JP4039077B2 - Thrust magnetic bearing device - Google Patents

Thrust magnetic bearing device Download PDF

Info

Publication number
JP4039077B2
JP4039077B2 JP2002044506A JP2002044506A JP4039077B2 JP 4039077 B2 JP4039077 B2 JP 4039077B2 JP 2002044506 A JP2002044506 A JP 2002044506A JP 2002044506 A JP2002044506 A JP 2002044506A JP 4039077 B2 JP4039077 B2 JP 4039077B2
Authority
JP
Japan
Prior art keywords
thrust
gap
electromagnet
magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002044506A
Other languages
Japanese (ja)
Other versions
JP2003239969A (en
Inventor
健裕 新膳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2002044506A priority Critical patent/JP4039077B2/en
Publication of JP2003239969A publication Critical patent/JP2003239969A/en
Application granted granted Critical
Publication of JP4039077B2 publication Critical patent/JP4039077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はスラスト磁気軸受装置に関し、回転体などのスラスト荷重を支持する場合に適用して有用なものである。
【0002】
【従来の技術】
図8(a)は従来のスラスト磁気軸受装置の構成を示す断面図、図8(b)は図8(a)のA−A線矢視図である。これらの図に示すように、回転体の回転軸であるシャフト1にはスラスト円盤2が取り付けられており、このスラスト円盤2をスラスト方向(シャフトの軸方向)の両側から挟むようにして一対の電磁石3が対向配置されている。電磁石3は電磁石鉄心4と、この電磁石鉄心4に巻回した電磁石コイル5とを有している。従って、電磁石コイル5に電流を流すと、磁束が発生してスラスト円盤2に対する磁気吸引力が発生するため、スラスト円盤2に作用するスラスト荷重を支持することができる。
【0003】
かかるスラスト磁気軸受装置7は、例えば『電気学会磁気浮上応用技術調査専門委員会編「磁気浮上と磁気軸受」コロナ社、1993年』の第5章に示されているような回転電機の軸受装置に適用される。この文献に示されている回転電機の構成を図8(c)に示す。同図に示すように、フレーム11には固定子12が固定され、固定子12の内側には回転子13が設けられている。そして、回転子13の回転軸であるシャフト1はラジアル磁気軸受装置16とスラスト磁気軸受装置7とによって非接触に支持されている。ラジアル磁気軸受装置16はシャフト1の両側に設けられ、何れもシャフト15に固定した回転部材18と、この回転部材18の周囲に対向配置した電磁石19と有している。そして、スラスト磁気軸受装置7はシャフト15の一端側に設けられており、上記のとおりの構成を有している。
【0004】
【発明が解決しようとする課題】
ところが、上記従来のスラスト磁気軸受装置7では、スラスト円盤2に対してスラスト方向の一方だけでなく、他方にも磁気吸引力を発生するためにはスラスト円盤2の両側の電磁石3(電磁石鉄心4及び電磁石コイル5)を互いに独立させる必要がある。これに対し、現在、コストダウンなどを図るために電磁石コイルなどをできるだけ少なくしたいという要求がある。
【0005】
従って、本発明は上記の事情に鑑み、一体の電磁石で両方向(スラスト方向の一方及び他方)に磁気吸引力を発生可能なスラスト磁気軸受装置を提供することを課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決する第1発明のスラスト磁気軸受装置は、シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面がスラスト軸受部材のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有してなり、
前記シャフト端部と前記電磁石鉄心との間に磁路変更部材を設けることにより、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部材のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも小さくて、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記スラスト軸受部材の先端面と電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部材のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くて、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したことを特徴とする。
【0007】
また、第発明のスラスト磁気軸受装置は、シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面が前記スラスト軸受部材のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有してなり、
前記シャフトの端部と前記電磁石鉄心との間に磁路変更部材を設けないときには、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部材のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも大きくなることにより、前記電磁石で生じる磁束が、主に、前記第2ギャップ、前記スラスト軸受部材の先端面と電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部材のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度のほうが、前記スラスト軸受部材のスラスト方向の他方の面と電磁石鉄心の他方の端面との間の第4ギャップにおける磁束密度よりも高くなって、前記スラスト軸受部材に対し前記電磁石鉄心の一方の端面の方向に磁気吸引力が働き、
前記シャフト端部と前記電磁石鉄心との間に前記磁路変更部材を設けたときには、この磁路変更部材によって前記第1ギャップが前記第2ギャップよりも小さくなることにより、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記第3ギャップ及び前記第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くなって、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したスラスト磁気軸受装置において、
前記磁路変更部材を移動させるアクチュエータを備え、前記シャフトの端部と前記電磁石鉄心との間に前記磁路変更部材を設けないときには前記アクチュエータによって前記磁路変更部材を前記シャフトの端部と前記電磁石鉄心との間から引き抜き、前記シャフトの端部と前記電磁石鉄心との間に前記磁路変更部材を設けるときには前記アクチュエータによって前記磁路変更部材を前記シャフトの端部と前記電磁石鉄心との間に挿入するように構成したことを特徴とする。
【0008】
また、第発明のスラスト磁気軸受装置は、シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面が前記スラスト軸受部のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有し、且つ、前記シャフトの端部と対向する前記電磁石鉄心の内面に磁路変更部を突設した構成とし、
前記スラスト軸受部が電磁石鉄心の両端面に対してスラスト方向の一方に片寄ったときには、前記磁路変更部が前記シャフトの端部と重ならず、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも大きくなることにより、前記電磁石で生じる磁束が、主に、前記第2ギャップ、前記スラスト軸受部の先端面と前記電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度のほうが、前記スラスト軸受部材のスラスト方向の他方の面と電磁石鉄心の他方の端面との間の第4ギャップにおける磁束密度よりも高くなって、前記スラスト軸受部材に対し前記電磁石鉄心の一方の端面の方向に磁気吸引力が働き、
前記スラスト軸受部が前記電磁石鉄心の両端面に対してスラスト方向の他方に片寄ったときには、前記磁路変更部が前記シャフトの端部と重なって、前記第1ギャップが前記第2ギャップよりも小さくなることにより、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記第3ギャップ及び前記第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くなって、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したことを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
【0011】
<実施の形態1>
図1(a)は本発明の実施の形態1に係るスラスト磁気軸受装置の構成(磁路変更管を設けない状態)を示す断面図、図1(b)は図1(a)のB方向矢視図(平面図)である。また、図2(a)は本発明の実施の形態1に係るスラスト磁気軸受装置の構成(磁路変更管を設けた状態)を示す断面図、図2(b)は図2(a)のC方向矢視図(平面図)である。図1及び図2に示すスラスト磁気軸受装置は立軸形のものである。なお、図1と図2では磁路変更管26を設けるか否かが相違するだけであり、その他の構成は同じである。
【0012】
図1に示すように、スラスト磁気軸受装置はスラスト軸受部材としてのスラスト円盤22と電磁石23とを有している。スラスト円盤22は回転体の回転軸であるシャフト21の外周面に突設されており、電磁石23はスラスト円盤22に作用するスラスト荷重を磁力によって支持する。なお、図示例ではシャフト21の端部21a(スラスト円盤22よりも先の部分)の径を、シャフト21の他の部分(スラスト円盤22よりも手前の部分)の径よりも大きくしている。
【0013】
そして、電磁石23は一体のものであり、平面視が円環状で一体の電磁石鉄心24と、この電磁石鉄心24に巻回した電磁石コイル25とを有している。電磁石鉄心24は横断面形状がスラスト円盤22の先端側を囲むように略C字状に屈曲して、両端面24a,24bが、スラスト円盤22のスラスト方向(シャフトの軸方向)の両面22a,22bにそれぞれ対向している。電磁石コイル25は電磁石鉄心24の片側にのみ一体設けられている。
【0014】
また、シャフト端部21a(外周面21b)と電磁石鉄心24(内面24c)との間には第1ギャップδD、スラスト円盤22のスラスト方向の一方の面22aと電磁石鉄心24の一方の端面24aとの間には第2ギャップδA、スラスト円盤22の先端面(外周面)22cと電磁石鉄心24(凹部の内面24d)との間には第3ギャップδC、スラスト円盤22のスラスト方向の他方の面22bと電磁石鉄心24の他方の端面24bとの間には第4ギャップδBをそれぞれ有している。そして、図1(a)のように磁路変更管26(図2参照)をシャフト端部21aと電磁石鉄心24との間に設けないときには、第1ギャップδDが第2ギャップδAよりも大きくなり(δD>δA)、図2(a)に示すように平面視が円環状の磁路変更部材である磁路変更管26をシャフト端部21aと電磁石鉄心24との間に設けたときには、第1ギャップδDが第2ギャップδAよりも小さくなるように設定されている(δD<δA)。なお、第2ギャップδA、第3ギャップδC及び第4ギャップδBはほぼ等しい大きさとなっている。
【0015】
このようにシャフト端部21aと電磁石鉄心24との間に磁路変更管26を設けないときには、第1ギャップδDが第2ギャップδAよりも大きくなることにより、図1(a)に点線で示すように電磁石コイル25に電流を流したときに電磁石23で生じる磁束が、主に、第2ギャップδA、第3ギャップδC及び第4ギャップδBを通る。その結果、第2ギャップδAにおける磁束密度のほうが第4ギャップδBにおける磁束密度よりも高くなるため、スラスト円盤22に対して電磁石鉄心24の一方の端面24aの方向(矢印D方向)に磁気吸引力が働く。
【0016】
一方、磁路変更管26をシャフト端部21aと電磁石鉄心24との間に設けたときには、この磁路変更管26によって第1ギャップδDが第2ギャップδAよりも小さくなることにより、図2(a)に点線で示すように電磁石23で生じる磁束が、主に、第1ギャップδD、第3ギャップδC及び第4ギャップδBを通る。その結果、第2ギャップδAにおける磁束密度よりも第4ギャップδBにおける磁束密度のほうが高くなるため、スラスト円盤22に対して電磁石鉄心24の他方の端面24bの方向(矢印E方向)に磁気吸引力が働く。
【0017】
なお、図2では磁路変更管26を電磁石鉄心24の内面24aに固定しているが、磁路変更管26はシャフト端部21aと電磁石鉄心24との間に設ければよく、例えばシャフト端部21aの外周面21bに固定してもよい。
【0018】
以上のように、本実施の形態1のスラスト磁気軸受装置によれば、電磁石23は一体のものであり、しかも、磁路変更管26をシャフト端部21aと電磁石鉄心24との間に設けるか否かにより、スラスト円盤22に対して2方向(スラスト方向の一方及び他方)への磁気吸引力を発生させることができる。従って、スラスト荷重がどちらか片方だけにしかかからない場合には、このスラスト荷重の方向が何れの方向であっても、図1のように磁路変更管26を設けない状態、又は、図2のように磁路変更管26を設けた状態にしてスラスト荷重を支持することができる。
【0019】
<実施の形態2>
図3は本発明の実施の形態2に係るスラスト磁気軸受装置の構成を示す断面図であり、図3(a)には磁路変更管を引き抜いた状態を示し、図3(b)には磁路変更管を挿入した状態を示している。上記実施の形態1は静的な磁気吸引力発生方向の切り替えを行うものであるのに対して、本実施の形態2は動的な磁気吸引力発生方向の切り替えを行うものである。
【0020】
即ち、図3に示すように、本実施の形態2のスラスト磁気軸受装置では、磁路変更管26をスラスト方向(シャフトの軸方向)に移動させるアクチュエータ31を備えている。そして、シャフト端部21aと電磁石鉄心24との間に磁路変更管26を設けないときには、アクチュエータ31で磁路変更管26を矢印D方向に移動させてシャフト端部21aと電磁石鉄心24との間から引き抜き、シャフト端部21aと電磁石鉄心24との間に磁路変更管26を設けるときには、アクチュエータ31で磁路変更管26を矢印E方向に移動させてシャフト端部21aと電磁石鉄心24との間に挿入(矢印E)する構成となっている。
【0021】
なお、シャフト端部21aと電磁石鉄心24との間に磁路変更管26を設けた(挿入した)ときと設けない(引き抜いた)ときの第1ギャップδDと第2ギャップδAの大小関係の変化による磁路の切り替わり(図3に点線で示す磁束を参照)など、その他の構成については上記実施の形態1と同様であるため、ここでの説明は省略する(実施の形態1の説明及び図1,図2を参照)。
【0022】
本実施の形態2のスラスト磁気軸受装置によれば、アクチュエータ31で磁路変更管26を移動することにより、第1ギャップδDの大きさを動的に変化させてスラスト円盤22に対する磁気吸引力の発生方向を動的に切り替えることができるようになり、2方向(スラスト方向の一方及び他方)のスラスト荷重に対応可能となる。
【0023】
<実施の形態3>
本実施の形態3のスラスト磁気軸受装置は自動定位機構を有するものである。図4は本発明の実施の形態3に係るスラスト磁気軸受装置の構成を示す断面図であり、図4(a)にはスラスト円盤が一方に片寄った状態を示し、図4(b)にはスラスト円盤が他方に片寄った状態を示している。また、図5は本発明の実施の形態3に係るスラスト磁気軸受装置の他の構成を示す断面図であり、図5(a)にはスラスト円盤が一方に片寄った状態を示し、図5(b)にはスラスト円盤が他方に片寄った状態を示している。
【0024】
図4に示すように、本実施の形態3のスラスト磁気軸受装置では、磁路変更部である平面視が円環状の磁路変更管41を、シャフト端部21aと対向する電磁石鉄心24の内面24cに突設し、且つ、第1ギャップδDの大きさがシャフト端部21a及びスラスト円盤22の位置によって変化するように配置している。即ち、図4(a)に示すようにスラスト円盤22が電磁石鉄心24の両端面24a,24bに対してスラスト方向(シャフトの軸方向)の一方(矢印E方向)に片寄ったときには、磁路変更管41がシャフト端部21aと重ならず、図4(b)に示すようにスラスト円盤22が電磁石鉄心24の両端面24a,24bに対してスラスト方向の他方(矢印D方向)に片寄ったときは、磁路変更管41がシャフト端部21aと重なる(重なり量d)ように磁路変更管41を配置している。
【0025】
そして、スラスト円盤22が電磁石鉄心24の両端面24a,24bに対してスラスト方向の一方に片寄ったときには、磁路変更管41がシャフト端部21aと重ならないことから、第1ギャップδDが第2ギャップδAよりも大きくなるため、図4(a)に点線で示すように電磁石23で生じる磁束が、主に、第2ギャップδA、第3ギャップδC及び第4ギャップδBを通る。その結果、第2ギャップδAにおける磁束密度のほうが第4ギャップδBにおける磁束密度よりも高くなるため、スラスト円盤22に対して電磁石鉄心24の一方の端面24aの方向(矢印D方向)に磁気吸引力が働く。
【0026】
一方、スラスト円盤22が電磁石鉄心24の両端面24a,24bに対してスラスト方向の他方に片寄ったときには、磁路変更管41がシャフト端部21aと重なることから、この磁路変更管41により第1ギャップδDが第2ギャップδAよりも小さくなるため、図4(b)に点線で示すように電磁石23で生じる磁束が、主に、第1ギャップδD、第3ギャップδC及び第4ギャップδBを通る。その結果、第2ギャップδAにおける磁束密度よりも第4ギャップδBにおける磁束密度のほうが高くなるため、スラスト円盤22に対して電磁石鉄心24の他方の端面24bの方向(矢印E方向)に磁気吸引力が働く。
【0027】
なお、その他の構成については上記実施の形態1と同様であるため、ここでの説明は省略する(実施の形態1の説明及び図1,図2を参照)。
【0028】
本実施の形態3のスラスト磁気軸受装置によれば、スラスト円盤22が一方又は他方に片寄ると、このスラスト円盤22とともに移動するシャフト端部21aと磁路変更管41との位置関係の変化(両者が重なるか否か)によってスラスト円盤22に対する磁気吸引力の発生方向が切り替わるため、上記実施の形態2のようなアクチュエータが不要となる。
【0029】
なお、上記では磁路変更部として磁路変更管41を設けたが、これに限定するものではなく、電磁石鉄心24の内面24cに磁路変更部が突設されていればよい。例えば電磁石鉄心24の内面24cの一部を突出させてもよい。また、図5に示すように電磁石鉄心24の内面側の磁路変更部41におけるスラスト円盤22側の端面41aを、スラスト円盤22に向かって外側に広がる傾斜面としてもよい。
【0030】
参考例
参考例のスラスト磁気軸受装置も自動定位機構を有するものである。図6(a)は本発明の参考例に係るスラスト磁気軸受装置の構成を示す断面図、図6(b)は図6(a)のF方向矢視図(平面図)である。図6に示すスラスト磁気軸受装置は立軸形のものである。
【0031】
図6に示すように、スラスト磁気軸受装置はスラスト軸受部材としてのスラスト円盤52と電磁石53とを有している。スラスト円盤52は回転体の回転軸であるシャフト51の外周面に突設され、電磁石53はスラスト円盤52に作用するスラスト荷重を磁力によって支持する。そして、スラスト円盤52はスラスト方向の2箇所に設けられている。電磁石53は一体のものであり、平面視が円環状で一体の電磁石鉄心54と、電磁石コイル55とを有している。電磁石鉄心55は、横断面形状がコ字状に屈曲して両端面54a,54bが、2つのスラスト円盤52の先端面52aにそれぞれ対向している。電磁石コイル55は電磁石鉄心54の内側の凹部に嵌装するようにして巻回されている。
【0032】
従って、本参考例のスラスト磁気軸受装置によれば、電磁石コイル55に電流を流すと電磁石53で発生する磁束が、図6(a)に示すように電磁石鉄心54の両端面54a,54bと、2つのスラスト円盤52の先端面52aとの間のギャップを通る。そして、この状態からスラスト円盤52が矢印D又はEのようにスラスト方向(シャフトの軸方向)に変位すると、前記ギャップを最小(磁路を最短)にするような復元力(磁気吸引力)がスラスト円盤52に働く。このため、本参考例のスラスト磁気軸受装置では比較的単純な構造でスラスト円盤52に作用する2方向(スラスト方向の一方及び他方)のスラスト荷重を支持することができる。
【0033】
<実施の形態
上記実施の形態1〜では回転体(回転電機の回転子など)のような線対称の構造物へスラスト磁気軸受装置を適用する場合について説明したが、本願発明のスラスト磁気軸受装置は面対称の構造物へ適用することもできる。その一例を図7に示す。図7(a)は本発明の実施の形態に係るスラスト磁気軸受装置の構成を示す断面図、図7(b)は図7(a)のG方向矢視図(平面図)、図7(c)は図7(a)のI方向矢視図(側面図)である。本実施の形態のスラスト磁気軸受装置は上記実施の形態1のスラスト磁気軸受装置と同様の構成のものであるが、回転体ではなく、軸方向に往復移動可能なプランジャ型の構造物に適用したものである。
【0034】
図7に示すように、スラスト磁気軸受装置はスラスト軸受部材としてのスラスト板62と電磁石63とを有している。スラスト板62はシャフト61(シャフト端部61a)の外周面に突設され、電磁石63はスラスト板62に作用するスラスト荷重を磁力によって支持する。シャフト61は矢印Hのようにスラスト方向(シャフトの軸方向)に往復移動可能なプランジャである。また、図示例では、シャフト端部61a(スラスト板62よりも先の部分)の径(幅)を、シャフト61の他の部分(スラスト板62よりも手前の部分)の径(幅)よりも大きくしている。
【0035】
そして、左右に設けた電磁石63はそれぞれ一体のものであり、平面視が矩形状で一体の電磁石鉄心64と、この電磁石鉄心64に巻回した電磁石コイル65とを有している。電磁石鉄心64は横断面形状がスラスト板62の先端側を囲むように略C字状に屈曲して、両端面64a,64bが、スラスト板62のスラスト方向の両面62a,62bにそれぞれ対向している。電磁石コイル65は電磁石鉄心64の片側にのみ一体設けられている。
【0036】
また、シャフト端部61a(外周面61b)と電磁石鉄心64(内面64c)との間には第1ギャップδD、スラスト板62のスラスト方向の一方の面62aと電磁石鉄心64の一方の端面64aとの間には第2ギャップδA、スラスト板62の先端面62cと電磁石鉄心64(凹部の内面64d)との間には第3ギャップδC、スラスト板62のスラスト方向の他方の面62bと電磁石鉄心64の他方の端面64bとの間には第4ギャップδBを有している。そして、磁路変更部材としての磁路変更板66をシャフト端部61aと電磁石鉄心64との間に設けないときには(このときの状態は図示省略)、第1ギャップδDが第2ギャップδAよりも大きくなり(δD>δA)、且つ、図示のように磁路変更板66をシャフト端部61aと電磁石鉄心64との間に設けたときには第1ギャップδDが第2ギャップδAよりも小さくなるように設定されている(δD<δA)。なお、第2ギャップδA、第3ギャップδC及び第4ギャップδBはほぼ等しい大きさとなっている。
【0037】
このようにシャフト端部61aと電磁石鉄心64との間に磁路変更板66を設けないときには、第1ギャップδDが第2ギャップδAよりも大きくなることにより、図示は省略するが電磁石23で生じる磁束が、主に、第2ギャップδA、第3ギャップδC及び第4ギャップδBを通り、その結果、第2ギャップδAにおける磁束密度のほうが第4ギャップδBにおける磁束密度よりも高くなるため、スラスト板62に対して電磁石鉄心64の一方の端面64aの方向に磁気吸引力が働く。一方、磁路変更板66をシャフト端部61aと電磁石鉄心64との間に設けたときには、この磁路変更板66によって第1ギャップδDが第2ギャップδAよりも小さくなることにより、図示は省略するが電磁石63で生じる磁束が、主に、第1ギャップδD、第3ギャップδC及び第4ギャップδBを通り、その結果、第2ギャップδAにおける磁束密度よりも第4ギャップδBにおける磁束密度のほうが高くなるため、スラスト板62に対して電磁石鉄心64の他方の端面64bの方向に磁気吸引力が働く。
【0038】
本実施の形態のスラスト磁気軸受装置によれば、上記実施の形態1と同様、電磁石63は一体のものであり、しかも、磁路変更板66をシャフト端部61aと電磁石鉄心64との間に設けるか否かにより、スラスト板62に対して2方向(スラスト方向の一方及び他方)への磁気吸引力を発生させることができる。従って、スラスト荷重がどちらか片方だけにしかかからない場合には、このスラスト荷重の方向が何れの方向であっても、磁路変更板66を設けない状態、又は、磁路変更板66を設けた状態とすることによりスラスト荷重を支持することができる。
【0039】
また、このようなプランジャ型の構造物に対して更に上記実施の形態2,3と同様の構成のスラスト磁気軸受装置を適用してもよい。即ち、詳細な説明及び図示は省略するが、実施の形態2と同様にアクチュエータで磁路変更板66の挿入及び引き抜きを行うようにしたり、実施の形態3と同様にスラスト板62のスラスト方向への片寄りに応じて電磁石鉄心64に設けた磁路変更部とシャフト端部61aの重なり状態が変化して磁路が切り替わるようにしてもよく、これらによって実施の形態2,3と同様の作用・効果を得ることができる。即ち、本発明のスラスト磁気軸受装置は、回転体に限らず、スラスト荷重を支持する場合に広く適用することができる。
【0040】
【発明の効果】
以上発明の実施の形態とともに具体的に説明したように、第1発明のスラスト磁気軸受装置によれば、シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面がスラスト軸受部材のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有してなり、前記シャフト端部と前記電磁石鉄心との間に磁路変更部材を設けることにより、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部材のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも小さくて、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記スラスト軸受部材の先端面と電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部材のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くて、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したことを特徴とするため、スラスト荷重が片方だけにしかかからない場合に、このスラスト荷重を支持することができる。
【0041】
また、第発明のスラスト磁気軸受装置によれば、アクチュエータで磁路変更部材を移動することにより、第1ギャップの大きさを動的に変化させてスラスト軸受部材に対する磁気吸引力の発生方向を動的に切り替えることができるようになり、2方向(スラスト方向の一方及び他方)のスラスト荷重に対応可能となる。
【0042】
また、第発明のスラスト磁気軸受装置によれば、スラスト軸受部材が一方又は他方に片寄ると、このスラスト軸受部材とともに移動するシャフト端部と電磁石鉄心に設けた磁路変更部との位置関係の変化(両者が重なるか否か)によってスラスト軸受部材に対する磁気吸引力の発生方向が切り替わるため、上記第2発明のようなアクチュエータが不要となる。
【図面の簡単な説明】
【図1】(a)は本発明の実施の形態1に係るスラスト磁気軸受装置の構成(磁路変更管を設けない状態)を示す断面図、(b)は(a)のB方向矢視図(平面図)である。
【図2】(a)は本発明の実施の形態1に係るスラスト磁気軸受装置の構成(磁路変更管を設けた状態)を示す断面図、(b)は(a)のC方向矢視図(平面図)である。
【図3】本発明の実施の形態2に係るスラスト磁気軸受装置の構成を示す断面図であり、(a)には磁路変更管を引き抜いた状態を示し、(b)には磁路変更管を挿入した状態を示す。
【図4】本発明の実施の形態3に係るスラスト磁気軸受装置の構成を示す断面図であり、(a)にはスラスト円盤が他方に片寄った状態を示し、(b)にはスラスト円盤が一方に片寄った状態を示す。
【図5】本発明の実施の形態3に係るスラスト磁気軸受装置の他の構成を示す断面図であり、(a)にはスラスト円盤が他方に片寄った状態を示し、(b)にはスラスト円盤が一方に片寄った状態を示す。
【図6】 (a)は本発明の参考例に係るスラスト磁気軸受装置の構成を示す断面図、(b)は(a)のF方向矢視図(平面図)である。
【図7】 (a)は本発明の実施の形態に係るスラスト磁気軸受装置の構成を示す断面図、(b)は(a)のG方向矢視図(平面図)、(c)は(a)のI方向矢視図(側面図)である。
【図8】(a)は従来のスラスト磁気軸受装置の構成を示す断面図、(b)は(a)のA−A線矢視図、(c)は従来のスラスト磁気軸受装置を備えた回転電機の構成を示す断面図である。
【符号の説明】
21 シャフト
21a シャフト端部
21b シャフトの外周面
22 スラスト円盤
22a,22b スラスト円盤の面
22c スラスト円盤の先端面
23 電磁石
24 電磁石鉄心
24a,24b 電磁石鉄心の端面
24c 電磁石鉄心の内面
24d 電磁石鉄心凹部の内面
25 電磁石コイル
26 磁路変更管
31 アクチュエータ
41 磁路変更管(磁路変更部)
51 シャフト
51 シャフト端部
52 スラスト円盤
52a スラスト円盤の先端面
53 電磁石
54 電磁石鉄心
54a,54b 電磁石鉄心の端面
55 電磁石コイル
61 シャフト
61a シャフト端部
61b シャフトの外周面
62 スラスト板
62a,62b スラスト板の面
62c スラスト板の先端面
63 電磁石
64 電磁石鉄心
64a,64b 電磁石鉄心の端面
64c 電磁石鉄心の内面
64d 電磁石鉄心凹部の内面
65 電磁石コイル
66 磁路変更板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thrust magnetic bearing device, and is useful when applied to support a thrust load such as a rotating body.
[0002]
[Prior art]
FIG. 8A is a cross-sectional view showing a configuration of a conventional thrust magnetic bearing device, and FIG. 8B is a view taken along line AA in FIG. 8A. As shown in these drawings, a thrust disk 2 is attached to a shaft 1 that is a rotating shaft of a rotating body, and a pair of electromagnets 3 is sandwiched from both sides in the thrust direction (shaft axial direction). Are arranged opposite to each other. The electromagnet 3 has an electromagnet core 4 and an electromagnet coil 5 wound around the electromagnet core 4. Accordingly, when an electric current is passed through the electromagnet coil 5, a magnetic flux is generated to generate a magnetic attractive force with respect to the thrust disk 2, so that a thrust load acting on the thrust disk 2 can be supported.
[0003]
Such a thrust magnetic bearing device 7 is, for example, a bearing device for a rotating electrical machine as shown in Chapter 5 of “Magnetic Levitation and Magnetic Bearing” Corona Company, 1993, edited by the IEEJ Technical Committee on Magnetic Levitation Applied Technology. Applies to The structure of the rotating electrical machine shown in this document is shown in FIG. As shown in the figure, a stator 12 is fixed to the frame 11, and a rotor 13 is provided inside the stator 12. The shaft 1 that is the rotating shaft of the rotor 13 is supported in a non-contact manner by the radial magnetic bearing device 16 and the thrust magnetic bearing device 7. The radial magnetic bearing device 16 is provided on both sides of the shaft 1, and each has a rotating member 18 fixed to the shaft 15 and an electromagnet 19 disposed opposite to the periphery of the rotating member 18. The thrust magnetic bearing device 7 is provided on one end side of the shaft 15 and has the configuration as described above.
[0004]
[Problems to be solved by the invention]
However, in the conventional thrust magnetic bearing device 7, in order to generate a magnetic attraction force not only on one side in the thrust direction but also on the other side of the thrust disk 2, the electromagnets 3 (electromagnetic cores 4 on both sides of the thrust disk 2 are generated. And the electromagnetic coil 5) must be independent of each other. On the other hand, at present, there is a demand for reducing the number of electromagnetic coils and the like as much as possible in order to reduce costs.
[0005]
Therefore, in view of the above circumstances, an object of the present invention is to provide a thrust magnetic bearing device capable of generating a magnetic attractive force in both directions (one and the other in the thrust direction) with an integral electromagnet.
[0006]
[Means for Solving the Problems]
Solve the above issues First The thrust magnetic bearing device of the invention is a thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft and an electromagnet that supports the thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end surfaces are opposed to both sides in the thrust direction of the thrust bearing member, and the electromagnet core is wound around the electromagnet core. And having an electromagnet coil provided only on one side of the electromagnet core,
By providing a magnetic path changing member between the shaft end and the electromagnet core, the first gap between the end of the shaft and the electromagnet core is one surface in the thrust direction of the thrust bearing member. The magnetic flux generated in the electromagnet is smaller than the second gap between the first gap and the one end surface of the electromagnet core, and mainly the first gap, the first gap between the tip end surface of the thrust bearing member and the electromagnet core. 3 gap and passing through the fourth gap between the other surface in the thrust direction of the thrust bearing member and the other end surface of the electromagnetic core, and the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap. This is higher, and a magnetic attraction force acts on the thrust bearing member in the direction of the other end face of the electromagnet core.
[0007]
The second 2 The thrust magnetic bearing device of the invention is a thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft and an electromagnet that supports the thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end faces are opposed to both sides in the thrust direction of the thrust bearing member, and the electromagnet core An electromagnet coil wound and provided only on one side of the electromagnet core;
When no magnetic path changing member is provided between the end of the shaft and the electromagnet core, the first gap between the end of the shaft and the electromagnet core is one of the thrust bearing members in the thrust direction. The magnetic flux generated by the electromagnet is mainly generated between the second gap, the tip end surface of the thrust bearing member, and the electromagnet core by becoming larger than the second gap between the surface and one end surface of the electromagnet core. And the third gap between the other end surface of the thrust bearing member in the thrust direction and the other end surface of the electromagnetic core, and the magnetic flux density in the second gap is greater than the thrust bearing. The magnetic flux density in the fourth gap between the other surface in the thrust direction of the member and the other end surface of the electromagnet core is higher than that of the thrust bearing member. Magnetic attraction force acts in the direction of one end face of the stone core,
When the magnetic path changing member is provided between the shaft end and the electromagnet core, the magnetic path changing member makes the first gap smaller than the second gap, so that the magnetic flux generated in the electromagnet is reduced. , Mainly through the first gap, the third gap, and the fourth gap, the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap, and the electromagnet with respect to the thrust bearing member In the thrust magnetic bearing device configured so that the magnetic attractive force works in the direction of the other end face of the iron core,
An actuator for moving the magnetic path changing member, and when the magnetic path changing member is not provided between the end of the shaft and the electromagnet core, the actuator changes the magnetic path changing member to the end of the shaft. When the magnetic path changing member is provided between the end of the shaft and the electromagnet core, the magnetic path changing member is pulled between the end of the shaft and the electromagnet core by the actuator. It is configured to be inserted into the.
[0008]
The second 3 The thrust magnetic bearing device of the invention is a thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft and an electromagnet that supports the thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end faces are opposed to both sides in the thrust direction of the thrust bearing portion, and the electromagnet core It has an electromagnet coil that is wound and provided only on one side of the electromagnet core, and has a configuration in which a magnetic path changing portion is protruded on the inner surface of the electromagnet core facing the end of the shaft,
When the thrust bearing portion is shifted to one side in the thrust direction with respect to both end surfaces of the electromagnetic core, the magnetic path changing portion does not overlap with the end portion of the shaft, but between the end portion of the shaft and the electromagnetic core. Is larger than the second gap between one surface in the thrust direction of the thrust bearing portion and one end surface of the electromagnet core, the magnetic flux generated in the electromagnet is mainly A second gap, a third gap between the front end surface of the thrust bearing portion and the electromagnet core, and a fourth between the other surface in the thrust direction of the thrust bearing portion and the other end surface of the electromagnet core. Magnetic flux density in the fourth gap between the other surface in the thrust direction of the thrust bearing member and the other end surface of the electromagnetic core passes through the gap. Is higher than the degree, the magnetic attraction force acts against the thrust bearing member in the direction of one end surface of the electromagnet core,
When the thrust bearing portion is shifted to the other end in the thrust direction with respect to both end surfaces of the electromagnet core, the magnetic path changing portion overlaps with an end portion of the shaft, and the first gap is smaller than the second gap. Thus, the magnetic flux generated by the electromagnet mainly passes through the first gap, the third gap, and the fourth gap, and the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap. Thus, a magnetic attraction force is applied to the thrust bearing member in the direction of the other end face of the electromagnet core.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
<Embodiment 1>
FIG. 1A is a cross-sectional view showing the configuration of the thrust magnetic bearing device according to the first embodiment of the present invention (the state in which no magnetic path changing pipe is provided), and FIG. 1B is the B direction of FIG. It is an arrow view (plan view). 2A is a cross-sectional view showing the configuration of the thrust magnetic bearing device according to Embodiment 1 of the present invention (a state in which a magnetic path changing pipe is provided), and FIG. 2B is a cross-sectional view of FIG. It is a C direction arrow line view (plan view). The thrust magnetic bearing device shown in FIGS. 1 and 2 is of a vertical shaft type. 1 and FIG. 2 differ only in whether or not the magnetic path changing pipe 26 is provided, and the other configurations are the same.
[0012]
As shown in FIG. 1, the thrust magnetic bearing device includes a thrust disk 22 and an electromagnet 23 as thrust bearing members. The thrust disk 22 protrudes from the outer peripheral surface of the shaft 21 that is the rotating shaft of the rotating body, and the electromagnet 23 supports the thrust load acting on the thrust disk 22 by magnetic force. In the illustrated example, the diameter of the end 21a of the shaft 21 (the part ahead of the thrust disk 22) is made larger than the diameter of the other part of the shaft 21 (the part before the thrust disk 22).
[0013]
The electromagnet 23 is integral, and has an electromagnet core 24 that is annular in plan view and an electromagnet coil 25 wound around the electromagnet core 24. The electromagnet core 24 is bent in a substantially C shape so that the cross-sectional shape surrounds the front end side of the thrust disk 22, and both end surfaces 24a, 24b are both surfaces 22a of the thrust disk 22 in the thrust direction (shaft axial direction). 22b respectively. The electromagnet coil 25 is integrally provided only on one side of the electromagnet core 24.
[0014]
In addition, between the shaft end 21 a (outer peripheral surface 21 b) and the electromagnetic core 24 (inner surface 24 c), there is a first gap δD, one surface 22 a in the thrust direction of the thrust disk 22 and one end surface 24 a of the electromagnetic core 24. Between the second gap δA and the tip surface (outer peripheral surface) 22c of the thrust disk 22 and the electromagnetic core 24 (the inner surface 24d of the recess), the third gap δC and the other surface in the thrust direction of the thrust disk 22 A fourth gap δB is provided between 22b and the other end surface 24b of the electromagnet core 24, respectively. When the magnetic path changing pipe 26 (see FIG. 2) is not provided between the shaft end portion 21a and the electromagnet core 24 as shown in FIG. 1A, the first gap δD becomes larger than the second gap δA. (ΔD> δA), as shown in FIG. 2A, when the magnetic path changing tube 26, which is an annular magnetic path changing member in plan view, is provided between the shaft end 21a and the electromagnet core 24, One gap δD is set to be smaller than the second gap δA (δD <δA). Note that the second gap δA, the third gap δC, and the fourth gap δB have substantially the same size.
[0015]
As described above, when the magnetic path changing pipe 26 is not provided between the shaft end portion 21a and the electromagnet core 24, the first gap δD is larger than the second gap δA. Thus, the magnetic flux generated in the electromagnet 23 when a current is passed through the electromagnet coil 25 mainly passes through the second gap δA, the third gap δC, and the fourth gap δB. As a result, since the magnetic flux density in the second gap δA is higher than the magnetic flux density in the fourth gap δB, the magnetic attractive force in the direction of the one end surface 24a of the electromagnetic iron core 24 (arrow D direction) with respect to the thrust disk 22 Work.
[0016]
On the other hand, when the magnetic path changing pipe 26 is provided between the shaft end portion 21a and the electromagnet core 24, the magnetic path changing pipe 26 makes the first gap δD smaller than the second gap δA. As indicated by the dotted line in a), the magnetic flux generated by the electromagnet 23 mainly passes through the first gap δD, the third gap δC, and the fourth gap δB. As a result, since the magnetic flux density in the fourth gap δB is higher than the magnetic flux density in the second gap δA, the magnetic attractive force in the direction of the other end face 24b of the electromagnetic iron core 24 relative to the thrust disk 22 (arrow E direction). Work.
[0017]
In FIG. 2, the magnetic path changing pipe 26 is fixed to the inner surface 24a of the electromagnet core 24. However, the magnetic path changing pipe 26 may be provided between the shaft end portion 21a and the electromagnet core 24. You may fix to the outer peripheral surface 21b of the part 21a.
[0018]
As described above, according to the thrust magnetic bearing device of the first embodiment, the electromagnet 23 is integral, and the magnetic path changing pipe 26 is provided between the shaft end 21a and the electromagnet core 24. Depending on whether or not, it is possible to generate a magnetic attractive force in two directions (one and the other in the thrust direction) with respect to the thrust disk 22. Accordingly, when the thrust load is applied to only one of them, the magnetic path changing pipe 26 is not provided as shown in FIG. 1 regardless of the direction of the thrust load, or in FIG. Thus, the thrust load can be supported with the magnetic path changing pipe 26 provided.
[0019]
<Embodiment 2>
FIG. 3 is a cross-sectional view showing a configuration of a thrust magnetic bearing device according to Embodiment 2 of the present invention. FIG. 3 (a) shows a state in which the magnetic path changing tube is pulled out, and FIG. The state which inserted the magnetic path change pipe | tube is shown. In the first embodiment, the static magnetic attractive force generation direction is switched, whereas in the second embodiment, the dynamic magnetic attractive force generation direction is switched.
[0020]
That is, as shown in FIG. 3, the thrust magnetic bearing device according to the second embodiment includes an actuator 31 that moves the magnetic path changing pipe 26 in the thrust direction (axial direction of the shaft). When the magnetic path changing tube 26 is not provided between the shaft end portion 21 a and the electromagnet core 24, the actuator 31 moves the magnetic path changing tube 26 in the direction of the arrow D so that the shaft end portion 21 a and the electromagnet core 24 When the magnetic path changing pipe 26 is provided between the shaft end 21 a and the electromagnetic core 24, the magnetic path changing pipe 26 is moved in the direction of arrow E by the actuator 31, and the shaft end 21 a and the electromagnetic core 24 are moved. Between the two (arrow E).
[0021]
The change in the magnitude relationship between the first gap δD and the second gap δA when the magnetic path changing tube 26 is provided (inserted) and not provided (pulled out) between the shaft end 21a and the electromagnet core 24. Other configurations such as switching of the magnetic path due to (see the magnetic flux indicated by a dotted line in FIG. 3) are the same as those in the first embodiment, and thus the description thereof is omitted (the description and the diagram of the first embodiment) 1, see FIG.
[0022]
According to the thrust magnetic bearing device of the second embodiment, by moving the magnetic path changing tube 26 by the actuator 31, the size of the first gap δD is dynamically changed, and the magnetic attraction force with respect to the thrust disk 22 is increased. The generation direction can be dynamically switched, and it becomes possible to cope with thrust loads in two directions (one and the other in the thrust direction).
[0023]
<Embodiment 3>
The thrust magnetic bearing device according to the third embodiment has an automatic localization mechanism. FIG. 4 is a cross-sectional view showing a configuration of a thrust magnetic bearing device according to Embodiment 3 of the present invention. FIG. 4 (a) shows a thrust disk. on the other hand Fig. 4 (b) shows the thrust disc. The other It shows the state that is offset. FIG. 5 is a sectional view showing another configuration of the thrust magnetic bearing device according to the third embodiment of the present invention. FIG. 5 (a) shows a thrust disk. on the other hand Fig. 5 (b) shows a thrust disc. The other It shows the state that is offset.
[0024]
As shown in FIG. 4, in the thrust magnetic bearing device according to the third embodiment, the magnetic path changing pipe 41, which is a magnetic path changing section in a circular plan view, is connected to the inner surface of the electromagnet core 24 facing the shaft end 21a. The first gap δD is disposed so as to change depending on the positions of the shaft end 21 a and the thrust disk 22. That is, as shown in FIG. 4A, the thrust disk 22 is in the thrust direction (axial direction of the shaft) with respect to both end surfaces 24a and 24b of the electromagnetic core 24. on the other hand When shifted in the direction of arrow E, the magnetic path changing pipe 41 does not overlap the shaft end portion 21 a, and the thrust disk 22 is opposed to both end surfaces 24 a and 24 b of the electromagnet core 24 as shown in FIG. Thrust direction The other The magnetic path changing pipe 41 is arranged so that the magnetic path changing pipe 41 overlaps the shaft end portion 21a (overlapping amount d) when shifted in the direction of the arrow D.
[0025]
Then, the thrust disk 22 extends in the thrust direction with respect to both end surfaces 24a, 24b of the electromagnetic iron core 24. on the other hand Since the first gap δD becomes larger than the second gap δA because the magnetic path changing tube 41 does not overlap the shaft end 21a when the magnetic path change pipe 41 is shifted to the position, the electromagnet 23 is used as shown by a dotted line in FIG. The generated magnetic flux mainly passes through the second gap δA, the third gap δC, and the fourth gap δB. As a result, since the magnetic flux density in the second gap δA is higher than the magnetic flux density in the fourth gap δB, the magnetic attractive force in the direction of the one end surface 24a of the electromagnetic iron core 24 (arrow D direction) with respect to the thrust disk 22 Work.
[0026]
On the other hand, the thrust disk 22 extends in the thrust direction with respect to both end faces 24a, 24b of the electromagnetic core 24. The other Since the magnetic path changing tube 41 overlaps the shaft end portion 21a when it is offset, the first gap δD becomes smaller than the second gap δA by the magnetic path changing tube 41, so that a dotted line in FIG. As shown, the magnetic flux generated by the electromagnet 23 mainly passes through the first gap δD, the third gap δC, and the fourth gap δB. As a result, since the magnetic flux density in the fourth gap δB is higher than the magnetic flux density in the second gap δA, the magnetic attractive force in the direction of the other end face 24b of the electromagnetic iron core 24 relative to the thrust disk 22 (arrow E direction). Work.
[0027]
Since other configurations are the same as those of the first embodiment, description thereof is omitted (see the description of the first embodiment and FIGS. 1 and 2).
[0028]
According to the thrust magnetic bearing device of the third embodiment, when the thrust disk 22 is shifted to one or the other, the positional relationship between the shaft end 21a moving with the thrust disk 22 and the magnetic path changing pipe 41 (both Since the direction of generation of the magnetic attractive force with respect to the thrust disk 22 is switched depending on whether or not the two overlap each other), the actuator as in the second embodiment is not necessary.
[0029]
In the above description, the magnetic path changing pipe 41 is provided as the magnetic path changing section. However, the present invention is not limited to this. For example, a part of the inner surface 24c of the electromagnet core 24 may be protruded. Further, as shown in FIG. 5, the end surface 41 a on the thrust disk 22 side in the magnetic path changing portion 41 on the inner surface side of the electromagnet core 24 may be an inclined surface that extends outward toward the thrust disk 22.
[0030]
< Reference example >
Book Reference example This thrust magnetic bearing device also has an automatic localization mechanism. FIG. 6A shows the present invention. Reference example Sectional drawing which shows the structure of the thrust magnetic bearing apparatus which concerns on FIG. 6, FIG.6 (b) is a F direction arrow line view (plan view) of Fig.6 (a). The thrust magnetic bearing device shown in FIG. 6 is of a vertical shaft type.
[0031]
As shown in FIG. 6, the thrust magnetic bearing device has a thrust disk 52 and an electromagnet 53 as thrust bearing members. The thrust disk 52 protrudes from the outer peripheral surface of the shaft 51 which is the rotating shaft of the rotating body, and the electromagnet 53 supports the thrust load acting on the thrust disk 52 by magnetic force. The thrust disks 52 are provided at two locations in the thrust direction. The electromagnet 53 is integral, and has an electromagnet core 54 and an electromagnet coil 55 that are annular in plan view. The electromagnet core 55 is bent in a U shape in cross section, and both end surfaces 54 a and 54 b are opposed to the end surfaces 52 a of the two thrust disks 52. The electromagnet coil 55 is wound so as to be fitted into a recess inside the electromagnet core 54.
[0032]
Therefore, the book Reference example According to this thrust magnetic bearing device, the magnetic flux generated in the electromagnet 53 when an electric current is passed through the electromagnet coil 55, as shown in FIG. It passes through the gap between the tip surface 52a of the two. When the thrust disk 52 is displaced in the thrust direction (shaft axial direction) as indicated by an arrow D or E from this state, a restoring force (magnetic attraction force) that minimizes the gap (shortens the magnetic path) is obtained. It works on the thrust disk 52. Because of this, the book Reference example This thrust magnetic bearing device can support thrust loads in two directions (one and the other in the thrust direction) acting on the thrust disk 52 with a relatively simple structure.
[0033]
<Embodiment 4 >
Embodiment 1 to above 3 In the above description, the thrust magnetic bearing device is applied to a line-symmetric structure such as a rotating body (rotor of a rotating electrical machine). However, the thrust magnetic bearing device of the present invention is applied to a plane-symmetric structure. You can also. An example is shown in FIG. FIG. 7A shows an embodiment of the present invention. 4 Sectional drawing which shows the structure of the thrust magnetic bearing apparatus which concerns on FIG. 7, FIG.7 (b) is a G direction arrow line view (plan view) of Fig.7 (a), FIG.7 (c) is I direction arrow of Fig.7 (a). It is a view (side view). The thrust magnetic bearing device according to the present embodiment has the same configuration as the thrust magnetic bearing device according to the first embodiment. However, the thrust magnetic bearing device is applied not to a rotating body but to a plunger-type structure capable of reciprocating in the axial direction. Is.
[0034]
As shown in FIG. 7, the thrust magnetic bearing device has a thrust plate 62 and an electromagnet 63 as thrust bearing members. The thrust plate 62 protrudes from the outer peripheral surface of the shaft 61 (shaft end 61a), and the electromagnet 63 supports the thrust load acting on the thrust plate 62 by a magnetic force. The shaft 61 is a plunger that can reciprocate in the thrust direction (axial direction of the shaft) as indicated by an arrow H. In the illustrated example, the diameter (width) of the shaft end portion 61a (the portion ahead of the thrust plate 62) is set to be larger than the diameter (width) of the other portion of the shaft 61 (the portion in front of the thrust plate 62). It is getting bigger.
[0035]
The electromagnets 63 provided on the left and right are each integral, and have a rectangular electromagnet core 64 in plan view, and an electromagnet coil 65 wound around the electromagnet core 64. The electromagnet core 64 is bent in a substantially C shape so that the cross-sectional shape surrounds the tip end side of the thrust plate 62, and both end surfaces 64a and 64b are opposed to both surfaces 62a and 62b in the thrust direction of the thrust plate 62, respectively. Yes. The electromagnet coil 65 is integrally provided only on one side of the electromagnet core 64.
[0036]
Further, between the shaft end portion 61 a (outer peripheral surface 61 b) and the electromagnet core 64 (inner surface 64 c), there is a first gap δD, one surface 62 a in the thrust direction of the thrust plate 62, and one end surface 64 a of the electromagnet core 64. Between the second gap δA and the tip surface 62c of the thrust plate 62 and the electromagnetic core 64 (inner surface 64d of the recess), the third gap δC, the other surface 62b of the thrust plate 62 in the thrust direction and the electromagnetic core. A fourth gap δB is provided between the other end surface 64b of the first 64 and the second end surface 64b. When the magnetic path changing plate 66 as the magnetic path changing member is not provided between the shaft end portion 61a and the electromagnet core 64 (this state is not shown), the first gap δD is larger than the second gap δA. So that the first gap δD is smaller than the second gap δA when the magnetic path changing plate 66 is provided between the shaft end portion 61a and the electromagnet core 64 as shown in the figure. It is set (δD <δA). Note that the second gap δA, the third gap δC, and the fourth gap δB have substantially the same size.
[0037]
As described above, when the magnetic path changing plate 66 is not provided between the shaft end portion 61a and the electromagnet core 64, the first gap δD is larger than the second gap δA. The magnetic flux mainly passes through the second gap δA, the third gap δC, and the fourth gap δB. As a result, the magnetic flux density in the second gap δA is higher than the magnetic flux density in the fourth gap δB. A magnetic attractive force acts on 62 in the direction of one end face 64 a of the electromagnet core 64. On the other hand, when the magnetic path changing plate 66 is provided between the shaft end portion 61a and the electromagnet core 64, the first gap δD becomes smaller than the second gap δA by the magnetic path changing plate 66, so that the illustration is omitted. However, the magnetic flux generated by the electromagnet 63 mainly passes through the first gap δD, the third gap δC, and the fourth gap δB. As a result, the magnetic flux density in the fourth gap δB is greater than the magnetic flux density in the second gap δA. Therefore, the magnetic attractive force acts on the thrust plate 62 in the direction of the other end face 64 b of the electromagnet core 64.
[0038]
This embodiment 4 According to this thrust magnetic bearing device, as in the first embodiment, the electromagnet 63 is integral, and the magnetic path changing plate 66 is provided between the shaft end portion 61a and the electromagnet core 64. Thus, a magnetic attractive force in two directions (one and the other in the thrust direction) can be generated with respect to the thrust plate 62. Accordingly, when the thrust load is applied to only one of them, the magnetic path changing plate 66 is not provided or the magnetic path changing plate 66 is provided regardless of the direction of the thrust load. The thrust load can be supported by setting the state.
[0039]
Further, the second embodiment is further applied to such a plunger type structure. , 3 You may apply the thrust magnetic bearing apparatus of the structure similar to. That is, although detailed explanation and illustration are omitted, the magnetic path changing plate 66 is inserted and pulled out by an actuator as in the second embodiment, or in the thrust direction of the thrust plate 62 as in the third embodiment. In accordance with the deviation of the magnetic path, the overlapping state of the magnetic path changing portion provided in the electromagnet core 64 and the shaft end portion 61a changes so that the magnetic path is switched. West The second embodiment may be used. , 3 The same actions and effects can be obtained. That is, the thrust magnetic bearing device of the present invention can be widely applied not only to a rotating body but also to support a thrust load.
[0040]
【The invention's effect】
As specifically described above with the embodiment of the invention , First Inventive thrust magnetic bearing device According to A thrust magnetic bearing device comprising: a thrust bearing member projecting on the outer peripheral surface of the shaft; and an electromagnet for supporting the thrust load acting on the thrust bearing member by a magnetic force, wherein the electromagnet has a cross-sectional shape Is bent in a substantially C shape so as to surround the front end side of the thrust bearing member, and both ends of the thrust bearing member are opposed to both sides of the thrust bearing member in the thrust direction, respectively, and one side of the electromagnet core is wound around the electromagnet core. A first gap between the end of the shaft and the electromagnet core by providing a magnetic path changing member between the end of the shaft and the electromagnet core. Is smaller than the second gap between one surface in the thrust direction of the thrust bearing member and one end surface of the electromagnet core, and the magnetic flux generated in the electromagnet is Mainly, the first gap, the third gap between the front end surface of the thrust bearing member and the electromagnet core, and between the other surface in the thrust direction of the thrust bearing member and the other end surface of the electromagnet core. The magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap, and a magnetic attractive force acts on the thrust bearing member in the direction of the other end face of the electromagnetic core. Since it is configured, this thrust load can be supported when the thrust load is applied to only one side.
[0041]
The second 2 According to the thrust magnetic bearing device of the invention, by moving the magnetic path changing member by the actuator, the size of the first gap is dynamically changed to dynamically switch the direction of generation of the magnetic attractive force with respect to the thrust bearing member. It becomes possible to cope with thrust loads in two directions (one and the other in the thrust direction).
[0042]
The second 3 According to the thrust magnetic bearing device of the invention, when the thrust bearing member is shifted to one side or the other, the positional relationship between the shaft end portion moving with the thrust bearing member and the magnetic path changing portion provided in the electromagnet core (both are Since the direction of generation of the magnetic attractive force with respect to the thrust bearing member is switched depending on whether or not they overlap, the actuator as in the second invention is not necessary.
[Brief description of the drawings]
1A is a cross-sectional view showing a configuration of a thrust magnetic bearing device according to a first embodiment of the present invention (a state in which a magnetic path changing pipe is not provided), and FIG. 1B is a view in the direction of arrow B in FIG. It is a figure (plan view).
2A is a cross-sectional view showing a configuration (a state in which a magnetic path changing pipe is provided) of a thrust magnetic bearing device according to Embodiment 1 of the present invention, and FIG. 2B is a view in the direction of arrow C in FIG. It is a figure (plan view).
FIG. 3 is a cross-sectional view showing a configuration of a thrust magnetic bearing device according to a second embodiment of the present invention, where (a) shows a state in which a magnetic path changing tube has been pulled out, and (b) shows a magnetic path change. The state which inserted the pipe | tube is shown.
FIG. 4 is a cross-sectional view showing a configuration of a thrust magnetic bearing device according to a third embodiment of the present invention, in which (a) shows a state where the thrust disk is biased toward the other, and (b) shows a thrust disk. Shown in one side.
FIG. 5 is a cross-sectional view showing another configuration of the thrust magnetic bearing device according to the third embodiment of the present invention, in which (a) shows a state where the thrust disk is biased toward the other, and (b) shows a thrust. The disk is offset to one side.
FIG. 6 (a) shows the present invention. Reference example Sectional drawing which shows the structure of the thrust magnetic bearing apparatus which concerns on this, (b) is a F direction arrow directional view (plan view) of (a).
FIG. 7A is an embodiment of the present invention. 4 Sectional drawing which shows the structure of the thrust magnetic bearing apparatus which concerns on this, (b) is a G direction arrow line view (plan view) of (a), (c) is an I direction arrow line view (side view) of (a). .
8A is a cross-sectional view showing a configuration of a conventional thrust magnetic bearing device, FIG. 8B is a sectional view taken along line AA in FIG. 8A, and FIG. 8C includes a conventional thrust magnetic bearing device. It is sectional drawing which shows the structure of a rotary electric machine.
[Explanation of symbols]
21 Shaft
21a Shaft end
21b Shaft outer peripheral surface
22 Thrust disk
22a, 22b Thrust disk surface
22c End face of thrust disk
23 Electromagnet
24 Electromagnetic core
24a, 24b Electromagnetic core end face
24c Inner surface of electromagnet core
24d Inner surface of electromagnetic core recess
25 Electromagnetic coil
26 Magnetic path change pipe
31 Actuator
41 Magnetic path change pipe (magnetic path change part)
51 shaft
51 Shaft end
52 Thrust disk
52a End face of thrust disk
53 Electromagnet
54 Electromagnetic core
54a, 54b End face of electromagnet core
55 Electromagnetic Coil
61 shaft
61a Shaft end
61b Outer surface of shaft
62 Thrust board
62a, 62b Thrust plate surface
62c End face of thrust plate
63 Electromagnet
64 Electromagnetic core
64a, 64b Electromagnetic core end face
64c Inside surface of electromagnet core
64d inner surface of electromagnetic core recess
65 Electromagnetic coil
66 Magnetic path change plate

Claims (3)

シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面がスラスト軸受部材のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有してなり、
前記シャフト端部と前記電磁石鉄心との間に磁路変更部材を設けることにより、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部材のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも小さくて、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記スラスト軸受部材の先端面と電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部材のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くて、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したことを特徴とするスラスト磁気軸受装置。
A thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft, and an electromagnet that supports a thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end surfaces are opposed to both sides in the thrust direction of the thrust bearing member, and the electromagnet core is wound around the electromagnet core. And having an electromagnet coil provided only on one side of the electromagnet core,
By providing a magnetic path changing member between the shaft end and the electromagnet core, the first gap between the end of the shaft and the electromagnet core is one surface in the thrust direction of the thrust bearing member. The magnetic flux generated in the electromagnet is smaller than the second gap between the first gap and the one end surface of the electromagnet core, and mainly the first gap, the first gap between the tip end surface of the thrust bearing member and the electromagnet core. 3 gap and passing through the fourth gap between the other surface in the thrust direction of the thrust bearing member and the other end surface of the electromagnetic core, and the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap. A thrust magnetic bearing device, characterized in that the magnetic attraction force acts on the thrust bearing member in the direction of the other end face of the electromagnet core.
シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面が前記スラスト軸受部材のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有してなり、
前記シャフトの端部と前記電磁石鉄心との間に磁路変更部材を設けないときには、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部材のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも大きくなることにより、前記電磁石で生じる磁束が、主に、前記第2ギャップ、前記スラスト軸受部材の先端面と電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部材のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度のほうが、前記スラスト軸受部材のスラスト方向の他方の面と電磁石鉄心の他方の端面との間の第4ギャップにおける磁束密度よりも高くなって、前記スラスト軸受部材に対し前記電磁石鉄心の一方の端面の方向に磁気吸引力が働き、
前記シャフト端部と前記電磁石鉄心との間に前記磁路変更部材を設けたときには、この磁路変更部材によって前記第1ギャップが前記第2ギャップよりも小さくなることにより、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記第3ギャップ及び前記第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くなって、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したスラスト磁気軸受装置において、
前記磁路変更部材を移動させるアクチュエータを備え、前記シャフトの端部と前記電磁石鉄心との間に前記磁路変更部材を設けないときには前記アクチュエータによって前記磁路変更部材を前記シャフトの端部と前記電磁石鉄心との間から引き抜き、前記シャフトの端部と前記電磁石鉄心との間に前記磁路変更部材を設けるときには前記アクチュエータによって前記磁路変更部材を前記シャフトの端部と前記電磁石鉄心との間に挿入するように構成したことを特徴とするスラスト磁気軸受装置。
A thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft, and an electromagnet that supports a thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end faces are opposed to both sides in the thrust direction of the thrust bearing member, and the electromagnet core An electromagnet coil wound and provided only on one side of the electromagnet core;
When no magnetic path changing member is provided between the end of the shaft and the electromagnet core, the first gap between the end of the shaft and the electromagnet core is one of the thrust bearing members in the thrust direction. The magnetic flux generated by the electromagnet is mainly generated between the second gap, the tip end surface of the thrust bearing member, and the electromagnet core by becoming larger than the second gap between the surface and one end surface of the electromagnet core. And the third gap between the other end surface of the thrust bearing member and the other end surface of the electromagnetic core, and the magnetic flux density in the second gap is greater than the thrust bearing. The magnetic flux density in the fourth gap between the other surface in the thrust direction of the member and the other end surface of the electromagnet core is higher than that of the thrust bearing member. Magnetic attraction force acts in the direction of one end face of the stone core,
When the magnetic path changing member is provided between the shaft end and the electromagnet core, the magnetic path changing member makes the first gap smaller than the second gap, so that the magnetic flux generated in the electromagnet is reduced. , Mainly through the first gap, the third gap, and the fourth gap, the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap, and the electromagnet with respect to the thrust bearing member In the thrust magnetic bearing device configured so that the magnetic attractive force works in the direction of the other end face of the iron core,
An actuator for moving the magnetic path changing member, and when the magnetic path changing member is not provided between the end of the shaft and the electromagnet core, the actuator changes the magnetic path changing member to the end of the shaft. When the magnetic path changing member is provided between the end of the shaft and the electromagnet core, the magnetic path changing member is pulled between the end of the shaft and the electromagnet core by the actuator. A thrust magnetic bearing device, characterized in that the thrust magnetic bearing device is configured to be inserted into a thrust magnetic bearing.
シャフトの外周面に突設したスラスト軸受部材と、このスラスト軸受部材に作用するスラスト荷重を磁力によって支持する電磁石とを有してなるスラスト磁気軸受装置であって、
前記電磁石は、横断面形状が前記スラスト軸受部材の先端側を囲むように略C字状に屈曲して両端面が前記スラスト軸受部のスラスト方向両面にそれぞれ対向する電磁石鉄心と、この電磁石鉄心に巻回してこの電磁石鉄心の片側にのみ設けた電磁石コイルとを有し、且つ、前記シャフトの端部と対向する前記電磁石鉄心の内面に磁路変更部を突設した構成とし、
前記スラスト軸受部が電磁石鉄心の両端面に対してスラスト方向の一方に片寄ったときには、前記磁路変更部が前記シャフトの端部と重ならず、前記シャフトの端部と前記電磁石鉄心との間の第1ギャップが、前記スラスト軸受部のスラスト方向の一方の面と前記電磁石鉄心の一方の端面との間の第2ギャップよりも大きくなることにより、前記電磁石で生じる磁束が、主に、前記第2ギャップ、前記スラスト軸受部の先端面と前記電磁石鉄心との間の第3ギャップ、及び、前記スラスト軸受部のスラスト方向の他方の面と前記電磁石鉄心の他方の端面との間の第4ギャップを通り、前記第2ギャップにおける磁束密度のほうが、前記スラスト軸受部材のスラスト方向の他方の面と電磁石鉄心の他方の端面との間の第4ギャップにおける磁束密度よりも高くなって、前記スラスト軸受部材に対し前記電磁石鉄心の一方の端面の方向に磁気吸引力が働き、
前記スラスト軸受部が前記電磁石鉄心の両端面に対してスラスト方向の他方に片寄ったときには、前記磁路変更部が前記シャフトの端部と重なって、前記第1ギャップが前記第2ギャップよりも小さくなることにより、前記電磁石で生じる磁束が、主に、前記第1ギャップ、前記第3ギャップ及び前記第4ギャップを通り、前記第2ギャップにおける磁束密度よりも前記第4ギャップにおける磁束密度のほうが高くなって、スラスト軸受部材に対し前記電磁石鉄心の他方の端面の方向に磁気吸引力が働くように構成したことを特徴とするスラスト磁気軸受装置。
A thrust magnetic bearing device comprising a thrust bearing member projecting on the outer peripheral surface of the shaft, and an electromagnet that supports a thrust load acting on the thrust bearing member by a magnetic force,
The electromagnet is bent in a substantially C shape so that its cross-sectional shape surrounds the front end side of the thrust bearing member, and both end faces are opposed to both sides in the thrust direction of the thrust bearing portion, and the electromagnet core It has an electromagnet coil that is wound and provided only on one side of the electromagnet core, and has a configuration in which a magnetic path changing portion is protruded on the inner surface of the electromagnet core facing the end of the shaft,
When the thrust bearing portion is shifted to one side in the thrust direction with respect to both end surfaces of the electromagnetic core, the magnetic path changing portion does not overlap with the end portion of the shaft, but between the end portion of the shaft and the electromagnetic core. Is larger than the second gap between one surface in the thrust direction of the thrust bearing portion and one end surface of the electromagnet core, the magnetic flux generated in the electromagnet is mainly A second gap, a third gap between the front end surface of the thrust bearing portion and the electromagnet core, and a fourth between the other surface in the thrust direction of the thrust bearing portion and the other end surface of the electromagnet core. Magnetic flux density in the fourth gap between the other surface in the thrust direction of the thrust bearing member and the other end surface of the electromagnetic core passes through the gap. Is higher than the degree, the magnetic attraction force acts against the thrust bearing member in the direction of one end surface of the electromagnet core,
When the thrust bearing portion is shifted to the other end in the thrust direction with respect to both end surfaces of the electromagnet core, the magnetic path changing portion overlaps with an end portion of the shaft, and the first gap is smaller than the second gap. Thus, the magnetic flux generated by the electromagnet mainly passes through the first gap, the third gap, and the fourth gap, and the magnetic flux density in the fourth gap is higher than the magnetic flux density in the second gap. Thus, the thrust magnetic bearing device is structured such that a magnetic attractive force acts on the thrust bearing member in the direction of the other end face of the electromagnet core.
JP2002044506A 2002-02-21 2002-02-21 Thrust magnetic bearing device Expired - Fee Related JP4039077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044506A JP4039077B2 (en) 2002-02-21 2002-02-21 Thrust magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044506A JP4039077B2 (en) 2002-02-21 2002-02-21 Thrust magnetic bearing device

Publications (2)

Publication Number Publication Date
JP2003239969A JP2003239969A (en) 2003-08-27
JP4039077B2 true JP4039077B2 (en) 2008-01-30

Family

ID=27783863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044506A Expired - Fee Related JP4039077B2 (en) 2002-02-21 2002-02-21 Thrust magnetic bearing device

Country Status (1)

Country Link
JP (1) JP4039077B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041266B2 (en) 2010-03-11 2015-05-26 Korea Institute Of Machinery & Materials Magnetic bearing structure and turbo machine having the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561121B2 (en) * 2004-02-25 2010-10-13 株式会社島津製作所 Turbo molecular pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041266B2 (en) 2010-03-11 2015-05-26 Korea Institute Of Machinery & Materials Magnetic bearing structure and turbo machine having the same

Also Published As

Publication number Publication date
JP2003239969A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
US6794780B2 (en) Magnetic bearing system
GB2335242A (en) Rotor support with one or two pairs of permanent magnetic bearings and a pivot
JPS5944437B2 (en) A press roll that compensates for the deviation of the roll cylinder when a load is applied to both ends of the shaft.
JP2005016649A (en) Brake structure of hoist
WO2024078087A1 (en) Magnetic levitation active three-degree-of-freedom bearing, motor, and compressor
CN111181307A (en) High-speed motor for air spinning
JPS5942165B2 (en) Magnetic non-contact bearing device
JPH10159849A (en) Magnetic bearing, active in vertical and lateral direction
US8018100B2 (en) Permanent magnet motor having an axially magnetized pull magnet
JP3850195B2 (en) Magnetic levitation motor
JP2009002464A (en) Magnetic bearing device and machine tool with the same
JP4039077B2 (en) Thrust magnetic bearing device
JPS6146683B2 (en)
JP5387006B2 (en) Rotating machine
JP5074356B2 (en) Axial magnetic bearing
JPH10285898A (en) Linear actuator
JP7225504B2 (en) flat voice coil motor
KR102627855B1 (en) Backyokeless moter integrated with magnetic bearing
JP3901270B2 (en) Dynamic pressure air bearing type optical deflector
KR20020046895A (en) A magnetic bearing and a motor using the magnetic bearing
JP2005210808A (en) Permanent magnet embedded type synchronous machine
CN101970896A (en) Electrically controlled brake
JP2023087339A (en) motor
JPH1047348A (en) Stator for radial magnetic bearing
JPH0293119A (en) Magnetic bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees