JP4041970B2 - Automotive conductor - Google Patents

Automotive conductor Download PDF

Info

Publication number
JP4041970B2
JP4041970B2 JP2002375593A JP2002375593A JP4041970B2 JP 4041970 B2 JP4041970 B2 JP 4041970B2 JP 2002375593 A JP2002375593 A JP 2002375593A JP 2002375593 A JP2002375593 A JP 2002375593A JP 4041970 B2 JP4041970 B2 JP 4041970B2
Authority
JP
Japan
Prior art keywords
conductor
wire
copper
stainless steel
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002375593A
Other languages
Japanese (ja)
Other versions
JP2004207080A (en
Inventor
和直 工藤
和郎 山崎
庸一 岡崎
由弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002375593A priority Critical patent/JP4041970B2/en
Publication of JP2004207080A publication Critical patent/JP2004207080A/en
Application granted granted Critical
Publication of JP4041970B2 publication Critical patent/JP4041970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ワイヤーハーネスなどに利用される自動車用導体に関するものである。特に、より軽量で信号用電線に最適な自動車用導体に関するものである。
【0002】
【従来の技術】
従来、自動車には、通常、車両内にワイヤーハーネス(内部配線)が配備されており、ワイヤーハーネスにより車両内の電装品への電源、通信、センシングなどを行っている。ワイヤーハーネスは、主に、自動車用電線、保護材、コネクタ類から構成される。上記自動車用電線として、従来、図2に示すものが知られている。図2は、従来の自動車用電線の断面模式図である。従来の自動車用電線100は、通常、素線101を7本撚り合わせて導体102を構成し、導体102の外周に塩化ビニルなどの樹脂被覆103を施している。導体102を構成する素線101は、線径rがφ0.32mm、φ0.26mmの銅線が一般的である。また、導体102は、線径rがφ0.32mmの場合、導体径R:φ1.0mm、断面積:約0.56mm2(公称断面積0.5sq)のもの、線径rがφ0.26mmの場合、導体径R:0.8mm、断面積:約0.37mm2(同0.3sq)のものが一般的である。なお、図2において、導体102の断面積が約0.56mm2の場合、電線100の径R0は、φ2.0mm、同約0.37mm2の場合、電線100の径R0は、φ1.4mmが一般的である。
【0003】
近年、地球温暖化に代表される環境問題がクローズアップされている。そこで、従来のガソリンエンジンやディーゼルエンジンなどの自動車において、より低燃費化を進めるべく、車両の軽量化が叫ばれている。一方、エレクトロニクスの進歩につれて、ますます多岐にわたる回路が増加したことから、ワイヤーハーネスの重量も増加傾向にあり、一般的な自動車1台当りの重量が約25kg程度となっている。上記重量のうち、約60%を自動車用電線、約15%を保護材、約10%をコネクタ類が占めている。そこで、車両の軽量化に当り、上記ワイヤーハーネスの重量、特に、高重量を占める自動車用電線の重量を軽減することが検討されている。
【0004】
軽量化の方法として、電気自動車の開発に伴い、銅より軽いアルミニウムを導体に使用した電線を実用化させつつある。しかし、この電線は、ニッケルメッキや錫メッキされた金属端子とアルミニウム導体との接触抵抗が従来の銅線に比べて大きくなるとの問題がある。そこで、従来、アルミニウム合金を芯材とし、その周囲に銅をクラッドした銅被覆アルミニウム複合線が知られている(例えば、特許文献1参照)。
【0005】
また、マルチワイヤ配線板や高周波回路のジャンパ線などに用いられる複合金属芯線として、ステンレス鋼からなる内層と、Cu系金属からなる外層とからなるものが知られている(例えば、特許文献2参照)。
【0006】
その他、ロボット、医療用機器などの可動体相互間を結ぶ導電線として、ステンレス鋼線の外周に銅、アルミニウム又はその合金からなる被覆層を具えるものが知られている(例えば、特許文献3参照)。
【0007】
【特許文献1】
特開平4-230905号公報(特許請求の範囲、表2参照)
【特許文献2】
特開2002-157919号公報(特許請求の範囲参照)
【特許文献3】
特公平7-31939号公報(特許請求の範囲、特性比較表参照)
【0008】
【発明が解決しようとする課題】
ワイヤーハーネスに用いられる自動車用電線の導体は、上記のように素線の複合体又は単体であり、その断面積は一般に約0.5mm2(公称断面積0.5sq)、約0.3mm2(同0.3sq)であるが、近年、車両を軽量にすべくより細径に、具体的には断面積が0.5mm2(同0.5sq)は0.3mm2(同0.3sq)以下に、0.3mm2(同0.3sq)は0.2mm2(同0.2sq)以下に、更に0.15mm2(同0.15sq)、0.1mm2(同0.1sq)にすることが要求されている。しかし、従来の自動車用導体では、細径化することで、破断強度が低くなるという問題がある。
【0009】
ワイヤーハーネスに用いられる自動車用電線の導体に要求される破断強度は、一般に、断面積約0.1〜0.3mm2(公称断面積0.1〜0.3sq)で80N(ニュートン)である。導体の破断強度は、通常、断面積を小さくすることで低下する傾向にある。そのため、従来の自動車用電線の導体において、導体の公称断面積を0.1sq以下にするべく断面積を小さくすると、破断強度が80N以下になり、導体が破断し易くなる恐れがある。これは、銅線からなる導体だけでなく、特許文献1に記載される銅被覆アルミニウム複合線についても同様である。
【0010】
従って、導体の破断強度が80N以上で、かつ導体の公称断面積が0.2sq以下、特に0.1sqならば、ワイヤーハーネスに用いられる自動車用電線の軽量化が実現できることになる。そこで、本発明の主目的は、優れた破断強度を有するより軽量な自動車用導体を提供することにある。
【0011】
【課題を解決するための手段】
本発明は、芯材にステンレスを用い、その外周に銅などからなる被覆層を具えることで上記目的を達成する。
【0012】
即ち、本発明自動車用導体は、ステンレスからなる芯材と、前記芯材の外周に銅、銅合金から選ばれる少なくとも一種からなる被覆層とを具え、導電率が2%IACS以上10%IACS未満であることを特徴とする。
【0013】
自動車用導体の細径化に伴う破断強度の低下を防止するために、特許文献2や3に記載されるように銅などの被覆層を具えるステンレス線を用いて破断強度を向上させることが考えられる。しかし、ステンレス線は、電気抵抗が比較的高く、ステンレス線を用いることで電気抵抗が上がるため、従来、銅などの被覆層を具えるステンレス線は、自動車用導体に用いられていなかった。自動車用電線の導体の抵抗値は、信号や電流を流すために電圧降下を考慮して許容電流値の限界を0.5A(アンペア)とすると、0.65Ω/m以下、望ましくは0.6Ω/m以下にすることが要求される。
【0014】
一方、1台の自動車に使用される自動車用電線のうち約30%は、導電率10%IACS未満、電気抵抗値で5Ω/m以下、通常、1.4Ω/m程度の信号用電線である。この信号用電線の導体に要求される特性は、公称断面積0.1sqにおいて破断強度80N以上、電気抵抗5Ω/m以下を満足することである。そこで、本発明者らは、ステンレス線の破断強度が比較的高いことを利用し、自動車に使用される自動車用電線全体の30%程度を占める信号用電線について、破断強度を低下させることなく細径化及び軽量化を実現するものである。以下、本発明をより詳しく説明する。
【0015】
本発明において芯材は、ステンレスからなるものとする。ステンレスとしては、特に、クロム系ステンレス(鉄/クロム合金)、又はニッケルクロム系ステンレス(鉄/クロム/ニッケル合金)で形成されたものが好ましく、公知の化学成分のものを用いてもよい。クロム系ステンレスは、特に、フェライト系の場合、耐食性がよく好ましい。フェライト系の化学成分としては、炭素:0.4重量%未満、クロム:12重量%超18重量%未満が挙げられる。ニッケルクロム系ステンレスは、オーステナイト系であり、化学成分としては、炭素:0.15重量%未満、クロム:16重量%超26重量%未満、ニッケル:6重量%超25重量%未満が挙げられる。これらステンレスは、強度に優れるだけでなく、大量生産されて汎用されているため、比較的安価であり経済性がよく好ましい。その他、強度を向上させるためにモリブデンやアルミニウムなどが添加されたステンレスを用いてもよい。
【0016】
なお、芯材として、例えば、ステンレス以外の鉄系高強度材やチタン系金属線材などの高強度材も考えられる。しかし、前者の場合、水や塩水などで腐食され易く、自動車用導体の適応試験の塩水噴霧試験に合格できない恐れがある。自動車用電線は、水や塩水などが用いられるエンジンルーム内に配置されることがあるため、一般に、導体に対して塩水噴霧試験を行って適正を調べている。ステンレス以外の鉄系高強度材では、上記のように腐食され易いためこの塩水噴霧試験に合格しない恐れがある。一方、後者の場合、水や塩水などに対する耐食性は高いが、比較的高価であり、経済性を考慮すると好ましくない。そこで、本発明では、水や塩水の害などの環境面及び経済面を考慮して、ステンレスに規定する。
【0017】
芯材の外周に設ける被覆層は、銅、銅合金から選ばれる少なくとも一種とする。従って、被覆層は、単一種からなる単一層としてもよいし、複数種のものを組み合わせて複数層としてもよい。なお、銅は、化学成分が銅及び不可避的不純物からなるものが挙げられる。銅合金は、化学成分が銅と、Sn、Ag、Ni、Si、Cr、Zr、In、Al、Ti、Fe、P、Mg、Zn、Beよりなる群から選ばれる1種以上の元素と不可避的不純物とからなるものが挙げられる。
【0018】
被覆層の形成方法としては、メッキ法、特に電気メッキが作業性がよく、また低コストであって好ましい。その他、銅管や銅合金管の内部にステンレスの芯材を挿入して金属結合させるクラッド法や、溶融銅や溶融銅合金にステンレスの芯材を浸漬して被覆するディップ法なども挙げられるが、導電率10%IACS未満となるように被覆する場合、メッキ法が最も好ましい。被覆層の形成にメッキ法を用いる場合は、電解前処理又は酸系前処理を施した後、ニッケル、スズなどの金属を薄く置換メッキ又はストライクメッキした後に上記銅などをメッキすることが好ましい。
【0019】
本発明導体は、ステンレスの芯材を所定の寸法に伸線した後に上記被覆層を形成してもよいし、ステンレス線に予め上記被覆層を形成しておき、その後所定の寸法に伸線して形成してもよい。
【0020】
本発明において上記被覆層は、導体の導電率が2%IACS以上10%IACS未満となるようにステンレスの芯材の外周に設ける。本発明者らは、本発明を検討するに当り、まず、破断強度80N以上を得ることについて検討した。例えば、導体の公称断面積を0.1sqとする場合、直径φ0.135mmの素線7本を撚り合わせて導体とする。このとき、ステンレスの芯材の表面に銅などを被覆した素線を用いる場合、導電率約15%IACS(被覆層が銅の場合、銅の重量比約15%)以上、特に20%IACSとなると、破断強度が70N以下となるとの知見を得た。また、導電率を10%IACS未満(同約10%)、特に、5%IACS(同約5%)以下とするとほぼ確実に80N以上の破断強度が得られるとの知見を得た。次に、電気抵抗を考慮すると、導体の断面積が0.1mm2で電気抵抗5Ω/m以下とするには、導電率が2%IACS(同約2%)以上となるように被覆層を設けることが好ましいとの知見を得た。また、被覆層が銅からなる場合、重量比が2%未満、特に0.5%未満の場合、被覆層の表面が擦れて被覆層が剥がれるなどの恐れがあると共に、被覆層がはがれてステンレスの表面が露出されると、ステンレス表面に不働態酸化膜を生じて、金属端子との接触抵抗が大きくなるとの知見を得た。これらの知見に基づき、本発明では、導体の導電率を2%IACS以上10%IACS未満に規定する。なお、%IACSとは、国際軟銅標準(International Annealed Copper Standard)の電気抵抗値(1.7241×10-8Ω・m)に相当する導電率を100として相対比で表示したものである。
【0021】
特に、被覆層をメッキ法で設ける場合、メッキ厚の安定化を考慮すると3%IACS(同約3%)以上とすることが好ましい。また、被覆層が銅合金の場合、銅合金の重量比を2〜10%とすると、導体の導電率:2%IACS以上10%IACS未満を実現することができる。
【0022】
本発明自動車用導体は、単体で用いてもよいし、複数本を組み合わせて用いてもよい。そして、その外周に樹脂被覆を行い、自動車用電線、特に、信号用電線に用いることが好適である。樹脂は、例えば、塩化ビニル、ノンハロゲン樹脂などが挙げられる。樹脂被覆を施した自動車用電線は、ワイヤーハーネスに用いることが好適である。このようなワイヤーハーネスは、ガソリンエンジン、ディーゼルエンジンの自動車や、電気自動車(EV)などの各種自動車において、その内部配線に用いられる。
【0023】
本発明自動車用導体を複数組み合わせて用いる場合、撚り合わせてもよいし、並列させて用いてもよい。並列させて用いる場合、導体の外周に樹脂被覆を施してテープ状電線として用いてもよい。このようなテープ状電線の導体に用いても、本発明導体は、自動車用導体として、適当な破断強度と導電率とを有するものを提供することが可能である。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
(実施例1)
本発明導体を用いて自動車用電線を作製し、更に、この電線を用いてワイヤーハーネスを作製して、その特性と重量を調べてみた。
【0025】
ワイヤーハーネスは、以下のようにして得た。まず、SUS304系ステンレス線を所定の寸法に伸線した後軟化して、電解前処理を施した後、ニッケルを薄く置換メッキし、更にその上に、重量比が所定の量になるように銅を電気メッキにて被覆して、図1に示すようなステンレスの芯材2に被覆層3を具える本発明導体1を得た(試料No.1〜4、6)。また、直径φ0.8mmのSUS304系ステンレス線に、酸系前処理を施した後、ニッケルを薄くストライクメッキし、更にその上に、重量比が所定の量になるように銅を電解メッキにて被覆したものを直径φ0.135mmに伸線してから温度1000℃のトンネル炉にて軟化して本発明導体を得た(試料No.5)。これら本発明導体(素線)を7本束ねて撚り線とし、その外周に塩化ビニルを所定の厚み被覆して自動車用電線を製造する(断面構造は、図2参照)。次に、得られた電線を定尺長に切断した後、電線の先端を皮むきして金属端子を圧着させる。そして、この端子をハウジング中に挿入し、約200本からなるサブアッシーを束ねて保護材をかぶせ、ワイヤーハーネスを得る。
【0026】
本例において各試料のSUS304系ステンレス線は、JIS G 4308相当品を用いた。被覆層に用いた銅は、99.9重量%以上の銅と、不可避的不純物とからなるものを用いた。
【0027】
比較試料として、導電率が2%IACS未満となるように被覆層の銅の重量比を変化させた導体(試料No.7)、同様に10%IACS超となるように被覆層の銅の重量比を変化させた導体(試料No.8)、電気銅線のみを用いた導体(試料No.9、10)を用いた試料を作製した。これら比較試料は、導体を構成する各素線の材質を変化させたものであり、その他の製造工程は、上記試料No.1〜4、6と同様にしてワイヤーハーネスを得た。表1に特性及び重量を示す。表1において、銅比(wt%)とは、導体の全重量に対する銅の重量の割合(重量比)である。
【0028】
【表1】

Figure 0004041970
【0029】
表1に示すように試料No.1〜6は、銅被覆層を具えるステンレスからなる導体を用いたことで、公称断面積が0.2sq、特に、0.1sqといった細径になっても、導体が銅のみからなる従来の試料No.10と比較して、公称断面積が0.3sqである太径の試料No.9と同等、又は同等以上の優れた破断強度を有することがわかる。
【0030】
また、これらの試料No.1〜6は、2%IACS以上10%IACS未満の導電率を有する。一方、銅比が小さ過ぎる試料No.7は、破断強度に優れるものの、導電率が2%IACS未満と低過ぎる。また、銅比が大きすぎる試料No.8は、導電率が高いものの、破断強度が80N未満である。これらのことから、導電率が2%IACS以上10%IACS未満を満たすように銅被覆層を具えたステンレスを導体に用いると、公称断面積が0.1sqといった細径であっても、十分な破断強度を有すると共に、信号用電線として求められる電気抵抗や導電率を満たし、自動車用電線、特に、信号用電線の導体に適するものであることが確認された。
【0031】
上記実施例1の他に、ステンレスからなる芯材の外周に銅被覆層、銅合金被覆層を具える素線を用意し、これら素線を並列に並べてテープ状電線を作製し、同様にその特性と重量を調べたところ、上記実施例1と同様の結果が得られた。
【0032】
【発明の効果】
以上説明したように本発明自動車用導体によれば、銅などの被覆層を具えるステンレスを用いることで、従来と比較して細径化及び軽量化が可能であり、かつより細径の導体としても、高い破断強度を確保することができるという優れた効果を奏し得る。また、ステンレスからなる芯材に銅などの被覆層を具えることで、適当な導電率を得ることができる。従って、本発明自動車用導体は、自動車用電線、特に、信号用電線に適する。
【図面の簡単な説明】
【図1】本発明自動車用導体の断面模式図である。
【図2】従来の自動車用電線の断面模式図である。
【符号の説明】
1 導体 2 芯材 3 被覆層
100 自動車用電線 101 素線 102 導体 103 樹脂被覆
r 線径 R 導体径 R0 電線の径[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an automobile conductor used for a wire harness or the like. In particular, the present invention relates to an automobile conductor that is lighter and optimal for signal wires.
[0002]
[Prior art]
Conventionally, an automobile is usually provided with a wire harness (internal wiring) in the vehicle, and power, communication, sensing, and the like are performed on the electrical components in the vehicle by the wire harness. A wire harness is mainly comprised from the electric wire for motor vehicles, a protective material, and connectors. 2. Description of the Related Art Conventionally, the above-described automobile electric wire is shown in FIG. FIG. 2 is a schematic cross-sectional view of a conventional automobile electric wire. In the conventional automobile electric wire 100, seven conductors 101 are usually twisted to form a conductor 102, and the outer periphery of the conductor 102 is coated with a resin coating 103 such as vinyl chloride. The wire 101 constituting the conductor 102 is generally a copper wire having a wire diameter r of φ0.32 mm and φ0.26 mm. Conductor 102 has a conductor diameter R of φ0.32mm, conductor diameter R of φ1.0mm, cross-sectional area of approximately 0.56mm 2 (nominal cross-sectional area of 0.5sq), and wire diameter r of φ0.26mm. In general, the conductor diameter R is 0.8 mm and the cross-sectional area is about 0.37 mm 2 (0.3 sq). In FIG. 2, if the cross-sectional area of the conductor 102 is about 0.56 mm 2, the diameter R 0 of the electric wire 100, 2.0 mm, if the same about 0.37 mm 2, the diameter R 0 of the electric wire 100, 1.4 mm Is common.
[0003]
In recent years, environmental problems represented by global warming have been highlighted. Therefore, in the conventional automobiles such as gasoline engines and diesel engines, the weight reduction of vehicles has been screamed in order to further reduce fuel consumption. On the other hand, with the advancement of electronics, an increasing number of circuits have increased, so the weight of wire harnesses is also increasing, and the weight per general automobile is about 25kg. Of the above weight, approximately 60% is automotive wire, approximately 15% is protective material, and approximately 10% is connectors. Therefore, in reducing the weight of the vehicle, it has been studied to reduce the weight of the wire harness, in particular, the weight of the automobile electric wire that occupies a high weight.
[0004]
As a method for reducing the weight, electric wires using aluminum lighter than copper as a conductor are being put into practical use with the development of electric vehicles. However, this electric wire has a problem that the contact resistance between a nickel-plated or tin-plated metal terminal and an aluminum conductor is larger than that of a conventional copper wire. Therefore, conventionally, a copper-coated aluminum composite wire in which an aluminum alloy is used as a core material and copper is clad around the core is known (see, for example, Patent Document 1).
[0005]
In addition, as a composite metal core wire used for a multi-wire wiring board or a jumper wire of a high-frequency circuit, one composed of an inner layer made of stainless steel and an outer layer made of a Cu-based metal is known (for example, see Patent Document 2). ).
[0006]
In addition, as a conductive wire connecting movable bodies such as robots and medical devices, one having a coating layer made of copper, aluminum, or an alloy thereof on the outer periphery of a stainless steel wire is known (for example, Patent Document 3). reference).
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 4-230905 (see Claims, Table 2)
[Patent Document 2]
JP 2002-157919 A (refer to the claims)
[Patent Document 3]
Japanese Examined Patent Publication No. 7-31939 (refer to claims and characteristic comparison table)
[0008]
[Problems to be solved by the invention]
As described above, the conductor of an automobile electric wire used for a wire harness is a composite or a single element of wire, and its cross-sectional area is generally about 0.5 mm 2 (nominal cross-sectional area 0.5 sq), about 0.3 mm 2 (0.3 In recent years, the diameter has been reduced to make the vehicle lighter, specifically, the cross-sectional area of 0.5 mm 2 (0.5 sq) is 0.3 mm 2 (0.3 sq) or less, and 0.3 mm 2 ( The 0.3 sq) is required to be 0.2 mm 2 (0.2 sq) or less, and further 0.15 mm 2 (0.15 sq) and 0.1 mm 2 (0.1 sq). However, the conventional automobile conductor has a problem that the breaking strength is lowered by reducing the diameter.
[0009]
The breaking strength required for a conductor of an automobile electric wire used for a wire harness is generally 80 N (Newton) with a cross-sectional area of about 0.1 to 0.3 mm 2 (nominal cross-sectional area of 0.1 to 0.3 sq). The breaking strength of a conductor usually tends to decrease by reducing the cross-sectional area. For this reason, in a conventional conductor of an automobile electric wire, if the cross-sectional area is reduced so that the nominal cross-sectional area of the conductor is 0.1 sq or less, the breaking strength becomes 80 N or less and the conductor may be easily broken. The same applies to the copper-coated aluminum composite wire described in Patent Document 1 as well as the conductor made of copper wire.
[0010]
Therefore, when the breaking strength of the conductor is 80 N or more and the nominal cross-sectional area of the conductor is 0.2 sq or less, particularly 0.1 sq, it is possible to reduce the weight of the automobile wire used for the wire harness. Accordingly, a main object of the present invention is to provide a lighter automobile conductor having excellent breaking strength.
[0011]
[Means for Solving the Problems]
The present invention achieves the above object by using stainless steel as the core material and providing a coating layer made of copper or the like on the outer periphery thereof.
[0012]
That is, the automotive conductor of the present invention comprises a core material made of stainless steel and a coating layer made of at least one selected from copper and a copper alloy on the outer periphery of the core material, and has an electrical conductivity of 2% IACS or more and less than 10% IACS. It is characterized by being.
[0013]
In order to prevent a decrease in breaking strength associated with the reduction in the diameter of automobile conductors, it is possible to improve the breaking strength using a stainless steel wire having a coating layer such as copper as described in Patent Documents 2 and 3. Conceivable. However, since the stainless steel wire has a relatively high electric resistance and the electric resistance is increased by using the stainless steel wire, conventionally, the stainless steel wire having a coating layer of copper or the like has not been used for a conductor for an automobile. The resistance value of the conductor of an automobile wire is 0.65 Ω / m or less, preferably 0.6 Ω / m or less, if the limit of the allowable current value is 0.5 A (ampere) in consideration of voltage drop in order to pass signals and current Is required.
[0014]
On the other hand, about 30% of the automobile wires used in one vehicle are signal wires with a conductivity of less than 10% IACS and an electrical resistance of 5Ω / m or less, usually about 1.4Ω / m. The characteristics required for the conductor of this signal wire are to satisfy a breaking strength of 80 N or more and an electric resistance of 5 Ω / m or less at a nominal sectional area of 0.1 sq. Therefore, the present inventors make use of the relatively high breaking strength of stainless steel wires, and for signal wires occupying about 30% of the entire automotive wires used in automobiles, without reducing the breaking strength. Achieving a reduction in diameter and weight. Hereinafter, the present invention will be described in more detail.
[0015]
In the present invention, the core material is made of stainless steel. As the stainless steel, those made of chromium-based stainless steel (iron / chromium alloy) or nickel-chrome-based stainless steel (iron / chromium / nickel alloy) are preferable, and those of known chemical components may be used. Chromium-based stainless steel is particularly preferable because it has good corrosion resistance in the case of ferrite. Examples of ferritic chemical components include carbon: less than 0.4% by weight and chromium: more than 12% by weight and less than 18% by weight. Nickel-chromium stainless steel is austenitic, and chemical components include carbon: less than 0.15% by weight, chromium: more than 16% by weight and less than 26% by weight, nickel: more than 6% by weight and less than 25% by weight. These stainless steels are not only excellent in strength, but are also mass-produced and widely used, so that they are relatively inexpensive and economically preferable. In addition, stainless steel to which molybdenum, aluminum, or the like is added in order to improve strength may be used.
[0016]
As the core material, for example, an iron-based high-strength material other than stainless steel or a high-strength material such as a titanium-based metal wire can be considered. However, in the former case, it is easily corroded by water or salt water, and there is a possibility that it cannot pass the salt spray test of the adaptation test for automobile conductors. Since electric wires for automobiles are sometimes placed in an engine room where water, salt water, or the like is used, in general, a salt spray test is performed on a conductor to check its suitability. Iron-based high-strength materials other than stainless steel are likely to be corroded as described above, and thus may not pass this salt spray test. On the other hand, in the latter case, the corrosion resistance to water, salt water, etc. is high, but it is relatively expensive, which is not preferable in view of economy. Therefore, in the present invention, stainless steel is specified in consideration of environmental and economic aspects such as water and salt water damage.
[0017]
The coating layer provided on the outer periphery of the core material is at least one selected from copper and copper alloys. Therefore, the coating layer may be a single layer made of a single species, or a plurality of types may be combined to form a plurality of layers. In addition, as for copper, what a chemical component consists of copper and an unavoidable impurity is mentioned. Copper alloy is inevitable with copper and one or more elements selected from the group consisting of Sn, Ag, Ni, Si, Cr, Zr, In, Al, Ti, Fe, P, Mg, Zn, Be. And those consisting of mechanical impurities.
[0018]
As a method for forming the coating layer, a plating method, particularly electroplating, is preferable because of its good workability and low cost. Other examples include a clad method in which a stainless steel core material is inserted into a copper tube or a copper alloy tube and metal-bonded, and a dip method in which a stainless steel core material is immersed in molten copper or a molten copper alloy. In the case of coating so that the electrical conductivity is less than 10% IACS, the plating method is most preferable. In the case of using a plating method for forming the coating layer, it is preferable to perform electrolytic pretreatment or acid pretreatment, and then thinly replace plating or strike plating a metal such as nickel or tin and then plate the copper or the like.
[0019]
The conductor of the present invention may form the coating layer after drawing a stainless steel core material to a predetermined dimension, or may form the coating layer on a stainless steel wire in advance and then draw the wire to a predetermined dimension. May be formed.
[0020]
In the present invention, the coating layer is provided on the outer periphery of the stainless steel core so that the electrical conductivity of the conductor is 2% IACS or more and less than 10% IACS. In examining the present invention, the present inventors first studied to obtain a breaking strength of 80 N or more. For example, when the nominal cross-sectional area of a conductor is 0.1 sq, seven strands having a diameter of 0.135 mm are twisted to form a conductor. At this time, when using a wire with copper coated on the surface of a stainless steel core, the conductivity is about 15% IACS (when the coating layer is copper, the weight ratio of copper is about 15%) or more, especially 20% IACS. Then, the knowledge that the breaking strength was 70 N or less was obtained. In addition, it was found that the fracture strength of 80N or more can be obtained almost certainly when the conductivity is less than 10% IACS (about 10%), especially 5% IACS (about 5%) or less. Next, considering the electrical resistance, in order to make the cross-sectional area of the conductor 0.1 mm 2 and the electrical resistance 5 Ω / m or less, a coating layer is provided so that the conductivity is 2% IACS (about 2%). The knowledge that it was preferable was obtained. Also, when the coating layer is made of copper, if the weight ratio is less than 2%, particularly less than 0.5%, the surface of the coating layer may be rubbed and peeled off, and the coating layer may be peeled off It has been found that when is exposed, a passive oxide film is formed on the stainless steel surface and the contact resistance with the metal terminal is increased. Based on these findings, in the present invention, the conductivity of the conductor is defined as 2% IACS or more and less than 10% IACS. In addition,% IACS is a relative ratio with the electrical conductivity corresponding to the electrical resistance value (1.7241 × 10 −8 Ω · m) of the International Annealed Copper Standard as 100.
[0021]
In particular, when the coating layer is provided by a plating method, it is preferable to set it to 3% IACS (about 3%) or more in consideration of stabilization of the plating thickness. Moreover, when the coating layer is a copper alloy, when the weight ratio of the copper alloy is 2 to 10%, the conductivity of the conductor: 2% IACS or more and less than 10% IACS can be realized.
[0022]
The conductor for automobiles of the present invention may be used alone or in combination. And it is suitable to apply resin coating to the outer periphery, and to use for the electric wire for motor vehicles, especially the electric wire for signals. Examples of the resin include vinyl chloride and non-halogen resins. The electric wire for automobiles with a resin coating is preferably used for a wire harness. Such a wire harness is used for internal wiring in various automobiles such as gasoline engine and diesel engine cars and electric cars (EV).
[0023]
When a plurality of conductors for automobiles of the present invention are used in combination, they may be twisted together or used in parallel. When used in parallel, the outer periphery of the conductor may be coated with a resin and used as a tape-shaped electric wire. Even when used as a conductor of such a tape-shaped electric wire, the conductor of the present invention can provide an automobile conductor having appropriate breaking strength and electrical conductivity.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
(Example 1)
An electric wire for an automobile was produced using the conductor of the present invention, and further, a wire harness was produced using the electric wire, and its characteristics and weight were examined.
[0025]
The wire harness was obtained as follows. First, a SUS304 stainless steel wire is drawn to a predetermined size and then softened and subjected to electrolysis pretreatment, and then nickel is thinly replaced by plating, and further, copper is added so that the weight ratio becomes a predetermined amount. Was coated by electroplating to obtain a conductor 1 of the present invention having a coating layer 3 on a stainless steel core 2 as shown in FIG. 1 (Sample Nos. 1 to 4 and 6). In addition, SUS304 stainless steel wire with a diameter of 0.8 mm is subjected to acid-based pretreatment, then nickel is thinly strike-plated, and copper is further electrolytically plated thereon so that the weight ratio becomes a predetermined amount. The coated conductor was drawn to a diameter of 0.135 mm and then softened in a tunnel furnace at a temperature of 1000 ° C. to obtain a conductor of the present invention (Sample No. 5). Seven of these conductors (element wires) of the present invention are bundled to form a stranded wire, and the outer periphery thereof is coated with vinyl chloride to a predetermined thickness to produce an automobile electric wire (see FIG. 2 for the cross-sectional structure). Next, after cutting the obtained electric wire into a fixed length, the end of the electric wire is peeled off and a metal terminal is crimped. And this terminal is inserted in a housing, the sub-assembly which consists of about 200 is bundled, and a protective material is covered, and a wire harness is obtained.
[0026]
In this example, JIS G 4308 equivalent was used for the SUS304 stainless steel wire of each sample. The copper used for the coating layer was composed of 99.9% by weight or more of copper and inevitable impurities.
[0027]
As a comparative sample, a conductor (sample No. 7) in which the copper weight ratio of the coating layer was changed so that the electrical conductivity was less than 2% IACS, and similarly the copper weight of the coating layer so that it exceeded 10% IACS. A sample using a conductor (sample No. 8) with a changed ratio and a conductor using only an electric copper wire (sample No. 9 and 10) was prepared. These comparative samples were obtained by changing the material of each strand constituting the conductor, and the other manufacturing steps were performed in the same manner as Samples Nos. 1 to 4 and 6 to obtain a wire harness. Table 1 shows the characteristics and weight. In Table 1, the copper ratio (wt%) is the ratio (weight ratio) of the weight of copper to the total weight of the conductor.
[0028]
[Table 1]
Figure 0004041970
[0029]
As shown in Table 1, sample Nos. 1 to 6 were made of a stainless steel conductor with a copper coating layer, so that even if the nominal cross-sectional area was 0.2 sq, especially 0.1 sq, the conductor Compared with the conventional sample No. 10 made of only copper, it can be seen that it has an excellent breaking strength equivalent to or greater than that of the large-diameter sample No. 9 having a nominal cross-sectional area of 0.3 sq.
[0030]
Moreover, these sample Nos. 1 to 6 have electrical conductivity of 2% IACS or more and less than 10% IACS. On the other hand, Sample No. 7, whose copper ratio is too small, is excellent in breaking strength, but its conductivity is too low at less than 2% IACS. Sample No. 8, which has an excessively high copper ratio, has high electrical conductivity, but has a breaking strength of less than 80N. Therefore, if stainless steel with a copper coating layer is used for the conductor so that the electrical conductivity satisfies 2% IACS or more and less than 10% IACS, even if the nominal cross-sectional area is as small as 0.1 sq, sufficient fracture It has been confirmed that it has strength and satisfies electrical resistance and electrical conductivity required for signal wires, and is suitable for automobile wires, in particular, conductors for signal wires.
[0031]
In addition to Example 1 above, a wire having a copper coating layer and a copper alloy coating layer is prepared on the outer periphery of a core made of stainless steel, and these tapes are arranged in parallel to produce a tape-shaped electric wire. When the characteristics and weight were examined, the same results as in Example 1 were obtained.
[0032]
【The invention's effect】
As described above, according to the automobile conductor of the present invention, by using stainless steel having a coating layer such as copper, it is possible to reduce the diameter and weight as compared with the prior art, and the conductor having a smaller diameter. However, it is possible to achieve an excellent effect of ensuring a high breaking strength. Moreover, appropriate electrical conductivity can be obtained by providing a coating layer such as copper on a core material made of stainless steel. Therefore, the conductor for automobiles of the present invention is suitable for electric wires for automobiles, in particular, electric wires for signals.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view of a conductor for an automobile of the present invention.
FIG. 2 is a schematic cross-sectional view of a conventional automobile electric wire.
[Explanation of symbols]
1 Conductor 2 Core 3 Covering layer
100 Automotive wire 101 Wire 102 Conductor 103 Resin coating
r Wire diameter R Conductor diameter R 0 Wire diameter

Claims (4)

ステンレスからなる芯材と、
前記芯材の外周に銅、銅合金から選ばれる少なくとも一種からなる被覆層とを具え、
前記芯材は、最終線径まで伸線された後、軟化処理が施されており、
導電率が2%IACS以上10%IACS未満であることを特徴とする自動車の信号用電線の導体
A core made of stainless steel,
The outer periphery of the core comprises a coating layer made of at least one selected from copper and a copper alloy,
The core material has been subjected to softening treatment after being drawn to the final wire diameter,
Conductor for signal wires of automobiles, characterized by electrical conductivity of 2% IACS or more and less than 10% IACS.
芯材は、クロム系ステンレス又はニッケルクロム系ステンレスからなることを特徴とする請求項1記載の自動車の信号用電線の導体2. The conductor of a signal wire for automobiles according to claim 1, wherein the core material is made of chromium-based stainless steel or nickel-chrome-based stainless steel. 前記被覆層は、電気メッキにて形成されており、  The coating layer is formed by electroplating,
前記芯材と被覆層の間には、中間層が置換メッキ又はストライクメッキにて形成されていることを特徴とする請求項1又は2に記載の自動車の信号用電線の導体。  The conductor of a signal wire for an automobile according to claim 1 or 2, wherein an intermediate layer is formed by displacement plating or strike plating between the core material and the covering layer.
前記中間層は、ニッケル又はスズからなることを特徴とする請求項3に記載の自動車の信号用電線の導体。The said intermediate | middle layer consists of nickel or tin , The conductor of the signal wire of a motor vehicle of Claim 3 characterized by the above-mentioned.
JP2002375593A 2002-12-25 2002-12-25 Automotive conductor Expired - Fee Related JP4041970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375593A JP4041970B2 (en) 2002-12-25 2002-12-25 Automotive conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375593A JP4041970B2 (en) 2002-12-25 2002-12-25 Automotive conductor

Publications (2)

Publication Number Publication Date
JP2004207080A JP2004207080A (en) 2004-07-22
JP4041970B2 true JP4041970B2 (en) 2008-02-06

Family

ID=32813271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375593A Expired - Fee Related JP4041970B2 (en) 2002-12-25 2002-12-25 Automotive conductor

Country Status (1)

Country Link
JP (1) JP4041970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349502B2 (en) 2010-06-24 2016-05-24 Fujikura Ltd. Automotive wire

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005158450A (en) * 2003-11-25 2005-06-16 Sumitomo Wiring Syst Ltd Electric wire for automobile
DE102005002626A1 (en) * 2005-01-12 2006-07-20 Valeo Schalter Und Sensoren Gmbh Sensor for a proximity detection or parking assistance system of a vehicle and contact wire therefor
US8476529B2 (en) * 2007-10-23 2013-07-02 Autonetworks Technologies, Ltd. Aluminum electric wire for an automobile and a method for producing the same
JP5365100B2 (en) * 2008-08-26 2013-12-11 株式会社オートネットワーク技術研究所 Wire harness including short circuit and method for manufacturing the same
WO2018092350A1 (en) * 2016-11-16 2018-05-24 住友電気工業株式会社 Twisted wire for wire harness and wire harness
JP7166970B2 (en) * 2019-03-26 2022-11-08 古河電気工業株式会社 Stranded wire for wiring harness
WO2022249336A1 (en) * 2021-05-26 2022-12-01 住友電気工業株式会社 Electric wire and method for manufacturing electric wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349502B2 (en) 2010-06-24 2016-05-24 Fujikura Ltd. Automotive wire

Also Published As

Publication number Publication date
JP2004207080A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP4171888B2 (en) Automotive conductor
EP1291992B9 (en) Power distribution assembly
JP3824809B2 (en) Automotive power cable and terminal for the power cable
JP4927366B2 (en) Aluminum conductive wire
JP4477295B2 (en) Aluminum wire for automobile wire harness
EP1973120B1 (en) Electrical wire conductor for wiring, electrical wire for wiring, and their production methods
EP0465978B1 (en) Wire conductors for automobiles
WO2005112046A1 (en) Composite wire for wire harness and process for producing the same
JP4041970B2 (en) Automotive conductor
JP4557887B2 (en) Covered wire and automotive wire harness
CN109791815B (en) Wire strand for wire harness and wire harness
AT506897B1 (en) METALLIC COMPOSITE WIRE WITH AT LEAST TWO METALLIC LAYERS
JP5365998B2 (en) Electric wire with terminal and terminal member
JP5377767B2 (en) Automotive wire
JP3530181B1 (en) Composite wire for wire harness and manufacturing method thereof
JP4330003B2 (en) Aluminum conductive wire
JP4330005B2 (en) Aluminum conductive wire
Koch et al. Aluminum alloys for wire harnesses in automotive engineering
JP2004039477A (en) Lightweight conductor for automobile
JP4728599B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JP4667770B2 (en) Aluminum conductive wire for automobile wiring and electric wire for automobile wiring
JP2006019165A (en) Aluminum conductive wire
JP2006004760A (en) Aluminum conductive wire
JPH03184210A (en) Cable conductor for automobile
JP6928831B2 (en) Manufacturing method of conductors constituting the flat cable of the rotary connector device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4041970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees