JP4041789B2 - Pump flow controller with fail safe - Google Patents

Pump flow controller with fail safe Download PDF

Info

Publication number
JP4041789B2
JP4041789B2 JP2003384802A JP2003384802A JP4041789B2 JP 4041789 B2 JP4041789 B2 JP 4041789B2 JP 2003384802 A JP2003384802 A JP 2003384802A JP 2003384802 A JP2003384802 A JP 2003384802A JP 4041789 B2 JP4041789 B2 JP 4041789B2
Authority
JP
Japan
Prior art keywords
electromagnetic proportional
pressure
switching valve
valve
fail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384802A
Other languages
Japanese (ja)
Other versions
JP2005146969A (en
Inventor
哲弘 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Precision Machinery KK
Original Assignee
Kawasaki Precision Machinery KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Precision Machinery KK filed Critical Kawasaki Precision Machinery KK
Priority to JP2003384802A priority Critical patent/JP4041789B2/en
Publication of JP2005146969A publication Critical patent/JP2005146969A/en
Application granted granted Critical
Publication of JP4041789B2 publication Critical patent/JP4041789B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Description

本発明は、建設機械、産業機械等用の油圧ポンプに適用して有効なフェールセーフ付レギュレータ内蔵のポンプ流量制御装置に関する。   The present invention relates to a pump flow rate control device with a built-in fail-safe regulator that is effective when applied to hydraulic pumps for construction machinery, industrial machinery, and the like.

本件出願人は、電気制御系に異常をきたしても操作不能や動作速度の著しい低下を招くことなく制御可能とする、電気制御可能なポンプの流量制御装置を既に提案している(特許文献1)。ところがその装置では、電磁切換弁がフェールした時、制御側冗長用切換弁を手動で切り換える必要があった。   The present applicant has already proposed an electric controllable flow rate control device for a pump that can be controlled without causing inoperability or a significant decrease in operation speed even if an abnormality occurs in the electric control system (Patent Document 1). ). However, in the apparatus, when the electromagnetic switching valve fails, it is necessary to manually switch the control side redundant switching valve.

その構造を図5に関連して説明すると次の通りである。即ち、図5(a)の電気制御レギュレータ21は、可変容量形油圧ポンプ22の容積を、電磁比例弁23への指令電流が増加する時に大きくするようなポジコン形の制御を行う。   The structure will be described with reference to FIG. That is, the electric control regulator 21 of FIG. 5A performs positive control that increases the volume of the variable displacement hydraulic pump 22 when the command current to the electromagnetic proportional valve 23 increases.

電気制御レギュレータ21はサーボ切換弁24及びサーボシリンダ25を備え、サーボシリンダ25は可変容量形油圧ポンプ22の斜板26の傾転角を変化させて吐出容量を制御する。サーボ切換弁24では、スプール27及びスリーブ28が夫々独立に軸線方向に往復移動可能である。スプール27は、パイロットスプリング29によって可変容量形油圧ポンプ22の吐出容量が最小となる方向である減少側に付勢されている。制御側ピストン30は、通常の電気制御系では、電磁比例弁23からの2次圧を受圧し、スプール27を可変容量形油圧ポンプ22の吐出容量が増加する方向である増加側に付勢する。スリーブ28はスプール27の移動に追従して移動するように、連結ロッド31を介してサーボシリンダ25内のサーボピストン32に機械的に連結されている。サーボピストン32は可変容量形油圧ポンプ22の斜板26にも連結されて、前述のように傾転角を変化させる。   The electric control regulator 21 includes a servo switching valve 24 and a servo cylinder 25. The servo cylinder 25 controls the discharge capacity by changing the tilt angle of the swash plate 26 of the variable displacement hydraulic pump 22. In the servo switching valve 24, the spool 27 and the sleeve 28 can reciprocate independently in the axial direction. The spool 27 is urged by the pilot spring 29 to the decreasing side, which is the direction in which the discharge capacity of the variable displacement hydraulic pump 22 is minimized. In a normal electric control system, the control-side piston 30 receives the secondary pressure from the electromagnetic proportional valve 23 and biases the spool 27 to the increase side, which is the direction in which the discharge capacity of the variable displacement hydraulic pump 22 increases. . The sleeve 28 is mechanically connected to a servo piston 32 in the servo cylinder 25 via a connecting rod 31 so as to move following the movement of the spool 27. The servo piston 32 is also connected to the swash plate 26 of the variable displacement hydraulic pump 22 to change the tilt angle as described above.

制御側ピストン30の受圧部と電磁比例弁23の2次側との間には、制御側冗長用切換弁33が設けられている。スプール27の右端側に当接しているコンペンピストン34には、吐出側冗長用切換弁35を介して、可変容量形油圧ポンプ22の吐出圧を導くことができる。制御側冗長用切換弁33及び吐出側冗長用切換弁35は、図5(a)に示す通常側と、図5(b)、(c)に示す冗長側とに、夫々手動で切換可能である。制御側冗長用切換弁33は、電磁比例弁23の電磁弁本体ブロック36内に形成される。なお、可変容量形油圧ポンプ22の吐出圧Pd及び電磁比例弁23の1次側の制御用油圧Psvは、チェック弁37、38を夫々介して、サーボ切換弁24及び吐出側冗長用切換弁35の1次側に与えられる。   Between the pressure receiving portion of the control side piston 30 and the secondary side of the electromagnetic proportional valve 23, a control side redundancy switching valve 33 is provided. The discharge pressure of the variable displacement hydraulic pump 22 can be guided to the compensator piston 34 in contact with the right end side of the spool 27 through the discharge side redundancy switching valve 35. The control side redundancy switching valve 33 and the discharge side redundancy switching valve 35 can be manually switched between the normal side shown in FIG. 5 (a) and the redundancy side shown in FIGS. 5 (b) and 5 (c). is there. The control side redundancy switching valve 33 is formed in the electromagnetic valve body block 36 of the electromagnetic proportional valve 23. The discharge pressure Pd of the variable displacement hydraulic pump 22 and the primary control hydraulic pressure Psv of the electromagnetic proportional valve 23 are connected to the servo switching valve 24 and the discharge-side redundant switching valve 35 via check valves 37 and 38, respectively. Is given to the primary side.

図5(b)は、制御側冗長用切換弁33を冗長側に切り換え、電磁比例弁23の1次側への1次圧Psvを直接制御側ピストン30に与え、電磁比例弁23の2次圧はブロックする状態を示している。スプール27は、パイロットスプリング29によって減少側に付勢されるので、電磁比例弁23からの2次圧が0になると図5で最も左側まで移動してしまう。この従来例では、制御用油圧Psvを制御側ピストン30の受圧部に与えている。図5(c)は、吐出側冗長用切換弁35を冗長側に切り換えて、コンペンピストン34に可変容量形油圧ポンプ22の吐出圧Pdを導いている状態を示している。図5(b)及び図5(c)の状態では吐出圧Pdが上昇すると、スプール27が減少側に移動し、吐出容量が減少して、可変容量形油圧ポンプ22駆動用エンジンのストールを防ぐことができる。   5B, the control-side redundancy switching valve 33 is switched to the redundancy side, the primary pressure Psv to the primary side of the electromagnetic proportional valve 23 is directly applied to the control-side piston 30, and the secondary of the electromagnetic proportional valve 23 is The pressure indicates a blocking state. Since the spool 27 is biased to the decreasing side by the pilot spring 29, when the secondary pressure from the electromagnetic proportional valve 23 becomes zero, it moves to the leftmost in FIG. In this conventional example, the control hydraulic pressure Psv is applied to the pressure receiving portion of the control side piston 30. FIG. 5C shows a state in which the discharge-side redundancy switching valve 35 is switched to the redundancy side and the discharge pressure Pd of the variable displacement hydraulic pump 22 is guided to the compensator 34. In the state shown in FIGS. 5B and 5C, when the discharge pressure Pd increases, the spool 27 moves to the decreasing side, the discharge capacity decreases, and the engine for driving the variable displacement hydraulic pump 22 is prevented from stalling. be able to.

図6(b)は、制御側冗長用切換弁33及び吐出側冗長用切換弁35を冗長側に切り換えた場合に、吐出圧Pdに対応する流量Qの馬力制御特性を示している。例えば、可変容量形油圧ポンプ22を駆動する場合に、吐出圧Pdが増大する時にスプール27を容量減少側に移動させ、流量Qが最大馬力特性の限界を超えないように減少させる馬力制御を行うことができる。冗長用切換弁はねじを利用する比較的大きなストロークの変位で通常側と冗長側とを切り換える。冗長用切換弁が通常側にあるときは図6(a)に示す馬力制御特性となり、ポンプの流量は、電磁比例弁23の2次圧によって制御される。   FIG. 6B shows the horsepower control characteristics of the flow rate Q corresponding to the discharge pressure Pd when the control-side redundancy switching valve 33 and the discharge-side redundancy switching valve 35 are switched to the redundancy side. For example, when the variable displacement hydraulic pump 22 is driven, the horsepower control is performed such that when the discharge pressure Pd increases, the spool 27 is moved to the capacity decreasing side and the flow rate Q is decreased so as not to exceed the maximum horsepower characteristic limit. be able to. The redundant switching valve switches between the normal side and the redundant side with a relatively large stroke displacement using screws. When the redundant switching valve is on the normal side, the horsepower control characteristic shown in FIG. 6A is obtained, and the pump flow rate is controlled by the secondary pressure of the electromagnetic proportional valve 23.

上記従来のポジコン形の流量制御装置では、電気的な制御と機械的な制御とを、制御側冗長用切換弁33及び吐出側冗長用切換弁35を切り換えて行うことができ、これによって、電気制御系に異常をきたしても、馬力制御を行うことができるため、可変容量形ポンプ22が駆動用エンジンの馬力を越えて動作することにより、駆動用のエンジンがストールしたりするのを防ぐことができる。   In the above-described conventional positive control type flow rate control device, electrical control and mechanical control can be performed by switching the control side redundancy switching valve 33 and the discharge side redundancy switching valve 35. Since the horsepower control can be performed even if an abnormality occurs in the control system, the variable displacement pump 22 is prevented from operating beyond the horsepower of the drive engine, thereby preventing the drive engine from stalling. Can do.

ところが、電磁比例弁23のフェールが発生して2次圧が発生しなくなった際には、ロッドのねじを回して冗長側(フェールモード)に切り換える作業が必要になり、手間がかかる。   However, when a failure of the electromagnetic proportional valve 23 occurs and the secondary pressure is not generated, it is necessary to turn the rod screw to switch to the redundant side (fail mode), which is troublesome.

特開平10−281073号公報Japanese Patent Laid-Open No. 10-281073

電磁比例弁のフェールが発生し、ポンプの流量が最小となった際、何の操作も必要なく、あるいはエンジンを再始動するだけで自動的にフェールモードに切り換わり、さらにエンジンオフする度に自動的にフェールセーフ用切換弁を切り換えてスプールのステイックする可能性を減し、安定してフェール時の作動を可能にすることを目的としている。   When a solenoid proportional valve failure occurs and the pump flow rate is minimized, no operation is required, or the engine is automatically switched to fail mode by simply restarting the engine, and automatically every time the engine is turned off. Therefore, it is intended to reduce the possibility of the spool sticking by switching the fail-safe switching valve, and to enable stable operation at the time of failure.

請求項1の発明は、電磁比例弁、サーボ切換弁及びサーボシリンダを備え、1次側に制御用流体圧を与える電磁比例弁からの2次圧でサーボ切換弁のスプールを可変容量形ポンプの容量増加方向又は減少方向に変位させ、上記サーボ切換弁からの出力で上記サーボシリンダ内のサーボピストンを変位させ、上記電磁比例弁への指令電流の増加に従って可変容量形ポンプからの吐出流量を増加させ、上記電磁比例弁の2次側と、上記サーボ切換弁のスプールを容量増加側に付勢する増加側受圧部との間に設けられ、増加側受圧部に上記電磁比例弁からの2次圧を導く通常状態と、油圧ポジコン圧、又は上記電磁比例弁の1次側の制御用流体圧を導くフェール状態とを切換えるフェールセーフ用切換弁を備えたポンプ流量制御装置であって、上記フェールセーフ用切換弁はフェール側へ付勢するスプリングを備え、ある定められた圧力より高い上記電磁比例弁の2次圧が加えられている通常時のみ上記切換弁のスプールを上記スプリングに抗して通常(反フェール)側へ切換えることを特徴とする、フェールセーフ付ポンプ流量制御装置である。
請求項2の発明は、電磁比例弁、サーボ切換弁及びサーボシリンダを備え、1次側に制御用流体圧を与える電磁比例弁からの2次圧でサーボ切換弁のスプールを可変容量形ポンプの容量増加方向又は減少方向に変位させ、上記サーボ切換弁からの出力で上記サーボシリンダ内のサーボピストンを変位させ、上記電磁比例弁への指令電流の増加に従って可変容量形ポンプからの吐出流量を増加させ、上記電磁比例弁の2次側と、上記サーボ切換弁のスプールを容量増加側に付勢する増加側受圧部との間に、増加側受圧部に上記電磁比例弁からの2次圧を導く通常状態と、油圧ポジコン圧、又は上記1次側の制御用流体圧を導くフェール状態とを切換え、第1のスプールをフェール側へ付勢する第1のスプリングを備えたフェールセーフ用切換弁を備えたポンプ流量制御装置であって、フェール側へ付勢する第2のスプリングを備えある定められた圧力より高い電磁比例弁の2次圧が加えられると上記第2のスプリングに抗して通常側に切換わり、一旦通常側に切換わると上記電磁比例弁の1次側圧力が付勢されることにより、上記電磁比例弁の2次圧の大きさにかかわらず上記第2のスプールを通常側に付勢し続ける第2の切換弁を備え、上記フェールセーフ用切換弁は第2の切換弁が通常側に切換わったときのみ、上記電磁比例弁の1次圧を上記第1のスプリングに対抗して上記フェールセーフ用切換弁のスプールに付勢して上記フェールセーフ用切換弁を通常側へ切換えることを特徴とする、フェールセーフ付ポンプ流量制御装置である。
The invention according to claim 1 is provided with an electromagnetic proportional valve, a servo switching valve and a servo cylinder, and the spool of the servo switching valve is driven by a secondary pressure from the electromagnetic proportional valve which applies a control fluid pressure to the primary side of the variable displacement pump. Displacement in the direction of increasing or decreasing the capacity, the servo piston in the servo cylinder is displaced by the output from the servo switching valve, and the discharge flow rate from the variable displacement pump is increased as the command current to the electromagnetic proportional valve increases. And provided between a secondary side of the electromagnetic proportional valve and an increasing pressure receiving portion that urges the spool of the servo switching valve toward a capacity increasing side, and the increasing pressure receiving portion receives a secondary from the electromagnetic proportional valve. A pump flow control device comprising a fail-safe switching valve for switching between a normal state for guiding pressure and a positive state of hydraulic positive control pressure or a fail state for guiding fluid pressure for control on the primary side of the electromagnetic proportional valve, The fail-safe switching valve is provided with a spring that urges toward the fail side, and the spool of the switching valve resists the spring only in the normal time when the secondary pressure of the electromagnetic proportional valve higher than a predetermined pressure is applied. It is a pump flow control device with a fail safe characterized by switching to the normal (anti-fail) side.
The invention of claim 2 comprises an electromagnetic proportional valve, a servo switching valve, and a servo cylinder, and the spool of the servo switching valve is driven by the secondary pressure from the electromagnetic proportional valve that gives the control fluid pressure to the primary side of the variable displacement pump. Displacement in the direction of increasing or decreasing the capacity, the servo piston in the servo cylinder is displaced by the output from the servo switching valve, and the discharge flow rate from the variable displacement pump is increased as the command current to the electromagnetic proportional valve increases. The secondary pressure from the electromagnetic proportional valve is applied to the increase side pressure receiving portion between the secondary side of the electromagnetic proportional valve and the increase side pressure receiving portion that urges the spool of the servo switching valve to the capacity increasing side. A fail-safe switching valve having a first spring that switches between a normal state for guiding and a fail state for guiding the hydraulic positive control pressure or the primary control fluid pressure, and biases the first spool toward the fail side. A pump flow rate control device provided with a second spring for biasing toward the fail side, when a secondary pressure of an electromagnetic proportional valve higher than a predetermined pressure is applied, usually against the second spring Once switched to the normal side and once switched to the normal side, the primary pressure of the electromagnetic proportional valve is energized, so that the second spool is normally operated regardless of the magnitude of the secondary pressure of the electromagnetic proportional valve. And a fail-safe switching valve that applies the primary pressure of the electromagnetic proportional valve only when the second switching valve is switched to the normal side. The fail-safe pump flow rate control device is characterized by urging the spool of the fail-safe switching valve to switch the fail-safe switching valve to the normal side.

(1)請求項1に示す発明例では、電磁比例弁のフェールが発生して2次圧が発生しなくなり、ポンプが最小流量しか吐出できなくなった際、自動的にフェールモード側に切り換わり、馬力制御付油圧ポジコンシステムとしてポンプの流量制御が可能、または、馬力制御に関するポンプ流量制御が可能となり、従来のようにロッドのねじを回して切り換える手作業が不要になる。
(2)請求項1に示す発明例では、エンジンをオフする度に、フェールセーフ用切換弁V1を自動的にフェール側に切り換える構造であり、切換弁V1が長時間同じ位置にとどまることを回避できるので、切換弁V1がスティックする可能性が低くなるので、フェールが発生したとき、切換弁V1が速やかにフェール側に切り換わることができ、安定した切換弁の作動が可能となる。
(3)請求項2に示す発明例では、電磁比例弁のフェールが発生して2次圧が発生しなくなり、ポンプが最小流量しか吐出できなくなった際、一旦エンジンをオフした後、エンジンを再始動するだけで自動的にフェールモード側に切り換わり、馬力制御付油圧ポジコンシステムとしてポンプの流量制御が可能、または、馬力制御に関するポンプ流量制御が可能となり、従来のようにロッドのねじを回して切り換える手作業が不要になる。
(4)請求項2に示す発明例では、エンジンをオフする度に、フェールセーフ用切換弁V1、切換弁V2を自動的にフェール側に切り換える構造であり、切換弁V1、V2が長時間同じ位置にとどまることを回避できるので、切換弁V1、V2がスティックする可能性が低くなるので、フェールが発生したとき、切換弁V1、V2が速やかにフェール側に切り換わることができ、安定した切換弁の作動が可能になる。
(5)さらに、請求項2に示す発明例では、弁V1、V2に付勢するスプリングの荷重を大きく設定できるため切換弁V1、V2がスティックする可能性がさらに低くなり、フェールが発生したとき、切換弁V1、V2がフェール側に切り換わることができ、安定した切換弁の作動が可能となる。
(6)さらに、請求項2に示す発明例では、フェールセーフ用切換弁が切り換わる際、あるいは切り換わった後、切換弁V1、V2がハンチングすることを回避できるので、安定して通常状態の作動、すなわち電磁比例弁によるポンプ流量制御が可能となる。
(1) In the invention example shown in claim 1, when the electromagnetic proportional valve fails and the secondary pressure is not generated, and the pump can discharge only the minimum flow rate, it automatically switches to the fail mode side, As a hydraulic positive control system with horsepower control, the flow rate of the pump can be controlled, or the pump flow rate control related to the horsepower control can be performed, and the manual operation for switching by turning the screw of the rod as in the prior art becomes unnecessary.
(2) In the invention example shown in claim 1, every time the engine is turned off, the fail-safe switching valve V1 is automatically switched to the fail side, and the switching valve V1 is prevented from staying at the same position for a long time. Since the possibility of sticking of the switching valve V1 is reduced, the switching valve V1 can be quickly switched to the fail side when a failure occurs, and a stable switching valve can be operated.
(3) In the invention example shown in claim 2, when the failure of the electromagnetic proportional valve occurs and the secondary pressure is not generated and the pump can only discharge the minimum flow rate, the engine is turned off and then the engine is restarted. Just by starting, it automatically switches to the fail mode side, and it is possible to control the pump flow rate as a hydraulic positive control system with horsepower control, or to control the pump flow rate related to horsepower control. Manual switching is not necessary.
(4) In the invention example shown in claim 2, every time the engine is turned off, the fail-safe switching valve V1 and switching valve V2 are automatically switched to the fail side, and the switching valves V1 and V2 are the same for a long time. Since it is possible to avoid staying in the position, the possibility of the switching valves V1 and V2 sticking is reduced. Therefore, when a failure occurs, the switching valves V1 and V2 can be quickly switched to the fail side, so that stable switching is possible. The valve can be activated.
(5) Further, in the invention example shown in claim 2, when the load of the spring urging the valves V1 and V2 can be set large, the possibility of the switching valves V1 and V2 sticking is further reduced and a failure occurs. The switching valves V1 and V2 can be switched to the fail side, and the switching valve can be stably operated.
(6) Further, in the invention example shown in claim 2, since the switching valves V1 and V2 can be prevented from hunting when or after the failsafe switching valve is switched, it is possible to stabilize the normal state. Operation, that is, pump flow rate control by an electromagnetic proportional valve is possible.

通常時を示す図2において、フェールセーフ用切換弁V1は図5の制御側冗長用切換弁33に対応しており、そのスプール2にはスプール2をフェール側へ付勢するスプリング3が装着されている。Ppは油圧パイロット弁の出力圧で、例えば0から4MPaまで変化する。又、V2は第2の切換弁であり、ある定められた圧力より高い電磁比例弁の2次圧P2により図示の通常時の状態となり、一旦この状態になると、Psvにより弁V2及び弁V1を図示の反フェール側に付勢し続ける。弁V1、V2がフェールセーフ付レギュレータを構成している。   In FIG. 2 showing a normal time, the fail-safe switching valve V1 corresponds to the control-side redundancy switching valve 33 in FIG. 5, and a spring 3 for urging the spool 2 toward the fail side is mounted on the spool 2. ing. Pp is the output pressure of the hydraulic pilot valve and varies from 0 to 4 MPa, for example. V2 is a second switching valve, which is in the normal state shown in the figure by the secondary pressure P2 of the electromagnetic proportional valve higher than a predetermined pressure. Once this state is reached, the valve V2 and the valve V1 are turned on by Psv. Continue to urge toward the anti-fail side shown. Valves V1 and V2 constitute a fail-safe regulator.

一般に電気ポジコンでは、比例弁の電流Iとポンプ吐出流量Qとの関係は図3に示す特性となる。ポンプを流量制御するときの電磁比例弁2次圧P2は図4に示す PL≦P2≦PH の範囲内で変化する。   In general, in an electric positive control, the relationship between the current I of the proportional valve and the pump discharge flow rate Q has the characteristics shown in FIG. The electromagnetic proportional valve secondary pressure P2 when controlling the flow rate of the pump changes within the range of PL ≦ P2 ≦ PH shown in FIG.

図4で、スプリング4に対抗するP2圧力をPsw1(Psw1<PL)とすると、P2が一旦、P2≧Psw1となれば弁V2が通常側に切換わり、Psvにより弁V2を反フェール側に付勢し続けるので、P2<Psw1となっても弁V2及び弁V1ともフェール側には切換わらない。従って、PLよりも高い圧力に設定したPsw2についても同様の動作をするので、スプリング4の荷重を十分大きく設定することが可能である。またPsw1、Psw2のいずれかがPLの値に近い圧力に設定されている場合に外乱や弁2の切換直後にP2がPsw1又はPsw2より低くなってもハンチングすることがない。   In FIG. 4, when P2 pressure against the spring 4 is Psw1 (Psw1 <PL), once P2 becomes P2 ≧ Psw1, the valve V2 is switched to the normal side, and the valve V2 is attached to the anti-fail side by Psv. Therefore, even if P2 <Psw1, neither the valve V2 nor the valve V1 is switched to the fail side. Accordingly, the same operation is performed for Psw2 set to a pressure higher than PL, so that the load of the spring 4 can be set sufficiently large. Further, when either Psw1 or Psw2 is set to a pressure close to the value of PL, hunting does not occur even if P2 becomes lower than Psw1 or Psw2 immediately after disturbance or switching of the valve 2.

電磁比例弁のフェール(断線など)が発生すると、ポンプは最小流量を吐出する。この状態で、一旦、エンジンを切れば、スプリング3、4により弁V1、V2はフェール側に切換わり、エンジンを再始動すれば、P2圧が発生しないことから弁V1、V2はフェール側の状態を維持し、油圧ポジコンとして作動することができる。   When the solenoid proportional valve fails (disconnection, etc.), the pump discharges the minimum flow rate. In this state, once the engine is turned off, the valves V1 and V2 are switched to the fail side by the springs 3 and 4, and when the engine is restarted, the P2 pressure is not generated, so the valves V1 and V2 are in the fail side state. Can be operated as a hydraulic positive control.

さらにフェール状態ではPsvがコンペンピストン室40に導かれるので、従来例と同様、吐出圧Pdが増大するとスプール27を容量減少側に移動させ、流量Qが最大馬力特性の限界を超えないように減少させる馬力制御を行うことができる。   Further, since Psv is guided to the compensatory piston chamber 40 in the fail state, the spool 27 is moved to the capacity decreasing side when the discharge pressure Pd increases as in the conventional example, and the flow rate Q decreases so as not to exceed the limit of the maximum horsepower characteristics. Horsepower control can be performed.

本発明の装置の要部油圧回路図である。It is a principal part hydraulic circuit diagram of the apparatus of this invention. 本発明の別の装置の要部油圧回路図である。It is a principal part hydraulic circuit diagram of another apparatus of this invention. ポンプ流量と比例弁電流の関係を示すグラフである。It is a graph which shows the relationship between a pump flow rate and a proportional valve current. 比例弁2次圧力とP2圧力の関係を示すグラフである。It is a graph which shows the relationship between a proportional valve secondary pressure and P2 pressure. 従来例の油圧回路図である。It is a hydraulic circuit diagram of a conventional example. 図5の回路における馬力制御特性を示すグラフである。It is a graph which shows the horsepower control characteristic in the circuit of FIG.

符号の説明Explanation of symbols

2 スプール
3 スプリング
22 可変容量形ポンプ
23 電磁比例弁
24 サーボ切換弁
25 サーボシリンダ
32 サーボピストン
V1 フェールセーフ用切換弁
V2 第2の切換弁
P2 電磁比例弁の2次圧
2 Spool 3 Spring 22 Variable displacement pump 23 Proportional solenoid valve 24 Servo switching valve 25 Servo cylinder 32 Servo piston V1 Fail-safe switching valve V2 Second switching valve P2 Secondary pressure of electromagnetic proportional valve

Claims (2)

電磁比例弁、サーボ切換弁及びサーボシリンダを備え、1次側に制御用流体圧を与える電磁比例弁からの2次圧でサーボ切換弁のスプールを可変容量形ポンプの容量増加方向又は減少方向に変位させ、上記サーボ切換弁からの出力で上記サーボシリンダ内のサーボピストンを変位させ、上記電磁比例弁への指令電流の増加に従って可変容量形ポンプからの吐出流量を増加させ、上記電磁比例弁の2次側と、上記サーボ切換弁のスプールを容量増加側に付勢する増加側受圧部との間に設けられ、増加側受圧部に上記電磁比例弁からの2次圧を導く通常状態と、油圧ポジコン圧、又は上記電磁比例弁の1次側の制御用流体圧を導くフェール状態とを切換えるフェールセーフ用切換弁を備えたポンプ流量制御装置であって、上記フェールセーフ用切換弁はフェール側へ付勢するスプリングを備え、ある定められた圧力より高い上記電磁比例弁の2次圧が加えられている通常時のみ上記切換弁のスプールを上記スプリングに抗して通常(反フェール)側へ切換えることを特徴とする、フェールセーフ付ポンプ流量制御装置。   Equipped with an electromagnetic proportional valve, servo switching valve and servo cylinder, the spool of the servo switching valve is increased or decreased by the secondary pressure from the electromagnetic proportional valve that gives the control fluid pressure to the primary side. The servo piston in the servo cylinder is displaced by the output from the servo switching valve, the discharge flow rate from the variable displacement pump is increased according to the increase in the command current to the electromagnetic proportional valve, and the electromagnetic proportional valve A normal state that is provided between the secondary side and an increasing pressure receiving portion that biases the spool of the servo switching valve toward the capacity increasing side, and that guides the secondary pressure from the electromagnetic proportional valve to the increasing pressure receiving portion; A pump flow control device comprising a fail-safe switching valve for switching between a hydraulic positive control pressure or a fail state for guiding a primary control fluid pressure of the electromagnetic proportional valve, wherein the fail-safe switching valve The valve is provided with a spring urging toward the fail side, and the spool of the switching valve is normally resisted against the spring only when the secondary pressure of the electromagnetic proportional valve higher than a predetermined pressure is applied. A fail-safe pump flow rate control device characterized by switching to the fail side. 電磁比例弁、サーボ切換弁及びサーボシリンダを備え、1次側に制御用流体圧を与える電磁比例弁からの2次圧でサーボ切換弁のスプールを可変容量形ポンプの容量増加方向又は減少方向に変位させ、上記サーボ切換弁からの出力で上記サーボシリンダ内のサーボピストンを変位させ、上記電磁比例弁への指令電流の増加に従って可変容量形ポンプからの吐出流量を増加させ、上記電磁比例弁の2次側と、上記サーボ切換弁のスプールを容量増加側に付勢する増加側受圧部との間に、増加側受圧部に上記電磁比例弁からの2次圧を導く通常状態と、油圧ポジコン圧、又は上記1次側の制御用流体圧を導くフェール状態とを切換え、第1のスプールをフェール側へ付勢する第1のスプリングを備えたフェールセーフ用切換弁を備えたポンプ流量制御装置であって、フェール側へ付勢する第2のスプリングを備えある定められた圧力より高い電磁比例弁の2次圧が加えられると上記第2のスプリングに抗して通常側に切換わり、一旦通常側に切換わると上記電磁比例弁の1次側圧力が付勢されることにより、上記電磁比例弁の2次圧の大きさにかかわらず上記第2のスプールを通常側に付勢し続ける第2の切換弁を備え、上記フェールセーフ用切換弁は第2の切換弁が通常側に切換わったときのみ、上記電磁比例弁の1次圧を上記第1のスプリングに対抗して上記フェールセーフ用切換弁のスプールに付勢して上記フェールセーフ用切換弁を通常側へ切換えることを特徴とする、フェールセーフ付ポンプ流量制御装置。
Equipped with an electromagnetic proportional valve, servo switching valve and servo cylinder, the spool of the servo switching valve is increased or decreased by the secondary pressure from the electromagnetic proportional valve that gives the control fluid pressure to the primary side. The servo piston in the servo cylinder is displaced by the output from the servo switching valve, the discharge flow rate from the variable displacement pump is increased according to the increase in the command current to the electromagnetic proportional valve, and the electromagnetic proportional valve A normal state in which the secondary pressure from the electromagnetic proportional valve is guided to the increasing side pressure receiving unit, and a hydraulic positive control between the secondary side and the increasing side pressure receiving unit that biases the spool of the servo switching valve to the capacity increasing side; Pump flow rate provided with a fail-safe switching valve having a first spring that switches between a pressure state or a fail state that leads the primary control fluid pressure and biases the first spool toward the fail side A control device comprising a second spring for biasing toward the fail side, when a secondary pressure of an electromagnetic proportional valve higher than a predetermined pressure is applied, the second switch is switched to the normal side against the second spring. Once switched to the normal side, the primary pressure of the electromagnetic proportional valve is energized, thereby energizing the second spool to the normal side regardless of the magnitude of the secondary pressure of the electromagnetic proportional valve. A fail-safe switching valve that opposes the primary pressure of the electromagnetic proportional valve against the first spring only when the second switching valve is switched to the normal side. A pump flow control device with failsafe, wherein the failsafe switching valve is biased to the normal side by urging the spool of the failsafe switching valve.
JP2003384802A 2003-11-14 2003-11-14 Pump flow controller with fail safe Expired - Fee Related JP4041789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384802A JP4041789B2 (en) 2003-11-14 2003-11-14 Pump flow controller with fail safe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384802A JP4041789B2 (en) 2003-11-14 2003-11-14 Pump flow controller with fail safe

Publications (2)

Publication Number Publication Date
JP2005146969A JP2005146969A (en) 2005-06-09
JP4041789B2 true JP4041789B2 (en) 2008-01-30

Family

ID=34693081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384802A Expired - Fee Related JP4041789B2 (en) 2003-11-14 2003-11-14 Pump flow controller with fail safe

Country Status (1)

Country Link
JP (1) JP4041789B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221399B (en) * 2014-06-30 2017-06-20 川崎重工业株式会社 Oil pressure actuated systems with failure safe function
JP2017129067A (en) * 2016-01-21 2017-07-27 川崎重工業株式会社 Hydraulic system with fail-safe

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100779736B1 (en) 2006-06-30 2007-11-26 동명모트롤 주식회사 Controller for hydraulic pump

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105221399B (en) * 2014-06-30 2017-06-20 川崎重工业株式会社 Oil pressure actuated systems with failure safe function
JP2017129067A (en) * 2016-01-21 2017-07-27 川崎重工業株式会社 Hydraulic system with fail-safe

Also Published As

Publication number Publication date
JP2005146969A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US10830348B2 (en) Device and method for controlling a hydraulic machine
JP2007046790A (en) Actuation system
EP0761966B1 (en) Pump displacement control for a variable displacement pump
WO2014156207A1 (en) Pump volume control device
CN108105182B (en) Oil pressure driving system
JP3080597B2 (en) Pump flow control device
JP4041789B2 (en) Pump flow controller with fail safe
CN110785347A (en) Steering control system
US20140311139A1 (en) Hydrostatic Variable Displacement Pump Which Can Be Set In Either Direction Of Displacement
KR101533115B1 (en) Hydraulic pump control apparatus for construction machinery
JP6698359B2 (en) Hydraulic system with fail-safe
JP6940992B2 (en) A hydraulic drive system and a hydraulic drive system including the hydraulic drive system.
CN111336079B (en) Regulator for hydraulic pump
CN113439165A (en) Oil pressure system
CN110431317B (en) Oil pressure system
JP2016011633A (en) Hydraulic drive system with fail-safe
CN115087593B (en) Steering system
JPH10274167A (en) Flow rate control device for volume variable type pump
WO2021140821A1 (en) Hydraulic pump system and control device
JPH0514112B2 (en)
RU2215185C2 (en) Variable capacity pump
WO2013042192A1 (en) Circuit for controlling amount of discharge of construction machinery pump
JP2016132988A (en) Fail-safe hydraulic drive system
JPH11336704A (en) Variable margin pressure control apparatus
JP3892455B2 (en) Actuation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4041789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141116

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees