JP4042328B2 - High frequency signal receiver - Google Patents

High frequency signal receiver Download PDF

Info

Publication number
JP4042328B2
JP4042328B2 JP2001007342A JP2001007342A JP4042328B2 JP 4042328 B2 JP4042328 B2 JP 4042328B2 JP 2001007342 A JP2001007342 A JP 2001007342A JP 2001007342 A JP2001007342 A JP 2001007342A JP 4042328 B2 JP4042328 B2 JP 4042328B2
Authority
JP
Japan
Prior art keywords
circuit
variable gain
demodulation
output
frequency signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001007342A
Other languages
Japanese (ja)
Other versions
JP2002217766A (en
Inventor
正教 鈴木
明 伊藤
雅克 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001007342A priority Critical patent/JP4042328B2/en
Publication of JP2002217766A publication Critical patent/JP2002217766A/en
Application granted granted Critical
Publication of JP4042328B2 publication Critical patent/JP4042328B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Circuits Of Receivers In General (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電界レベル差の大きな複数の高周波信号が入力される高周波信号受信装置に関するものである。
【0002】
【従来の技術】
以下、図8を用いて従来の高周波信号受信装置について説明する。
【0003】
従来の高周波信号受信装置は、電界レベル差の大きな複数の高周波信号が入力される入力端子1と、この入力端子1に入力された信号が供給される第一の可変利得回路2と、この第一の可変利得回路2の出力が供給される第一のフィルタ回路3と、この第一のフィルタ回路3の出力が一方の入力に供給される第一の混合回路4と、この第一の混合回路4の他方の入力に接続された第一の発振回路5と、前記第一の混合回路4の出力が供給される第二の可変利得回路6と、この第二の可変利得回路6の出力が供給される復調回路7と、この復調回路7の出力が接続された出力端子8と、前記復調回路7からの出力に基づいて、前記第一の可変利得回路2と前記第二の可変利得回路6の利得を制御する制御電圧発生回路9を備えた構成となっていた。
【0004】
従来の高周波信号受信装置における動作について図9を用いて説明する。図9において、10は入力端子1に入力される入力レベル(dBm)、11は利得(dB)、12は第二の可変利得回路6の利得グラフ、13は第一の可変利得回路2の利得グラフである。
【0005】
このグラフは、入力端子1に高周波信号が入力レベル10の範囲で入力された場合の第一の可変利得回路2と第二の可変利得回路6の利得配分を示している。入力レベル10が−80dBmから−70dBmに10dB上がった時は、第二の可変利得回路6は、利得グラフ12の12aに示すように利得を10dB下げる。このとき第一の可変利得回路2は利得グラフ13が示すように利得の変化はない。次に入力レベル10が−70dBmから0dBmに70dB上がった時は、第二の可変利得回路6は、利得グラフ12が示すように利得の変化はない。このとき第一の可変利得回路2は利得グラフ13の13aに示すように利得を70dB下げるように動作する。図9において第一の可変利得回路2と第二の可変利得回路6の利得カーブの変わる14のポイントをAGCディレーポイントと呼ぶ。
【0006】
このAGCディレーポイント14は、高周波信号受信装置を構成する上で、非常に重要な項目である。仮にAGCディレーポイント14を15の方向に設定すると、第一の可変利得回路2の利得が入力レベル10に対してより低く設定され、第一の混合回路4での歪特性は向上するが高周波信号受信装置のNF特性が悪化する。逆にAGCディレーポイント14を16の方向に設定すると、第一の可変利得回路2の利得がより高く設定され第一の混合回路4での歪特性が劣化するが、高周波信号受信装置のNF特性が向上する。このため従来の回路では、歪とNFが最適になるように復調回路7からの出力信号を用いて制御電圧発生回路9から第一の可変利得回路2と第二の可変利得回路6の利得を適宜設定していた。
【0007】
なお、これに類する技術として、例えば特願平11−354303号公報がある。
【0008】
【発明が解決しようとする課題】
しかしながら、このような従来の構成では、第一の可変利得回路2のNFが高周波信号受信装置の全体のNFを決定する上で支配的であることは明白だが、歪特性を考慮して利得を低く設定するため、強電界で多波の妨害信号が動的に変化しても常に最適な受信性能を向上できないという問題があった。
【0009】
本発明は、このような問題点を解決するもので強電界で多波の妨害信号が動的に変化しても常に最適な受信性能を確保できる高周波信号受信装置を提供することを目的としたものである。
【0010】
【課題を解決するための手段】
この目的を達成するために本発明の高周波信号受信装置は、入力端子と第一の可変利得回路の間に低雑音増幅回路とこの低雑音増幅回路と並列に接続されたスイッチを設け、サブルーチンAでは、制御電圧発生回路により前記低雑音増幅回路をオンとするとともに復調品質検出回路から出力される結果に基づいて第二の可変利得回路の利得を下げて最適値を決定し、サブルーチンBでは、前記制御電圧発生回路により前記低雑音増幅回路をオフにするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、前記サブルーチンA、Bにおけるそれぞれの前記結果を比較し、前記低雑音増幅器のオン・オフと前記第二の可変利得回路の利得を設定する。
【0011】
これにより、出力端子から出力される信号の品質を向上させるものである。
【0012】
【発明の実施の形態】
本発明の請求項1に記載の発明は、電界レベル差の大きな複数の高周波信号が入力される入力端子と、この入力端子に入力された信号が供給される第一の可変利得回路と、この第一の可変利得回路の出力が供給される非線形回路と、この非線形回路の出力が供給される第二の可変利得回路と、この第二の可変利得回路の出力が供給される復調回路と、この復調回路の出力が供給される復調品質検出回路と、この復調品質検出回路の出力が接続された出力端子と、前記復調品質検出回路から出力される結果に基づいて、前記第一の可変利得回路と前記第二の可変利得回路の利得を制御する制御電圧発生回路を備え、前記入力端子と前記第一の可変利得回路の間に低雑音増幅回路とこの低雑音増幅回路と並列に接続されたスイッチを設け、サブルーチンAでは、前記制御電圧発生回路により前記低雑音増幅回路をオンとするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、サブルーチンBでは、前記制御電圧発生回路により前記低雑音増幅回路をオフにするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、前記サブルーチンA、Bにおけるそれぞれの前記結果を比較し、前記低雑音増幅器のオン・オフと前記第二の可変利得回路の利得を設定することにより、前記出力端子から出力される信号の品質を向上させる高周波信号受信装置を提供できる。
【0013】
すなわち、強電界で多波の妨害信号が動的に変化しても常に最適な受信性能を維持できる高周波信号受信装置を提供できる。
【0014】
請求項2に記載の発明は、非線形回路を混合回路とした請求項1記載の高周波信号受信装置であり、安価な構成のシングルコンバージョン方式の高周波信号受信装置が提供できる。
【0015】
請求項3に記載の発明は、制御電圧発生回路に記憶回路を接続し、受信チャンネルごとにスイッチのオン・オフ及び第一の可変利得回路と第二の可変利得回路の制御値を前記記憶回路に記憶させた請求項2記載の高周波信号受信装置としたものであり、記憶回路の情報を基に制御値を設定できるため高速な設定時間を樹立できる高周波信号受信装置が提供できる。
【0016】
請求項4に記載の発明は、非線形回路をダブルスーパーヘテロダイン方式とした請求項1記載の高周波信号受信装置としたものであり、周波数通過特性の安定した高周波信号受信装置が提供できる。
【0017】
請求項5に記載の発明は、復調回路をデジタル復調回路で形成するとともに復調品質検出回路を符号誤り検出回路とした請求項1記載の高周波信号受信装置としたものであり、デジタル搬送波受信時に正確な復調品質信号検出ができる高周波信号受信装置が提供できる。
【0018】
請求項6に記載の発明は、復調回路をアナログ復調回路で形成するとともに復調品質検出回路をC/N検出回路とした請求項1記載の高周波信号受信装置としたものであり、アナログ搬送波受信時に正確な復調品質信号検出ができる高周波信号受信装置が提供できる。
【0019】
請求項7に記載の発明は、復調回路をデジタル復調動作とした第一の動作モードと、復調回路をアナログ復調動作とした第二の動作モードとをスイッチで切り替える請求項1記載の高周波信号受信装置としたものであり、デジタル搬送波とアナログ搬送波を一つの高周波信号処理回路部で構成できる安価な高周波信号受信装置が提供できる。
【0020】
以下、本発明の実施の形態について、図面を用いて説明する。
【0021】
(実施の形態1)
図1は、本発明の実施の形態1を示している。図1において電界レベル差の大きな複数の高周波信号が入力される入力端子17と、この入力端子17に入力された信号が供給される第一の可変利得回路18と、この第一の可変利得回路18の出力が供給される非線形回路19と、この非線形回路19の出力が供給される第二の可変利得回路20と、この第二の可変利得回路20の出力が供給される復調回路21と、この復調回路21の出力が供給される復調品質検出回路22と、この復調品質検出回路22の出力が接続された出力端子23と、前記復調品質検出回路22からの出力に基づいて、前記第一の可変利得回路18と前記第二の可変利得回路20の利得を制御する制御電圧発生回路24を備えたものにおいて、前記入力端子17と前記第一の可変利得回路18の間に低雑音増幅回路25とこの低雑音増幅回路25と並列に接続されたスイッチ26を設け、前記復調品質検出回路22からの出力に基づいて、前記スイッチ26のオン・オフと前記第一の可変利得回路18と前記第二の可変利得回路20の利得を予め定められた規則に従って、前記制御電圧発生回路24で制御する構成としている。
【0022】
以上のように構成された高周波信号受信装置について、以下にその動作を説明する。復調回路21に入力される高周波信号は、入力端子17の入力レベルがいかなる場合も一定レベルにするために、第一の可変利得回路18と第二の可変利得回路20の利得を適宜可変して動作することは、周知の内容である。
【0023】
通常の入力レベルの時は、スイッチ26をオンにして、低雑音増幅回路25を短絡して動作しているが、電界入力レベルが非常に低い弱電界においては、復調回路21に入力される高周波信号が、十分に増幅できずに復調品質検出回路22で復調品質が悪いと判定される。この出力信号を基に制御電圧発生回路24がスイッチ26をオフにするように指令を出し、低雑音増幅回路25が増幅動作をする。
【0024】
従って、復調回路21に入力される高周波信号が十分に増幅できるようになるため、出力端子23から出力される信号の品質を向上させる高周波信号受信装置を提供できる。
【0025】
なお、本発明において非線形回路19としたが、これは半導体などに代表される歪発生原因となるデバイスを示している。また、スイッチ26にはスイッチングダイオードで形成された電子スイッチを用いている。
【0026】
図2は、図1の制御電圧発生回路24の制御値を決定する動作フローチャートである。図2(a)は、制御電圧発生回路のメインフローチャート、図2(b)は低雑音増幅回路25をオンにしたサブルーチンA、図2(c)は低雑音増幅回路25をオフにしたサブルーチンBである。
【0027】
図2を用いて制御電圧発生回路の動作を説明する。
【0028】
まず図2(b),(c)のサブルーチンを使って、低雑音増幅回路25をオンまたはオフにした時の、夫々の最適制御値を導き出す。
【0029】
その手法としては、低雑音増幅回路25オンの場合は、図2(b)に示すように低雑音増幅回路25をオンにして、第二の可変利得回路20の利得を設定する。次に復調品質検出回路22の結果を保存する。第二の可変利得回路20の利得を下げてCのポイントへ戻る。これを繰り返して第二の可変利得回路20の最適値を決定する。
【0030】
一方、低雑音増幅回路25オフの場合は、図2(c)に示すように低雑音増幅回路25をオフにして、第二の可変利得回路20の利得を設定する。次に復調品質検出回路22の結果を保存する。第二の可変利得回路20の利得を下げてDのポイントに戻る。これを繰り返して第二の可変利得回路20の最適値を決定する。
【0031】
次に図2(a)のメインフローチャートを使って、先に求めた図2(b),(c)のサブルーチンの夫々の最適制御値の結果を比較して、低雑音増幅回路25と第二の可変利得回路20を設定する。これらの結果を基に、第一の可変利得回路18の設定値は容易に決定することができる。
【0032】
このフローチャートを高周波信号受信装置の動作開始時、もしくは一定の周期で実施することにより、入力レベルが非常に低い弱電界だけでなく、強電界で多波の妨害信号が動的に変化して入力端子17に入力しても常に最適な低雑音増幅回路25と第一の可変利得回路18と第二の可変利得回路20を設定できるため、NFと歪特性が最適に維持できる高周波信号受信装置が提供できる。
【0033】
(実施の形態2)
図3は、図1、図2の基本構成を基により具体的なシングルコンバージョン方式の高周波信号受信装置を形成した場合の実施の形態である。
【0034】
図3において図1と同一符号を用いたものは、同一のため説明を簡略化する。
【0035】
第一の可変利得回路18の出力には、その出力が供給される第一のフィルタ回路27と、この第一のフィルタ回路27の出力が一方の入力に供給される第一の混合回路28と、この第一の混合回路28の他方の入力に接続された第一の発振回路29と、前記第一の混合回路28の出力が供給される第二のフィルタ回路30と、この第二のフィルタ回路30の出力が供給される第二の可変利得回路20と、この第二の可変利得回路20の出力が供給されるデジタル復調回路31と、このデジタル復調回路31の出力が供給される符号誤り検出回路32と、この符号誤り検出回路32の出力が接続された出力端子23、前記符号誤り検出回路32からの出力に基づいて、前記第一の可変利得回路18と前記第二の可変利得回路20の利得を制御する制御電圧発生回路24を備え、前記入力端子17と前記第一の可変利得回路18の間に低雑音増幅回路25とこの低雑音増幅回路25と並列に接続されたスイッチ26を設け、前記符号誤り検出回路32からの出力に基づいて、前記スイッチ26のオン・オフと前記第一の可変利得回路18と前記第二の可変利得回路20の利得を予め定められた実施の形態1と同様の規則に従って、前記制御電圧発生回路24で制御する構成としている。また、41は要部回路ブロックである。
【0036】
次に図3を用いて、本実施の形態2の動作を説明する。入力端子17に入力されたデジタル搬送波信号は、低雑音増幅回路25と第一の可変利得回路18を通過した後に、第一のフィルタ回路27に入力される。この第一のフィルタ回路27で希望周波数だけを通過したデジタル搬送波信号は、第一の混合回路28に入力され第一の発振回路29で希望信号に応じた発振信号と混合して第一の中間信号に変換されて出力する。次に第二のフィルタ回路30で中間周波数のみを通過させて、第二の可変利得回路20を通過し、デジタル復調回路31でデジタル復調が行われ、符号誤り検出回路32を通過して出力端子23から出力される。
【0037】
図3におけるレベルダイアグラムは、以下の通りである。
【0038】
低雑音増幅回路25の利得はスイッチ26がオンのとき低雑音増幅回路25はオフ動作となり0dBの利得であり、スイッチ26がオフのとき低雑音増幅回路25はオン動作となり+20dBの利得であり、第一の可変利得回路18の可変利得範囲は、+25〜−45dBであり、第一のフィルタ回路27の利得は−10dBであり、第一の混合回路28の利得は+20dBであり、第二のフィルタ回路30の利得は−20dBであり、第二の可変利得回路20の可変利得範囲は+50〜+20dBである。
【0039】
入力端子17に入力されるデジタル搬送波信号のレベルが変化した時、低雑音増幅回路25と第一の可変利得回路18と第二の可変利得回路20を変化させて常にデジタル復調回路31に入力される入力レベルを−15dBm一定になるように制御電圧発生回路24が利得制御をしている。
【0040】
次に、図4を用いて、利得制御の方法について詳しく説明する。
【0041】
図4(a)は、低雑音増幅回路25をオフした場合の第一の可変利得回路18と第二の可変利得回路20の利得グラフであり、33は入力端子17に入力される入力レベル(dBm)、34は利得(dB)、35は第二の可変利得回路20の利得グラフ、36は第一の可変利得回路18の利得グラフである。
【0042】
図4(b)は、低雑音増幅回路25をオンした場合の第一の可変利得回路18と第二の可変利得回路20の利得グラフであり、37は第二の可変利得回路20の利得グラフ、38は第一の可変利得回路18の利得グラフである。
【0043】
先に述べたデジタル復調回路31に入力される入力レベルを−15dBm一定にするためには、以下のように動作している。
【0044】
図4(a)のグラフに示すように低雑音増幅回路25をオフした場合、入力レベル33が−80dBmから−70dBmに10dB上がったときは、第二の可変利得回路20は、利得グラフ35が示すように利得を+50dBから+40dBに下げる。このとき第一の可変利得回路18は利得グラフ36が示すように利得の変化はない。次に入力レベル33が−70dBmから0dBmに70dB上がった時は、第二の可変利得回路20は、利得グラフ35が示すように+40dB一定で利得の変化はない。このとき第一の可変利得回路18は利得グラフ36が示すように利得を+25dBから−45dBまで70dB下げるように動作する。図4(a)において第一の可変利得回路18と第二の可変利得回路20の利得カーブの変わるポイント39を低雑音増幅回路オフ時のAGCディレーポイントと呼ぶ。
【0045】
次に図4(b)のグラフに示すように低雑音増幅回路25をオンした場合、低雑音増幅回路25の利得が+20dBあるため、図4(a)のグラフから−20dB分弱電界側にAGCディレーポイント39がオフセットされた形で動作する。すなわち、入力レベル33が−100dBmから−90dBmに10dB上がった時は、第二の可変利得回路20は、利得グラフ37が示すように利得を+30dBから+20dBに下げる。このとき第一の可変利得回路18は利得グラフ38が示すように利得の変化はない。次に入力レベル33が−90dBmから−20dBmに70dB上がった時は、第二の可変利得回路20は、利得グラフ37が示すように+20dB一定で利得の変化はない。このとき第一の可変利得回路18は利得グラフ38が示すように利得を+25dBから−45dBまで70dB下げるように動作する。図4(b)において第一の可変利得回路18と第二の可変利得回路20の利得カーブの変わるポイント40を低雑音増幅回路オン時のAGCディレーポイントと呼ぶ。
【0046】
そして、図3の制御電圧発生回路24は低雑音増幅回路25、第一の可変利得回路18、第二の可変利得回路20をマイコンなどで制御しその結果得られた符号誤り検出回路32の検出結果を基に図2のフローアルゴリズムなどを用いて最適な制御電圧を各回路に供給することができる。以上のような構成により、入力レベルが低い場合と高い場合とで各々最適なレベルダイアグラムが構成できるため安価な構成で弱電界レベルの入力感度特性と、強電界レベル時の歪特性を両立したシングルコンバージョン方式の高周波信号受信装置が提供できる。
【0047】
尚、低雑音増幅回路25オフ時のAGCディレーポイント39と低雑音増幅回路25オン時のAGCディレーポイント40は、必ずしも一定ではなく入力信号状態に応じて変化させて動作している。
【0048】
(実施の形態3)
図5は、図3のシングルコンバージョン方式の要部回路ブロック41に記憶回路42を接続したものである。これにより、受信チャンネルごとに低雑音増幅回路25、第一の可変利得回路18、第二の可変利得回路20の制御値を記憶回路42に記憶させることができるために、一度設定した制御値を高速に読み出すことができるため高速な設定時間を樹立できる高周波信号受信装置を提供できる。
【0049】
この記憶回路42は、不揮発性メモリ、ハードディスクなど電源オフで消滅しないデバイスで構成すると装置電源がオフされても設定情報が消滅しないためより有効な効果が得られる。
【0050】
(実施の形態4)
図6は、図1の非線形回路19をダブルコンバージョン方式として、第一の混合回路43、第二の混合回路44のダブルミキサ方式とし、夫々に第一の発振回路45と第二の発振回路46を接続した高周波信号受信装置である。この構成によれば、第一のフィルタ回路47と第二のフィルタ回路48は、固定のフィルタ回路で良好な高周波特性が確保できるため、周波数通過特性の安定した高性能な高周波信号受信装置を提供できる。
【0051】
(実施の形態5)
図7において電界レベル差の大きな複数の高周波信号が入力される入力端子17と、この入力端子17に入力された信号が供給される第一の可変利得回路18と、この第一の可変利得回路18の出力が供給される非線形回路19と、この非線形回路19の出力が供給される第二の可変利得回路20と、この第二の可変利得回路20の出力が供給される出力端子49を備え、この出力端子49は、デジタル復調動作とした第一の動作モード入力端子50と、アナログ復調動作とした第二の動作モード入力端子51と切り替える構成となっている。すなわち、第一の動作モード時においては、入力端子50が供給されるデジタル復調回路31と、このデジタル復調回路31の出力が供給される符号誤り検出回路32と、この符号誤り検出回路の出力が接続された出力端子52とを有し、第二の動作モード時においては、入力端子51が供給されるアナログ復調回路53と、このアナログ復調回路53の出力が供給されるC/N検出回路54と、このC/N検出回路54の出力が接続された出力端子55とで構成されている。また共通の制御として、前記符号誤り検出回路32と前記C/N検出回路54からの出力に基づいて、前記第一の可変利得回路18と前記第二の可変利得回路20の利得を制御する制御電圧発生回路24を有している。そして、前記入力端子17と前記第一の可変利得回路18の間に低雑音増幅回路25とこの低雑音増幅回路25と並列に接続されたスイッチ26を設け、前記符号誤り検出回路32と前記C/N検出回路54からの出力に基づいて、前記スイッチ26のオン・オフと前記第一の可変利得回路18と前記第二の可変利得回路20の利得を実施の形態1で示した規則に従って、前記制御電圧発生回路24で制御する構成としている。
【0052】
このため、入力端子17にデジタル搬送波信号またはアナログ搬送波信号の何れが入力されても、符号誤り検出回路32とC/N検出回路54で正確な信号品質が検出できるため、制御電圧発生回路24は最適な制御値を低雑音増幅回路25、第一の可変利得回路18、前記第二の可変利得回路20に供給できる。また、デジタル搬送波信号とアナログ搬送波信号を一つの高周波信号処理回路部で構成できる安価な高周波信号受信装置が提供できる。
【0053】
【発明の効果】
以上のように本発明によれば、入力端子と第一の可変利得回路の間に低雑音増幅回路とこの低雑音増幅回路と並列に接続されたスイッチを設け、サブルーチンAでは、制御電圧発生回路により前記低雑音増幅回路をオンとするとともに復調品質検出回路から出力される結果に基づいて第二の可変利得回路の利得を下げて最適値を決定し、サブルーチンBでは、前記制御電圧発生回路により前記低雑音増幅回路をオフにするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、前記サブルーチンA、Bにおけるそれぞれの前記結果を比較し、前記低雑音増幅器のオン・オフと前記第二の可変利得回路の利得を設定する。
【0054】
これにより、強電界で多波の妨害信号が動的に変化しても、あるいは入力レベルが非常に低い弱電界においても、出力端子から出力される信号の品質を向上させる高周波信号受信装置が提供できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による高周波信号受信装置のブロック図
【図2】 (a)は、同制御電圧を発生させるメインルーチンのフローチャート
(b)は、同第一状態を設定するサブルーチンのフローチャート
(c)は、同第二状態を設定するサブルーチンのフローチャート
【図3】 同実施の形態2による高周波信号受信装置のブロック図
【図4】 (a)は、同低雑音増幅回路25をオフした場合の利得グラフ
(b)は、同低雑音増幅回路25をオンした場合の利得グラフ
【図5】 同実施の形態3による高周波信号受信装置の要部ブロック図
【図6】 同実施の形態4による高周波信号受信装置のブロック図
【図7】 同実施の形態5による高周波信号受信装置のブロック図
【図8】 従来の高周波信号受信装置のブロック図
【図9】 同利得グラフ
【符号の説明】
17 入力端子
18 第一の可変利得回路
19 非線形回路
20 第二の可変利得回路
21 復調回路
22 復調品質検出回路
23 出力端子
24 制御電圧発生回路
25 低雑音増幅回路
26 スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency signal receiving apparatus to which a plurality of high-frequency signals having a large electric field level difference are input.
[0002]
[Prior art]
Hereinafter, a conventional high-frequency signal receiving apparatus will be described with reference to FIG.
[0003]
The conventional high-frequency signal receiving apparatus includes an input terminal 1 to which a plurality of high-frequency signals having a large electric field level difference are input, a first variable gain circuit 2 to which a signal input to the input terminal 1 is supplied, A first filter circuit 3 to which an output of one variable gain circuit 2 is supplied, a first mixing circuit 4 to which an output of the first filter circuit 3 is supplied to one input, and the first mixing circuit A first oscillation circuit 5 connected to the other input of the circuit 4, a second variable gain circuit 6 to which the output of the first mixing circuit 4 is supplied, and an output of the second variable gain circuit 6 , The output terminal 8 to which the output of the demodulation circuit 7 is connected, and the output from the demodulation circuit 7, the first variable gain circuit 2 and the second variable gain. The control voltage generation circuit 9 that controls the gain of the circuit 6 is provided. .
[0004]
The operation of the conventional high frequency signal receiving apparatus will be described with reference to FIG. In FIG. 9, 10 is an input level (dBm) input to the input terminal 1, 11 is a gain (dB), 12 is a gain graph of the second variable gain circuit 6, and 13 is a gain of the first variable gain circuit 2. It is a graph.
[0005]
This graph shows the gain distribution of the first variable gain circuit 2 and the second variable gain circuit 6 when a high frequency signal is input to the input terminal 1 in the range of the input level 10. When the input level 10 increases from −80 dBm to −70 dBm by 10 dB, the second variable gain circuit 6 decreases the gain by 10 dB as indicated by 12 a in the gain graph 12. At this time, the gain of the first variable gain circuit 2 does not change as indicated by the gain graph 13. Next, when the input level 10 increases by 70 dB from −70 dBm to 0 dBm, the gain of the second variable gain circuit 6 does not change as indicated by the gain graph 12. At this time, the first variable gain circuit 2 operates to lower the gain by 70 dB as indicated by 13a in the gain graph 13. In FIG. 9, 14 points at which the gain curves of the first variable gain circuit 2 and the second variable gain circuit 6 change are referred to as AGC delay points.
[0006]
The AGC delay point 14 is a very important item in configuring a high frequency signal receiving apparatus. If the AGC delay point 14 is set in the direction of 15, the gain of the first variable gain circuit 2 is set lower than the input level 10, and the distortion characteristic in the first mixing circuit 4 is improved, but the high frequency signal is increased. The NF characteristic of the receiving device deteriorates. Conversely, if the AGC delay point 14 is set in the direction of 16, the gain of the first variable gain circuit 2 is set higher and the distortion characteristics in the first mixing circuit 4 deteriorate, but the NF characteristics of the high-frequency signal receiving device. Will improve. Therefore, in the conventional circuit, the gains of the first variable gain circuit 2 and the second variable gain circuit 6 are adjusted from the control voltage generation circuit 9 using the output signal from the demodulation circuit 7 so that the distortion and NF are optimized. It was set appropriately.
[0007]
As a technique similar to this, there is, for example, Japanese Patent Application No. 11-354303.
[0008]
[Problems to be solved by the invention]
However, in such a conventional configuration, it is clear that the NF of the first variable gain circuit 2 is dominant in determining the overall NF of the high-frequency signal receiving device, but the gain is increased in consideration of the distortion characteristics. Since the setting is low, there is a problem in that the optimum reception performance cannot always be improved even if a multi-wave interference signal dynamically changes in a strong electric field.
[0009]
The present invention has been made to solve the above problems, and has as its object to provide a high-frequency signal receiving apparatus that can always ensure optimum reception performance even when a multi-wave interference signal dynamically changes in a strong electric field. Is.
[0010]
[Means for Solving the Problems]
The high frequency signal receiving apparatus of the present invention to achieve the object, a switch to a low noise amplifier and the low noise amplifier circuit connected in parallel between the input terminal and the first variable gain circuit, the subroutine A Then, the low-noise amplifier circuit is turned on by the control voltage generation circuit and the optimum value is determined by lowering the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit . The control voltage generation circuit turns off the low noise amplification circuit and determines the optimum value by lowering the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit. The respective results in A and B are compared, and the on / off of the low noise amplifier and the gain of the second variable gain circuit are set.
[0011]
Thereby, the quality of the signal output from the output terminal is improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, an input terminal to which a plurality of high frequency signals having a large electric field level difference are input, a first variable gain circuit to which a signal input to the input terminal is supplied, A non-linear circuit to which an output of the first variable gain circuit is supplied; a second variable gain circuit to which an output of the non-linear circuit is supplied; a demodulation circuit to which an output of the second variable gain circuit is supplied; Based on the demodulation quality detection circuit to which the output of the demodulation circuit is supplied, the output terminal to which the output of the demodulation quality detection circuit is connected, and the result output from the demodulation quality detection circuit, the first variable gain A control voltage generation circuit for controlling the gain of the circuit and the second variable gain circuit, and is connected in parallel with the low noise amplifier circuit and the low noise amplifier circuit between the input terminal and the first variable gain circuit. the switch is provided, Sable In Chin A, determining the optimum value by reducing the gain of the second variable gain circuit based on the output from the demodulation quality detection circuit results as well as the on the low noise amplifier circuit by the control voltage generating circuit In subroutine B, the low-noise amplifier circuit is turned off by the control voltage generation circuit and the gain of the second variable gain circuit is lowered based on the result output from the demodulation quality detection circuit. And comparing the results in the subroutines A and B, and setting the on / off of the low noise amplifier and the gain of the second variable gain circuit, thereby outputting the signal output from the output terminal. It is possible to provide a high-frequency signal receiving device that improves the quality of the signal.
[0013]
That is, it is possible to provide a high-frequency signal receiving apparatus that can always maintain optimum reception performance even when a multi-wave interference signal is dynamically changed by a strong electric field.
[0014]
The invention described in claim 2 is the high-frequency signal receiving apparatus according to claim 1 in which the nonlinear circuit is a mixed circuit, and a single conversion type high-frequency signal receiving apparatus having an inexpensive configuration can be provided.
[0015]
According to a third aspect of the present invention, a storage circuit is connected to the control voltage generation circuit, and on / off of the switch and control values of the first variable gain circuit and the second variable gain circuit are stored in the storage circuit for each reception channel. The high-frequency signal receiving apparatus according to claim 2 stored in the invention can be set, and since the control value can be set based on the information in the storage circuit, a high-frequency signal receiving apparatus capable of establishing a high-speed setting time can be provided.
[0016]
The invention according to claim 4 is the high-frequency signal receiving apparatus according to claim 1 in which the nonlinear circuit is a double superheterodyne system, and can provide a high-frequency signal receiving apparatus having stable frequency pass characteristics.
[0017]
The invention according to claim 5 is the high frequency signal receiving apparatus according to claim 1, wherein the demodulation circuit is formed by a digital demodulation circuit and the demodulation quality detection circuit is a code error detection circuit. It is possible to provide a high-frequency signal receiving apparatus that can detect a demodulated quality signal.
[0018]
The invention according to claim 6 is the high frequency signal receiving apparatus according to claim 1, wherein the demodulation circuit is formed of an analog demodulation circuit and the demodulation quality detection circuit is a C / N detection circuit. It is possible to provide a high-frequency signal receiving apparatus that can accurately detect a demodulation quality signal.
[0019]
According to a seventh aspect of the present invention, there is provided the high-frequency signal reception according to the first aspect, wherein the first operation mode in which the demodulation circuit is in a digital demodulation operation and the second operation mode in which the demodulation circuit is in an analog demodulation operation are switched by a switch. Thus, an inexpensive high-frequency signal receiver capable of constituting a digital carrier wave and an analog carrier wave by one high-frequency signal processing circuit unit can be provided.
[0020]
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0021]
(Embodiment 1)
FIG. 1 shows Embodiment 1 of the present invention. In FIG. 1, an input terminal 17 to which a plurality of high-frequency signals having a large electric field level difference are input, a first variable gain circuit 18 to which a signal input to the input terminal 17 is supplied, and the first variable gain circuit. A non-linear circuit 19 to which an output of 18 is supplied, a second variable gain circuit 20 to which an output of the non-linear circuit 19 is supplied, a demodulation circuit 21 to which an output of the second variable gain circuit 20 is supplied, Based on the demodulation quality detection circuit 22 to which the output of the demodulation circuit 21 is supplied, the output terminal 23 to which the output of the demodulation quality detection circuit 22 is connected, and the output from the demodulation quality detection circuit 22, the first And a control voltage generating circuit 24 for controlling the gains of the second variable gain circuit 20 and the second variable gain circuit 20, a low noise amplification circuit is provided between the input terminal 17 and the first variable gain circuit 18. 25 and a switch 26 connected in parallel with the low-noise amplifier circuit 25, and based on the output from the demodulation quality detection circuit 22, the switch 26 is turned on / off, the first variable gain circuit 18 and the The control voltage generating circuit 24 controls the gain of the second variable gain circuit 20 in accordance with a predetermined rule.
[0022]
The operation of the high frequency signal receiving apparatus configured as described above will be described below. The high-frequency signal input to the demodulation circuit 21 is obtained by appropriately changing the gains of the first variable gain circuit 18 and the second variable gain circuit 20 so that the input level of the input terminal 17 is constant regardless of the input level. It is a well-known content to operate.
[0023]
When the input level is normal, the switch 26 is turned on and the low noise amplifier circuit 25 is short-circuited. However, in a weak electric field with a very low electric field input level, the high frequency input to the demodulator circuit 21 is used. The signal cannot be sufficiently amplified, and the demodulation quality detection circuit 22 determines that the demodulation quality is poor. Based on this output signal, the control voltage generation circuit 24 issues a command to turn off the switch 26, and the low noise amplification circuit 25 performs an amplification operation.
[0024]
Therefore, since the high frequency signal input to the demodulation circuit 21 can be sufficiently amplified, it is possible to provide a high frequency signal receiving apparatus that improves the quality of the signal output from the output terminal 23.
[0025]
In the present invention, the non-linear circuit 19 is shown, but this indicates a device that causes distortion such as a semiconductor. The switch 26 is an electronic switch formed of a switching diode.
[0026]
FIG. 2 is an operation flowchart for determining the control value of the control voltage generation circuit 24 of FIG. 2A is a main flowchart of the control voltage generation circuit, FIG. 2B is a subroutine A in which the low noise amplifier circuit 25 is turned on, and FIG. 2C is a subroutine B in which the low noise amplifier circuit 25 is turned off. It is.
[0027]
The operation of the control voltage generation circuit will be described with reference to FIG.
[0028]
First, using the subroutines of FIGS. 2B and 2C, the respective optimum control values when the low noise amplifier circuit 25 is turned on or off are derived.
[0029]
As the method, when the low noise amplifier circuit 25 is on, the low noise amplifier circuit 25 is turned on and the gain of the second variable gain circuit 20 is set as shown in FIG. Next, the result of the demodulation quality detection circuit 22 is stored. The gain of the second variable gain circuit 20 is lowered to return to the point C. By repeating this, the optimum value of the second variable gain circuit 20 is determined.
[0030]
On the other hand, when the low noise amplifier circuit 25 is off, the low noise amplifier circuit 25 is turned off and the gain of the second variable gain circuit 20 is set as shown in FIG. Next, the result of the demodulation quality detection circuit 22 is stored. The gain of the second variable gain circuit 20 is lowered to return to the point D. By repeating this, the optimum value of the second variable gain circuit 20 is determined.
[0031]
Next, using the main flowchart of FIG. 2A, the results of the optimum control values of the subroutines of FIGS. 2B and 2C obtained previously are compared, and the low noise amplifier circuit 25 and the second noise amplifying circuit 25 are compared. The variable gain circuit 20 is set. Based on these results, the set value of the first variable gain circuit 18 can be easily determined.
[0032]
By executing this flowchart at the start of the operation of the high-frequency signal receiver or at regular intervals, not only the weak electric field with a very low input level, but also a multi-field interference signal is dynamically changed and input in a strong electric field. Since the optimum low-noise amplifier circuit 25, first variable gain circuit 18 and second variable gain circuit 20 can always be set even when input to the terminal 17, a high-frequency signal receiving apparatus capable of maintaining NF and distortion characteristics optimally is provided. Can be provided.
[0033]
(Embodiment 2)
FIG. 3 shows an embodiment in which a specific single-conversion high-frequency signal receiving apparatus is formed based on the basic configuration shown in FIGS.
[0034]
In FIG. 3, since the same reference numerals as those in FIG. 1 are the same, the description is simplified.
[0035]
The output of the first variable gain circuit 18 includes a first filter circuit 27 to which the output is supplied, and a first mixing circuit 28 to which the output of the first filter circuit 27 is supplied to one input. The first oscillation circuit 29 connected to the other input of the first mixing circuit 28, the second filter circuit 30 to which the output of the first mixing circuit 28 is supplied, and the second filter The second variable gain circuit 20 to which the output of the circuit 30 is supplied, the digital demodulation circuit 31 to which the output of the second variable gain circuit 20 is supplied, and the code error to which the output of the digital demodulation circuit 31 is supplied Based on the detection circuit 32, the output terminal 23 to which the output of the code error detection circuit 32 is connected, and the output from the code error detection circuit 32, the first variable gain circuit 18 and the second variable gain circuit Control the gain of 20 A control voltage generation circuit 24; a low noise amplifier circuit 25 and a switch 26 connected in parallel with the low noise amplifier circuit 25 are provided between the input terminal 17 and the first variable gain circuit 18; Based on the output from the detection circuit 32, on / off of the switch 26 and the gains of the first variable gain circuit 18 and the second variable gain circuit 20 are determined in advance as in the first embodiment. Thus, the control voltage generation circuit 24 is configured to control. Reference numeral 41 denotes a main circuit block.
[0036]
Next, the operation of the second embodiment will be described with reference to FIG. The digital carrier signal input to the input terminal 17 passes through the low noise amplifier circuit 25 and the first variable gain circuit 18 and then is input to the first filter circuit 27. The digital carrier signal that has passed only the desired frequency by the first filter circuit 27 is input to the first mixing circuit 28 and mixed with the oscillation signal corresponding to the desired signal by the first oscillation circuit 29 to be mixed with the first intermediate signal. It is converted into a signal and output. Next, only the intermediate frequency is passed through the second filter circuit 30, passed through the second variable gain circuit 20, digital demodulation is performed by the digital demodulator circuit 31, passed through the code error detection circuit 32, and output terminal 23.
[0037]
The level diagram in FIG. 3 is as follows.
[0038]
The gain of the low noise amplifier circuit 25 is 0 dB when the switch 26 is turned on and has a gain of 0 dB, and when the switch 26 is off, the low noise amplifier circuit 25 is turned on and has a gain of +20 dB. The variable gain range of the first variable gain circuit 18 is +25 to −45 dB, the gain of the first filter circuit 27 is −10 dB, the gain of the first mixing circuit 28 is +20 dB, The gain of the filter circuit 30 is −20 dB, and the variable gain range of the second variable gain circuit 20 is +50 to +20 dB.
[0039]
When the level of the digital carrier signal input to the input terminal 17 changes, the low noise amplification circuit 25, the first variable gain circuit 18 and the second variable gain circuit 20 are changed and always input to the digital demodulation circuit 31. The control voltage generation circuit 24 controls the gain so that the input level becomes constant at -15 dBm.
[0040]
Next, the gain control method will be described in detail with reference to FIG.
[0041]
FIG. 4A is a gain graph of the first variable gain circuit 18 and the second variable gain circuit 20 when the low-noise amplifier circuit 25 is turned off, and 33 is an input level (input level) input to the input terminal 17 ( dBm) and 34 are gains (dB), 35 is a gain graph of the second variable gain circuit 20, and 36 is a gain graph of the first variable gain circuit 18.
[0042]
FIG. 4B is a gain graph of the first variable gain circuit 18 and the second variable gain circuit 20 when the low-noise amplifier circuit 25 is turned on, and 37 is a gain graph of the second variable gain circuit 20. , 38 are gain graphs of the first variable gain circuit 18.
[0043]
In order to keep the input level input to the digital demodulation circuit 31 described above constant at −15 dBm, the operation is as follows.
[0044]
As shown in the graph of FIG. 4A, when the low noise amplifier circuit 25 is turned off, the second variable gain circuit 20 has the gain graph 35 when the input level 33 is increased by 10 dB from −80 dBm to −70 dBm. As shown, the gain is reduced from +50 dB to +40 dB. At this time, the gain of the first variable gain circuit 18 does not change as indicated by the gain graph 36. Next, when the input level 33 rises from −70 dBm to 0 dBm by 70 dB, the second variable gain circuit 20 is constant at +40 dB and has no gain change as shown by the gain graph 35. At this time, the first variable gain circuit 18 operates to lower the gain by 70 dB from +25 dB to −45 dB as indicated by the gain graph 36. In FIG. 4A, a point 39 at which the gain curves of the first variable gain circuit 18 and the second variable gain circuit 20 change is called an AGC delay point when the low noise amplifier circuit is off.
[0045]
Next, as shown in the graph of FIG. 4B, when the low noise amplifier circuit 25 is turned on, the gain of the low noise amplifier circuit 25 is +20 dB. The AGC delay point 39 operates in an offset manner. That is, when the input level 33 increases by 10 dB from −100 dBm to −90 dBm, the second variable gain circuit 20 decreases the gain from +30 dB to +20 dB as indicated by the gain graph 37. At this time, the gain of the first variable gain circuit 18 does not change as indicated by the gain graph 38. Next, when the input level 33 increases from −90 dBm to −20 dBm by 70 dB, the second variable gain circuit 20 is constant at +20 dB and has no gain change as shown by the gain graph 37. At this time, the first variable gain circuit 18 operates to lower the gain by 70 dB from +25 dB to −45 dB as indicated by the gain graph 38. In FIG. 4B, a point 40 at which the gain curves of the first variable gain circuit 18 and the second variable gain circuit 20 change is called an AGC delay point when the low noise amplifier circuit is on.
[0046]
3 controls the low-noise amplifier circuit 25, the first variable gain circuit 18, and the second variable gain circuit 20 with a microcomputer or the like, and the code error detection circuit 32 obtained as a result is detected. Based on the result, the optimum control voltage can be supplied to each circuit using the flow algorithm of FIG. With the above configuration, an optimal level diagram can be configured for both low and high input levels, so a low-cost single sensitivity that combines weak field level input sensitivity characteristics and strong field level distortion characteristics. A conversion-type high-frequency signal receiver can be provided.
[0047]
The AGC delay point 39 when the low-noise amplifier circuit 25 is off and the AGC delay point 40 when the low-noise amplifier circuit 25 is on are not necessarily constant but are changed according to the input signal state.
[0048]
(Embodiment 3)
FIG. 5 is a diagram in which a memory circuit 42 is connected to the main circuit block 41 of the single conversion system of FIG. As a result, the control values of the low noise amplifier circuit 25, the first variable gain circuit 18, and the second variable gain circuit 20 can be stored in the storage circuit 42 for each reception channel. Since it can be read out at high speed, a high-frequency signal receiving apparatus capable of establishing a high-speed setting time can be provided.
[0049]
If the storage circuit 42 is configured by a device that does not disappear when the power is turned off, such as a nonvolatile memory or a hard disk, the setting information is not lost even when the apparatus power is turned off, so that a more effective effect can be obtained.
[0050]
(Embodiment 4)
In FIG. 6, the non-linear circuit 19 of FIG. 1 is a double conversion system, and the first mixer circuit 43 and the second mixer circuit 44 are double mixer systems. The first oscillator circuit 45 and the second oscillator circuit 46 respectively. Is a high-frequency signal receiving device. According to this configuration, since the first filter circuit 47 and the second filter circuit 48 can secure good high frequency characteristics with a fixed filter circuit, a high-performance high-frequency signal receiving device with stable frequency pass characteristics is provided. it can.
[0051]
(Embodiment 5)
In FIG. 7, an input terminal 17 to which a plurality of high frequency signals having a large electric field level difference are input, a first variable gain circuit 18 to which a signal input to the input terminal 17 is supplied, and the first variable gain circuit. A non-linear circuit 19 to which the output of 18 is supplied, a second variable gain circuit 20 to which the output of the non-linear circuit 19 is supplied, and an output terminal 49 to which the output of the second variable gain circuit 20 is supplied. The output terminal 49 is configured to switch between a first operation mode input terminal 50 for digital demodulation operation and a second operation mode input terminal 51 for analog demodulation operation. That is, in the first operation mode, the digital demodulation circuit 31 to which the input terminal 50 is supplied, the code error detection circuit 32 to which the output of the digital demodulation circuit 31 is supplied, and the output of the code error detection circuit are In the second operation mode, the analog demodulation circuit 53 to which the input terminal 51 is supplied and the C / N detection circuit 54 to which the output of the analog demodulation circuit 53 is supplied are provided. And an output terminal 55 to which the output of the C / N detection circuit 54 is connected. Further, as common control, control for controlling the gains of the first variable gain circuit 18 and the second variable gain circuit 20 based on the outputs from the code error detection circuit 32 and the C / N detection circuit 54. A voltage generation circuit 24 is provided. A low noise amplifier circuit 25 and a switch 26 connected in parallel with the low noise amplifier circuit 25 are provided between the input terminal 17 and the first variable gain circuit 18, and the code error detection circuit 32 and the C Based on the output from the / N detection circuit 54, the on / off state of the switch 26 and the gains of the first variable gain circuit 18 and the second variable gain circuit 20 are determined according to the rules described in the first embodiment. The control voltage generating circuit 24 is used for control.
[0052]
Therefore, regardless of whether a digital carrier signal or an analog carrier signal is input to the input terminal 17, the signal error detection circuit 32 and the C / N detection circuit 54 can detect accurate signal quality. Optimal control values can be supplied to the low noise amplifier circuit 25, the first variable gain circuit 18, and the second variable gain circuit 20. In addition, an inexpensive high-frequency signal receiving apparatus that can configure a digital carrier signal and an analog carrier signal with one high-frequency signal processing circuit unit can be provided.
[0053]
【The invention's effect】
According to the present invention as described above, the input terminal and the low noise amplifier circuit of the low noise amplifier circuit and a switch connected in parallel provided between the first variable gain circuit, the sub-routine A, the control voltage generating circuit The low noise amplifier circuit is turned on and the optimum value is determined by lowering the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit. In subroutine B, the control voltage generator circuit The low noise amplifier circuit is turned off, and the optimum value is determined by lowering the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit . The results are compared, and the on / off of the low noise amplifier and the gain of the second variable gain circuit are set.
[0054]
This provides a high-frequency signal receiving device that improves the quality of the signal output from the output terminal even when a multi-wave disturbance signal is dynamically changed by a strong electric field or a weak electric field with a very low input level. it can.
[Brief description of the drawings]
FIG. 1 is a block diagram of a high-frequency signal receiving device according to Embodiment 1 of the present invention. FIG. 2A is a flowchart of a main routine for generating the control voltage. FIG. FIG. 3 is a flowchart of a subroutine for setting the second state. FIG. 3 is a block diagram of a high-frequency signal receiving apparatus according to the second embodiment. FIG. (B) is a gain graph when the low-noise amplifier circuit 25 is turned on. FIG. 5 is a block diagram of the main part of the high-frequency signal receiving device according to the third embodiment. FIG. 7 is a block diagram of a high-frequency signal receiving device according to the fourth embodiment. FIG. 7 is a block diagram of a high-frequency signal receiving device according to the fifth embodiment. DESCRIPTION OF SYMBOLS gain graph
DESCRIPTION OF SYMBOLS 17 Input terminal 18 1st variable gain circuit 19 Nonlinear circuit 20 2nd variable gain circuit 21 Demodulation circuit 22 Demodulation quality detection circuit 23 Output terminal 24 Control voltage generation circuit 25 Low noise amplification circuit 26 Switch

Claims (7)

電界レベル差の大きな複数の高周波信号が入力される入力端子と、この入力端子に入力された信号が供給される第一の可変利得回路と、この第一の可変利得回路の出力が供給される非線形回路と、この非線形回路の出力が供給される第二の可変利得回路と、この第二の可変利得回路の出力が供給される復調回路と、この復調回路の出力が供給される復調品質検出回路と、この復調品質検出回路の出力が接続された出力端子と、前記復調品質検出回路から出力される結果に基づいて、前記第一の可変利得回路と前記第二の可変利得回路の利得を制御する制御電圧発生回路を備え、前記入力端子と前記第一の可変利得回路の間に低雑音増幅回路とこの低雑音増幅回路と並列に接続されたスイッチを設け、サブルーチンAでは、前記制御電圧発生回路により前記低雑音増幅回路をオンとするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、サブルーチンBでは、前記制御電圧発生回路により前記低雑音増幅回路をオフにするとともに前記復調品質検出回路から出力される前記結果に基づいて前記第二の可変利得回路の利得を下げて最適値を決定し、前記サブルーチンA、Bにおけるそれぞれの前記結果を比較し、前記低雑音増幅器のオン・オフと前記第二の可変利得回路の利得を設定することにより、前記出力端子から出力される信号の品質を向上させる高周波信号受信装置。An input terminal to which a plurality of high frequency signals having a large electric field level difference are input, a first variable gain circuit to which a signal input to the input terminal is supplied, and an output of the first variable gain circuit are supplied. Non-linear circuit, second variable gain circuit to which output of this non-linear circuit is supplied, demodulation circuit to which output of this second variable gain circuit is supplied, and demodulation quality detection to which output of this demodulator circuit is supplied Circuit, an output terminal to which an output of the demodulation quality detection circuit is connected, and gains of the first variable gain circuit and the second variable gain circuit based on a result output from the demodulation quality detection circuit. a control voltage generating circuit for controlling, a switch to a low noise amplifier and the low noise amplifier circuit connected in parallel between the said input terminals first variable gain circuit, the sub-routine a, the control voltage Occurrence times Wherein determining the optimum value by reducing the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit while turning on the low noise amplifier circuit by, in the subroutine B, the control voltage The low noise amplifier circuit is turned off by the generation circuit, and the optimum value is determined by lowering the gain of the second variable gain circuit based on the result output from the demodulation quality detection circuit. The high-frequency signal receiver improves the quality of the signal output from the output terminal by comparing the results of each of the above and setting the on / off of the low noise amplifier and the gain of the second variable gain circuit . 非線形回路を混合回路とした請求項1に記載の高周波信号受信装置。  The high frequency signal receiver according to claim 1, wherein the nonlinear circuit is a mixed circuit. 制御電圧発生回路に記憶回路を接続し、受信チャンネルごとにスイッチのオフ及び第一の可変利得回路と第二の可変利得回路の制御値を前記記憶回路に記憶させた請求項2に記載の高周波信号受信装置。  3. The high frequency device according to claim 2, wherein a storage circuit is connected to the control voltage generation circuit, and for each reception channel, the switch is turned off and the control values of the first variable gain circuit and the second variable gain circuit are stored in the storage circuit. Signal receiving device. 非線形回路をダブルスーパーヘテロダイン方式とした請求項1に記載の高周波信号受信装置。  The high-frequency signal receiver according to claim 1, wherein the nonlinear circuit is a double superheterodyne system. 復調回路をデジタル復調回路で形成するとともに復調品質検出回路を符号誤り検出回路とした請求項1に記載の高周波信号受信装置。  2. The high frequency signal receiving apparatus according to claim 1, wherein the demodulation circuit is formed by a digital demodulation circuit, and the demodulation quality detection circuit is a code error detection circuit. 復調回路をアナログ復調回路で形成するとともに復調品質検出回路をC/N検出回路とした請求項1に記載の高周波信号受信装置。  2. The high frequency signal receiving apparatus according to claim 1, wherein the demodulation circuit is formed of an analog demodulation circuit and the demodulation quality detection circuit is a C / N detection circuit. 復調回路をデジタル復調動作とした第一の動作モードと、復調回路をアナログ復調動作とした第二の動作モードとをスイッチで切り替える請求項1に記載の高周波信号受信装置。  2. The high-frequency signal receiving device according to claim 1, wherein a switch is used to switch between a first operation mode in which the demodulation circuit is a digital demodulation operation and a second operation mode in which the demodulation circuit is an analog demodulation operation.
JP2001007342A 2001-01-16 2001-01-16 High frequency signal receiver Expired - Fee Related JP4042328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007342A JP4042328B2 (en) 2001-01-16 2001-01-16 High frequency signal receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007342A JP4042328B2 (en) 2001-01-16 2001-01-16 High frequency signal receiver

Publications (2)

Publication Number Publication Date
JP2002217766A JP2002217766A (en) 2002-08-02
JP4042328B2 true JP4042328B2 (en) 2008-02-06

Family

ID=18875105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007342A Expired - Fee Related JP4042328B2 (en) 2001-01-16 2001-01-16 High frequency signal receiver

Country Status (1)

Country Link
JP (1) JP4042328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248847B2 (en) * 2004-04-22 2007-07-24 Kyocera Wireless Corp. System and method for adaptively controlling receiver gain switch points
JP2007068143A (en) * 2005-08-05 2007-03-15 Matsushita Electric Ind Co Ltd Antenna matching unit and high frequency receiving device using the same
JP2008118415A (en) * 2006-11-06 2008-05-22 Sharp Corp Multi-tuner television receiving set
JP4588061B2 (en) * 2007-09-28 2010-11-24 シャープ株式会社 DIGITAL DEMODULATION DEVICE, ITS CONTROL METHOD, PROGRAM, RECORDING MEDIUM CONTAINING THE PROGRAM, AND DIGITAL RECEPTION DEVICE

Also Published As

Publication number Publication date
JP2002217766A (en) 2002-08-02

Similar Documents

Publication Publication Date Title
JP4605090B2 (en) High frequency receiver
JPH0683127B2 (en) Diversity receiver radio
US20020061773A1 (en) Radio circuit and control method of radio circuit
JPH07336283A (en) Linear receiver
US4742565A (en) Radio receiver with field intensity detector
US6356746B1 (en) Direct converting receiver
JP4843094B2 (en) Receiving device and program
US20040014450A1 (en) Signal receiving apparatus and gain control method using analog control AGC and step control AGC
JP3822163B2 (en) AGC system
JP4042328B2 (en) High frequency signal receiver
JP2009010469A (en) High-frequency receiver, high-frequency receiving method, lsi for high-frequency signal, and lsi for baseband signal
JP2002016462A (en) Receiving circuit and receiving gain control method
JP2001168748A (en) Digital signal receiver
US20070042737A1 (en) Controllable mixer
JP2009177568A (en) Receiver, and electronic apparatus using the same
JPH0613921A (en) Am tuner
JP3315948B2 (en) Radio apparatus and gain control method
JPS5917740A (en) Space diversity receiver
JP5772087B2 (en) Receiving device and program
JP7464881B2 (en) Wireless Receiver Circuit
JP3291462B2 (en) Radio receiver
JP2015201890A (en) Receiver, radio wave reception method, and program
JP3143393B2 (en) AM radio receiver
JPS6347085Y2 (en)
JP2005033257A (en) Automatic gain control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040823

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees