPEL recovery or YP increase even after accelerated aging equivalent to 30 ° C. × 14 months.
[0028]
Next, in-plane anisotropy will be described.
In-plane anisotropy Δr: By reducing the absolute value | Δr | of the in-plane anisotropy index Δr having an absolute value of less than 0.15, it is possible to uniformly mold a rotationally symmetric part. , The material cutting direction can be arbitrarily selected. When this | Δr | is 0.15 or more, the ear formation after deep drawing becomes large, and the quality such as the plate thickness distribution becomes non-uniform. Furthermore, the work cost is increased due to the ear cutting work, and the material yield is reduced. For the above reasons, in the present invention, | Δr | <0.15 is specified. The r value r 90 in the sheet width direction (90 ° direction with respect to the rolling direction) is preferably 1.3 or less. If this is the magnitude of r 0 <r 45 <r 90 , Δr is reduced on calculations, the difference between r 0 and r 90 (LC difference) is enlarged, by providing an upper limit on r 90, LC This is to keep the difference low. Practically, it can be said that if r 90 is 1.3 or less, the in-plane anisotropy considering this LC difference is sufficiently small.
[0029]
Conditional expression of Δr:
When C ≦ 0.025% Δr <−0.05 × CR + 4.25
When C> 0.025% Δr <−0.03 × CR + 2.40
The conditional expression of Δr is extremely important in the present invention. As described above, generally, it is possible to reduce Δr by increasing the cold pressure ratio. However, in the case of wide materials such as automotive outer panel applications, giving a high cold rolling rate in a single cold rolling is the rolling load, rolling efficiency, plate passing properties, and further the plate shape after rolling.・ It is very difficult from the viewpoint of properties. Therefore, if the in-plane anisotropy cannot be reduced at a low rolling rate, there is no practical meaning. As a result of repeated examinations of actual machine tests, the present inventors have found that in the case of C ≦ 0.025%, in-plane anisotropic with a cold pressure ratio satisfying the conditional expression of Δr <−0.05 × CR + 4.25. It has been found that it is practically difficult to produce the product without reducing the performance. When the amount of C further increases, the rolling load increases, so it is necessary to reduce the in-plane anisotropy at a cold pressure ratio that satisfies the conditional expression of Δr <−0.03 × CR + 2.40. Therefore, in order to reduce the rolling load and further improve the productivity, in the present invention, the cold pressure ratio satisfying the above conditional expression is set. In the above conditional expression, CR is the cold rolling rate (%).
[0030]
Next, the microstructure will be described.
The microstructure is very important in order to control the in-plane anisotropy to | Δr | <0.15 with the bake hardenability aimed at by the present invention and at a low cold pressure ratio. In the case of a ferrite single-phase structure (or ferrite + pearlite structure), it is necessary to control the texture by applying a very high cold pressure ratio in order to reduce | Δr |, and achieve | Δr | <0.15. However, according to the present invention, Δr can be controlled at a lower cold pressure rate by using a microstructure as a ferrite + low temperature transformation phase and utilizing the low temperature transformation phase. In-plane anisotropy, which was difficult with (+ pearlite) steel, can be reduced. This is presumed to be because, in the case of a ferrite single phase structure, plastic deformation depending on the texture occurs, whereas in the steel of the present invention, a hard low-temperature transformation phase affects plastic deformation. By controlling the microstructure in this way, it is possible to reduce the in-plane anisotropy at a low cold pressure rate that can be achieved in actual production. Here, the low temperature transformation phase mainly includes a martensite phase, but may include a bainite phase, a residual γ phase, and an inevitable carbide. In order to exhibit the above-mentioned curing and suppress deterioration of moldability, it is desirable that the volume ratio of the low-temperature transformation phase is 1% or more and 10% or less, further 2% or more and less than 8%.
[0031]
Next, the manufacturing method of this invention is demonstrated.
A manufacturing method capable of obtaining a cold-rolled steel sheet having a small in-plane anisotropy is obtained by subjecting a steel having the above-described chemical composition to hot rolling at a finishing temperature of Ar 3 points or more and after finishing rolling. Cooling is started within 2 seconds, the cooling is performed at a cooling rate of 70 ° C./s or more over a temperature range of 100 ° C. or more, and the obtained hot-rolled steel sheet is cooled at a cold rolling rate that satisfies the above conditional expression of Δr. Hot rolling is performed, and annealing is performed in the (α + γ) two-phase region, so that the final microstructure is a composite structure composed of ferrite and a low-temperature transformation phase.
[0033]
Annealing temperature: (α + γ) Two-phase region final microstructure: Ferrite + low-temperature transformation phase The main annealing conditions have the objective bake hardenability of the present invention, low cold pressure ratio, and in-plane anisotropy | Δr It is very important to control | <0.15. That is, by setting the annealing temperature to the (α + γ) two-phase region in this way, the final microstructure can be controlled to the ferrite + low temperature transformation phase, and as described above, at a low cold pressure rate that can be achieved in actual production, It was possible to reduce the in-plane anisotropy. In order to obtain a low temperature transformation phase more stably, it is desirable that the soaking temperature is 800 ° C. or lower.
[0034]
Cooling start time after hot rolling: within 2 seconds after finish rolling The time from the finish of hot rolling to the start of cooling is particularly important for obtaining a preferable texture after annealing, and this time is 2 If it exceeds 2 seconds, the hot-rolled sheet does not become a structure mainly composed of a low-temperature transformation phase, and | Δr | of the final product may not be reduced. Therefore, cooling is started within 2 seconds after finishing rolling. Further, in order to reduce the in-plane anisotropy, it is effective to further shorten the time until the start of cooling, and it is desirable to make it within 1 second.
[0035]
Cooling conditions after hot rolling: In the cooling after hot rolling at a temperature range of 100 ° C. or higher at a cooling rate of 70 ° C./s or more, it is extremely important to control the temperature range ΔT and the cooling rate in the temperature range where cooling is performed. . This is a knowledge obtained as a result of manufacturing hot-rolled steel sheets from steel having the chemical composition of the present invention under various cooling conditions using an actual machine and examining these cold-rolled steel sheets in detail. When the cooling temperature width ΔT is 100 ° C. or more, the in-plane anisotropy | Δr | Further, when the cooling rate is 70 ° C./s or more, | Δr | is remarkably lowered, which is considered to be because the structure of the hot-rolled steel sheet has changed. From the above, in the present invention, the cooling rate after rolling is set to a cooling rate of 70 ° C./s or more in a temperature range (cooling temperature range) of 100 ° C. or higher.
[0036]
Needless to say, the cold-rolled steel sheet of the present invention can achieve the intended effect even if it is an electrogalvanized steel sheet or a hot-dip galvanized steel sheet. In the case of a hot dip galvanized steel sheet, an alloying treatment may be performed. Moreover, in these zinc-based plated steel sheets of the present invention, an organic coating treatment may be further performed after plating.
[0037]
In the present invention, when the slab is hot-rolled, it can be rolled after reheating in a heating furnace or directly without heating. Further, as for the cooling rate after annealing, it goes without saying that a cooling rate adapted to the component system is necessary in order to make the final microstructure a ferrite + low temperature transformation phase. In short, the final microstructure may be a composite structure of ferrite and a low-temperature transformation phase.
[0038]
As a result of the study by the inventors, in the manufacturing process of the cold-rolled steel sheet of the present invention, the in-plane anisotropy | Δr | The knowledge that it is desirable for reduction was obtained. Here, the low-temperature transformation phase includes acicular ferrite, bainitic ferrite, bainite, martensite, and a mixed structure thereof. Regarding the reduction of in-plane anisotropy | Δr | by controlling the structure of this hot-rolled steel sheet, the mechanism is currently being elucidated. It was confirmed that the organization was changing greatly. Therefore, it is considered that this texture change of the hot-rolled steel sheet has an advantageous effect on the reduction of the in-plane anisotropy | Δr | in the formation of the final recrystallized texture of the cold-rolled steel sheet.
[0039]
【Example】
Steel No. shown in Table 1 No. After melting 1-10 steel, it was made into a slab by continuous casting. As shown in Table 1, steel No. 1 of the present invention . 1 to 6 are all within the defined component range, whereas Comparative Examples No. 7-10 is outside the defined component range. That is, no . 7 to 10 are examples in which the C content, Si content, Mn content, and P content exceed the upper limit values, and thus deviate from the specified component range.
[0040]
After these slabs were heated to 1200 ° C., hot rolling was performed within the range of the finishing temperature of normal operation (Ar 3 points or more) and the coiling temperature to produce hot rolled steel sheets. At this time, the cooling rate after finishing rolling and the cooling temperature width (ΔT) were changed. The hot rolled steel sheet was pickled and then cold rolled at a cold pressure rate in the range of about 65 to 90%. Then, it passed through the continuous annealing line, the continuous hot dip galvanizing line, or the batch annealing line. Some were passed through an electrogalvanizing line after continuous annealing. Finally, temper rolling with a rolling reduction of 0.5 to 1.5% was performed.
[0041]
The BH (baking hardening) amount and r value of these steel plates were investigated. The test results are shown in Table 2 together with production conditions, hot-rolled sheet microstructure, cold pressing rate, annealing / plating conditions, and final microstructure.
[0042]
As shown in Table 2, it is within the specified component range, the final microstructure is ferrite + low temperature transformation phase, has a BH amount of 15 MPa or more, and has an absolute value of Δr of 0 or less at a predetermined cold pressure ratio or less. No. 15 satisfying less than 15 . 1 to 3 and 8 to 11 are steels of the present invention. On the other hand, even if one of these is out of the specified range, it is not covered by the present invention. For example, no . No. 4, although the components and hot-rolled sheet structure are within the specified range, the final microstructure is out of the scope of the present invention, so a large cold pressure ratio is required to reduce Δr within the predetermined range. It is an example. No. Although 5 is a component and Δr is within the specified range, there is a problem with dent resistance because the amount of bake-hardening is small, which is outside the scope of the present invention. No. 6 and 7 are examples in which Δr is out of the specified range because the hot rolling conditions are inappropriate.
[0043]
[Table 1]
Figure 0004042560
[0044]
[Table 2]
Figure 0004042560
[0045]
【The invention's effect】
As described above, according to the present invention, the chemical composition is controlled within a specific range, the structure of the hot-rolled sheet is controlled, and finally, the structure is composed of ferrite and a low-temperature transformation phase. It becomes possible to produce cold-rolled steel sheets (including galvanized steel sheets) having bake hardenability that could not be achieved in the past and having small in-plane anisotropy. For this reason, the steel plate of this invention can be widely utilized for household electrical appliances etc. including the steel plate for motor vehicles.

Claims (11)

mass%で、C:0.008%以上0.05%未満、Si:2.0%以下、Mn:1%以上3.0%以下、P:0.08%以下、S:0.03%以下、Al:0.01〜0.1%、N:0.01%以下で、残部Feおよび不可避的不純物からなり、ミクロ組織がフェライトと低温変態相からなる複合組織であり、15MPa以上の焼付硬化性を有し、r値の面内異方性Δrが、|Δr|<0.15および下記条件式を満たすことを特徴とする、焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。
C≦0.025%の場合、Δr<−0.05×CR+4.25
C>0.025%の場合、Δr<−0.03×CR+2.40
ただし、CRは冷間圧延率(%)である。
In mass%, C: 0.008% or more and less than 0.05%, Si: 2.0% or less, Mn: 1% or more and 3.0% or less, P: 0.08% or less, S: 0.03% Hereinafter, Al: 0.01 to 0.1%, N: 0.01% or less, the balance is Fe and inevitable impurities, and the microstructure is a composite structure consisting of ferrite and a low-temperature transformation phase. It has curability, r value in-plane anisotropy Δr satisfies | Δr | <0.15 and the following conditional expression, and has excellent bake hardenability and small in-plane anisotropy Cold-rolled steel sheet for automotive exterior panel parts .
In the case of C ≦ 0.025%, Δr <−0.05 × CR + 4.25
When C> 0.025%, Δr <−0.03 × CR + 2.40
However, CR is a cold rolling rate (%).
mass%で、さらに、Cr:1%以下、Mo:1%以下、V:1%以下、Ti:0.1%以下のうち1種以上を含有することを特徴とする、請求項1に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。In mass%, further, Cr: 1% or less, Mo: 1% or less, V: 1% or less, T i: characterized in that it contains one or more of under 0.1% or less, according to claim 1 A cold-rolled steel sheet for automobile outer panel components having excellent bake hardenability and small in-plane anisotropy. 前記冷延鋼板は電気亜鉛系めっきを施した電気亜鉛系めっき鋼板であることを特徴とする請求項1または請求項2に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。The cold rolled steel sheet excellent in bake hardenability according to claim 1 or claim 2, characterized in that an electric zinc-plated steel sheet which has been subjected to electrolytic zinc-based plating, and a small automotive exterior of plane anisotropy Cold rolled steel sheet for plate panel parts . 前記冷延鋼板は溶融亜鉛系めっきを施した溶融亜鉛系めっき鋼板であることを特徴とする請求項1または請求項2に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。The said cold-rolled steel sheet is a hot-dip galvanized steel sheet that has been subjected to hot dip galvanizing, and has excellent bake hardenability and low out-of- plane anisotropy. Cold rolled steel sheet for plate panel parts . 前記溶融亜鉛系めっきは、合金化処理が施されていることを特徴とする請求項4に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。The cold-rolled steel sheet for automotive outer panel components having excellent bake hardenability and small in-plane anisotropy according to claim 4, wherein the hot-dip galvanized plating is alloyed. 前記冷延鋼板はめっき後に有機被覆処理が施されていることを特徴とする請求項3から請求項5のいずれか1項に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板。The automobile having excellent bake hardenability and small in-plane anisotropy according to any one of claims 3 to 5, wherein the cold-rolled steel sheet is subjected to organic coating treatment after plating. Cold rolled steel sheet for outer panel parts . 請求項1または請求項2に記載の成分組成を有する鋼に、仕上温度がAr 点以上の熱間圧延を施し、熱間圧延後2秒以内に冷却を開始し、その冷却を70℃/s以上の冷却速度で100℃以上の温度域にわたって行い、得られた熱延鋼板に下記の条件式を満たす冷間圧延率CR(%)で冷間圧延を施した後、(α+γ)二相域にて焼鈍し、最終ミクロ組織をフェライトと低温変態相からなる複合組織とすることを特徴とする、焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法。
C≦0.025%の場合、Δr<−0.05×CR+4.25
C>0.025%の場合、Δr<−0.03×CR+2.40
ただし、Δrはr値の面内異方性であり|Δr|<0.15を満たす。
The steel having the component composition according to claim 1 or 2 is subjected to hot rolling at a finishing temperature of Ar 3 points or more, and cooling is started within 2 seconds after hot rolling. After performing cold rolling at a cooling rate CR (%) satisfying the following conditional expression on the hot-rolled steel sheet obtained at a cooling rate of s or higher over a temperature range of 100 ° C. or higher, (α + γ) two-phase Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and low in-plane anisotropy, characterized in that the final microstructure is a composite structure consisting of ferrite and a low-temperature transformation phase. Manufacturing method.
In the case of C ≦ 0.025%, Δr <−0.05 × CR + 4.25
When C> 0.025%, Δr <−0.03 × CR + 2.40
However, Δr is the in-plane anisotropy of the r value and satisfies | Δr | <0.15.
前記焼鈍後、電気亜鉛系めっきを施すことを特徴とする請求項7に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法。The method for producing a cold-rolled steel sheet for an automotive outer panel component having excellent bake hardenability and small in-plane anisotropy according to claim 7, wherein electrozinc plating is performed after the annealing. 前記焼鈍後、溶融亜鉛系めっきを施すことを特徴とする請求項7に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法。The method for producing a cold-rolled steel sheet for automotive outer panel components having excellent bake hardenability and small in-plane anisotropy according to claim 7, wherein hot-dip galvanizing is performed after the annealing. 前記溶融亜鉛系めっきを施した後に合金化処理を施すことを特徴とする請求項9に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法。An alloying treatment is performed after the hot dip galvanizing is applied, and the cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy is provided. Method. 前記めっき後にさらに有機被膜処理を施すことを特徴とする請求項8から請求項10のいずれか1項に記載の焼付硬化性に優れ、かつ面内異方性の小さい自動車外板パネル部品用冷延鋼板の製造方法。The organic coating treatment is further performed after the plating, and the cooling for an automotive outer panel component according to any one of claims 8 to 10, which has excellent bake hardenability and small in-plane anisotropy. A method for producing rolled steel sheets.
JP2002366749A 2002-12-18 2002-12-18 Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same Expired - Fee Related JP4042560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366749A JP4042560B2 (en) 2002-12-18 2002-12-18 Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366749A JP4042560B2 (en) 2002-12-18 2002-12-18 Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same

Publications (3)

Publication Number Publication Date
JP2004197155A JP2004197155A (en) 2004-07-15
JP2004197155A5 JP2004197155A5 (en) 2007-03-01
JP4042560B2 true JP4042560B2 (en) 2008-02-06

Family

ID=32763864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366749A Expired - Fee Related JP4042560B2 (en) 2002-12-18 2002-12-18 Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same

Country Status (1)

Country Link
JP (1) JP4042560B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702031B2 (en) 2010-11-29 2017-07-11 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5825481B2 (en) * 2010-11-05 2015-12-02 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and bake hardenability and its manufacturing method
JP5817805B2 (en) 2013-10-22 2015-11-18 Jfeスチール株式会社 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same
JP5817804B2 (en) 2013-10-22 2015-11-18 Jfeスチール株式会社 High strength steel sheet with small in-plane anisotropy of elongation and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9702031B2 (en) 2010-11-29 2017-07-11 Nippon Steel & Sumitomo Metal Corporation Bake-hardenable high-strength cold-rolled steel sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP2004197155A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US9322091B2 (en) Galvanized steel sheet
JP5332355B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
CA2731492C (en) Hot rolled dual phase steel sheet, and method of making the same
EP2392683B1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method therefor
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
JP5290245B2 (en) Composite structure steel plate and method of manufacturing the same
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP2007211338A5 (en)
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
JP2004232022A (en) Dual phase type high tensile strength steel sheet having excellent elongation and stretch flanging property, and production method therefor
JP4525383B2 (en) Low yield ratio high strength steel sheet with excellent bake hardening characteristics and method for producing the same
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP6843245B2 (en) High-strength galvanized steel sheet with excellent bendability and stretch flangeability and its manufacturing method
JP4042560B2 (en) Cold rolled steel sheet for automotive outer panel components with excellent bake hardenability and small in-plane anisotropy and method for producing the same
JP4258215B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP4113036B2 (en) Strain-age-hardening-type steel sheet excellent in elongation resistance at room temperature, slow aging at room temperature, and low-temperature bake-hardening characteristics, and a method for producing the same
JP2002226937A (en) Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same
CN114207172A (en) High-strength steel sheet, high-strength member, and method for producing same
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet
JP4781563B2 (en) High strength hot-rolled steel sheet with excellent bake hardenability and method for producing the same
JP4854924B2 (en) High-strength cold-rolled steel sheet excellent in press formability and manufacturing method thereof
JP2005036271A (en) Strain age hardening type steel excellent in cold non-aging property, and its production method
JPH0657336A (en) Production of high strength galvannealed steel sheet for high working
JP2005036272A (en) Strain age hardening type steel excellent in cold non-aging property and burring workability, and its production method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20030508

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20030508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4042560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees