JP4037829B2 - ネットワーク接続に関してデータ転送マージンを判定するための方法とシステム - Google Patents

ネットワーク接続に関してデータ転送マージンを判定するための方法とシステム Download PDF

Info

Publication number
JP4037829B2
JP4037829B2 JP2003544964A JP2003544964A JP4037829B2 JP 4037829 B2 JP4037829 B2 JP 4037829B2 JP 2003544964 A JP2003544964 A JP 2003544964A JP 2003544964 A JP2003544964 A JP 2003544964A JP 4037829 B2 JP4037829 B2 JP 4037829B2
Authority
JP
Japan
Prior art keywords
data transfer
network connection
bit rate
data
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003544964A
Other languages
English (en)
Other versions
JP2005510127A (ja
JP2005510127A5 (ja
Inventor
ピトウド,フレデリク
Original Assignee
スイスコム フィクスネット アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スイスコム フィクスネット アーゲー filed Critical スイスコム フィクスネット アーゲー
Publication of JP2005510127A publication Critical patent/JP2005510127A/ja
Publication of JP2005510127A5 publication Critical patent/JP2005510127A5/ja
Application granted granted Critical
Publication of JP4037829B2 publication Critical patent/JP4037829B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephonic Communication Services (AREA)
  • Communication Control (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

本発明はネットワーク接続に関してデータ転送マージンを判定するための方法とシステムに関し、この方法とシステムでは送信器と受信器の間のネットワーク接続の物理的長さは知られている。特に、本方法は銅線接続を基本とするネットワークに関する。
POTS(Plain Old Telephone Service)とも呼ばれる従来式の電話ネットワーク・サービスは、普通では互いの周りに巻かれてツイスト・ペアと呼ばれる銅線を経由して家庭および小規模企業を電話ネットワーク・オペレータの信号分配局へと接続する。これらは本来、アナログ信号、特に音声の伝送を確実化するように意図された。しかしながら、これらの必要条件は最近になってインターネットおよびそれに接続されるデータ・フローの出現で変化し、リアル・タイムかつマルチメディア・アプリケーションでもって家庭および/または会社で働くことを可能にする必要性のせいで現在ではもう一度変化しつつある。
例えばイントラネットおよびインターネットといったデータ・ネットワークはいわゆる共用メディア、すなわち交換器とゲートの間のブロードバンド・バックボーンおよびさらに小さい帯域幅の地域ネットワーク接続の両方のためのパケット志向LAN(ローカル・エリア・ネットワーク)またはWAN(ワイド・エリア・ネットワーク)技術に大きく依存する。例えばブリッジまたはルータといったパケット管理システムの使用は局所的なLANネットワークをインターネットに接続するのに広く普及している。したがって、インターネットのルータは例えばIP(インターネット・プロトコル)、IPX(インターネット・パケット・エクスチェンジ)、DECNET、Apple TALK、OSI(開放型システム間相互接続)、SNA(IBMのシステム・ネットワーク・アーキテクチャ)などといった最も多様なプロトコルに基づいてパケットを伝送することが可能でなければならない。パケットを世界中に信号分配するためには、そのようなネットワークの複雑さはサービス供給メーカ(プロバイダ)および必要なハードウェアの製造業者の両方にとって難題である。
通常のLANシステムは約100Mbpsのデータ転送速度で比較的良好に動作する。約100Mbpsを超える転送速度では、パケット交換器のようなネットワーク管理装置のリソースは殆どの現在のネットワークで帯域幅とユーザのアクセスの割り当てを管理するのに充分ではない。もちろん、デジタル情報の伝送のためのパケットを基本とするネットワークの有用性は、特に短期間伝送ピークで、はるか以前に認識された。普通、そのようなネットワークはポイント・ツー・ポイント構造を有し、パケットは単一の送信器から単一の受信器へと伝送され、そこでは各々のパケットが少なくとも行き先アドレスを含む。これの代表的な例が知られているIPデータ・パケットのヘッダである。ネットワークは割り当てられたヘッダのアドレスへとパケットを経路指定することによってデータ・パケットに反応する。パケットを基本とするネットワークはまた、例えば高品質の音声伝送もしくはビデオ伝送のような連続的なデータ・フローを必要とするデータのタイプを伝送することにもやはり使用されることが可能である。ネットワークの商業的用途は、パケットを基本とする伝送が複数のエンド・ポイントに対して同時に可能になることをとりわけ望ましくする。これの範例はビデオもしくは音声データの伝送のためのいわゆるパケット放送である。それにより、いわゆるペイTV、すなわち料金を支払うべきネットワーク上のビデオ・データの放送伝送が確立されることが可能になる。
帯域幅に関してはるかに大きな必要条件を伴なうリアル・タイムでかつマルチメディアの用途といった次世代の用途では、それは常になおその上に保証されねばならないが、しかしながらパケット志向ネットワークはそれらの限定に合致する。したがって、次世代のネットワークは、要求されるかまたは合意したQoSパラメータ(サービス品質)のための所定の帯域幅を常にユーザに保証することを可能にするために動的にネットワークを再構築する能力を持たなければならない。これらのQoSにはすべてのあり得るエンド・システム間のアクセス保証、アクセス性能、耐故障性、データの保安などが含まれる。ATM(非同期転送モード)のような新しい技術は、ネットワークの長期間の開発の中で私設のイントラネットならびに公共のインターネットのための必要な前提条件を作り上げる手助けになるはずである。これらの技術は、QoSパラメータによって保証されるそのような高性能接続のためにさらに経済的かつさらに大規模な解決策を約束する。
未来のシステムに関する1つの変化はまた、特にデータ・フローに関連するであろう。現在のデータ・フローは普通、サーバクライアントのモデルに基づいており、すなわちデータは多くのクライアントから1つまたは複数のネットワーク・サーバへと、あるいはそれらから伝送される。普通、クライアントは直接のデータ接続を作り出さないが、しかし代わりにそれらはネットワーク・サーバを介して互いに通信する。このタイプの接続もやはりその意義を持ち続けるであろう。それでもやはり、ピア・ツー・ピアで伝送されるデータの量が将来急峻に増大することが予期され、なぜならば、要求を満たすために、ネットワークの最終的なゴールはすべてのシステムがサーバとクライアントの両方としてはたらくことが可能な真の分散型構造であろうからである。したがって、ネットワークはさらに直接的な接続を多様なピアに対して作り上げなければならず、それにより、例えば複数のデスクトップ・コンピュータがバックボーン・インターネット経由で直接接続されるであろう。
したがって、将来の用途ではユーザが予め決定可能なQoSパラメータと大きな帯域幅を保証されることが可能になることがますます重要になるであろうことは明らかである。
Spectral management on metallic access networks;Part 1:Definitions and signal library」、ETSI(European Telecommunications Standards Institute)、TR 101 830、2000年9月
エンド・ユーザに対するデータ伝送のために使用されるものは、特に従来の公共電話ネットワーク(PSTN、Public Switched Telephone Network)および/またはPLMN(Public Land Mobile Network)であり、実際のところ、それは本来純粋な音声伝送のために設計されたものであってそのような量のデジタル・データの伝送のためではなかった。それにより、電話サービスのプロバイダもしくは供給業者がユーザに保証することが可能なQoSの決定にいわゆる「最終マイル」が決定的な役割りを果たす。最終マイルとして指定されるものは公共電話ネットワークの終端の信号分配局とエンド・ユーザの間の一続きである。最も稀なケースでは、最終マイルは大容量の光ファイバ・ケーブルで構成される。それは普通では、どちらかと言えば例えば0.4または0.6mmの線径を備えたケーブルのような普通の銅線の配線に基づいている。ケーブルはさらに、すべての場所で保護された接地伝導構造で地下を走っているわけではなく、とりわけ、電話用電柱への地上の回線で構成される。したがって追加的な障害が生じる。
最大QoSパラメータを決定するときのさらなる問題はいわゆるクロストークの問題である。この問題は、例えばエンド・ユーザから電話ネットワーク・オペレータの信号分配局への、およびその逆の回線上の信号の変調に伴なって生じる。デジタル信号の変調に関して当該技術の現状で知られているものは、例えばADSL(非対称デジタル加入者回線)、SDSL(対称デジタル加入者回線)、HDSL(高データ速度デジタル加入者回線)またはVDSL(超高データ速度デジタル加入者回線)といったxDSL(デジタル加入者回線)技術である。記述したクロストークは銅のケーブルを経由するデータの変調時に生じる物理的現象である。電磁気的相互作用を介して、銅ケーブル内で隣り合う銅線が対になってモデムによって生じる部分信号を得る。これは隣り合う銅線上で搬送されるxDSLモデムが互いに干渉し合う結果につながる。一方の端部の送信器の信号の同じ端部の受信器の信号への不本意な信号結合で特徴付けられる近端クロストーク(Next)と、他方の端部の受信器への伝送時の信号の信号結合で特徴付けられる遠端クロストーク(FEXT)の間で区別が為され、伝送時の信号は隣接する銅線対の信号に結合され、受信器でノイズとして現れる。
例えば「Spectral management on metallic access networks;Part 1:Definitions and signal library」、ETSI(European Telecommunications Standards Institute)、TR 101 830、2000年9月のようなxDSLのクロストークに対する多くの調査結果が現在入手可能であるが、クロストーク現象および残りのノイズ・パラメータの複雑さのせいで、現時点ではネットワーク内で特定のエンド・ユーザのためのQoSパラメータを決定するために使用可能で技術的に扱い易く、かつ費用効率的な補助は殆ど無い。当該技術の現状では、例えばActerna(中でもWG SLK−11/12/22、Eningen、他、Germany)、Trend Communications(LT2000 Line Tester、www.trendcomms.com、Buckinghamshire、U.K.)などといった様々な会社によって遠隔測定システムが提案されている。それにより、最終マイル上の最大転送速度は、デジタル信号プロセッサが各地方の電話ネットワーク・オペレータの信号分配局(例えばスイスで数千ヶ所)に導入される遠隔測定システムによる直接測定を通じて判定される。デジタル信号プロセッサによって、最終マイルの他方の側のユーザで装置の導入の必要がないのでいわゆる「片端測定」が実行される。原理的には、「両端測定」による測定もやはり可能である。しかしながら、それゆえに回線の両端で測定装置を導入することが必要である。
現状の当該技術の欠点は、中でも、すべての地方の信号分配局で必要とされる遠隔測定装置の導入から由来する高コスト、および測定時の正確に判っていない不確実性またはそれぞれ未知の誤りであり、その理由は一方の側(片端)だけで測定が実行され、誤りを判定するために両側での測定が必要になるからである。両端測定は個人的資金の観点および時間ならびにコストにおいて適していないであろう。やはり現状の当該技術に欠けているものはネットワーク接続の最大可能ビット・レートを算出もしくはそれぞれ予測するためのハードウェアまたはソフトウェア手段を備えたアルゴリズムである。地方の終端の信号分配局の代わりにさらに数の少ない中央の信号分配局で遠隔測定システムを導入することは、測定がそのような大きな不確定性を伴なうこと、それらがエンド・ユーザへの特定の回線について最大可能データ・スループット率を判定するのに適していないことを示す。
上述の欠点をそのまま有さないネットワーク接続のデータ転送マージンを判定のための新規的な方法、システムおよびコンピュータ・プログラム製品を提案することが本発明の目的である。特に、特定のユーザまたはアクセスのネットワーク・ポイントそれぞれに関するマージンおよび/または最大ビット・レートは、不釣り合いな技術的、人員的および財政的投資がなされる必要なく迅速かつ柔軟的に判定されることが可能となるべきである。
この目的は本発明に従って、特に複数の独立請求項の要素を通じて達成される。さらなる好ましい実施形態がさらに複数の独立請求項および説明から後に続く。
特に、これらの目的は本発明を通じて達成され、そこではネットワーク接続のデータ転送マージンを判定するために、送信器と受信器の間で判定されるべきネットワーク接続の物理的長さが判っており、あり得るモデムのタイプに関する転送周波数に応じて電力測定装置によって電力スペクトルが測定され、計算ユニットのデータ・キャリア上に伝送され、
その計算ユニットでもってネットワーク接続の様々な物理的長さおよびケーブル・ワイヤの厚さについて減衰度が判定され、その減衰度ならびに電力スペクトルに基づいて受信器での実際の信号強度が記憶され、計算ユニットのデータ・キャリア上の第1のリスト内でそれぞれの物理的長さとケーブル・ワイヤ厚さ(すなわちケーブル内のワイヤの直径)に割り当てられ、
第2のリスト内にノイズ・レベルが記憶され、ネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当てられ、計算ユニットのデータ・キャリア上では少なくともクロストーク・パラメータと干渉源の数に応じて、ノイズ・レベルが計算ユニットによって電力スペクトルに基づいて判定され、
ガウス変換モジュールによって計算ユニットが、様々なデータ伝送変調および/または変調符号化に関する第1のリストの実際の信号強度および対応する第2のリストのノイズ・レベルに基づいて所定のビット・レートについてデータ転送マージンを判定し、それらを記憶し、計算ユニットのデータ・キャリア上でネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当て、
記憶されたデータ転送マージンに基づいて計算ユニットが少なくとも1つまたは複数の補正因子によって実際のデータ転送マージンを判定し、それらを記憶し、計算ユニットのデータ・キャリア上でネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当て、補正因子が、実際のデータ転送マージンに関する記憶されたデータ転送マージンの平均偏差および/または等化器調節の補正のための等化器要素を含み、かつ
記憶された実際のデータ転送マージンに基づき、送信器と受信器の間の判定対象のネットワーク接続の判っている物理的長さを参照して計算ユニットがそれぞれのネットワーク接続に関してデータ転送マージンを判定する。
中でも本発明の1つの利点は、本方法とシステムがデータ転送マージンの単純かつ迅速な判定を初めて可能にし、それによって莫大な技術的投資、人員に関する投資および時間に関する投資を約束せずにすむことである。特に、データ転送マージンおよび/またはビット・レートを測定するための遠隔測定システムと同様に、各地方の信号分配局における正確に判っていない様々な不確定性、または判っていない補正されるべきそれぞれの測定の誤りを伴なわずに不確定性が記述した補正によって補正されることが可能であり、誤りを判定するために両側の測定が必要となるのでこの誤りは片端性に起因して算定することが困難である。上述したように、投資は現状技術と比較して相変わらず小さい。これは測定の実行および必要な装置の導入の両方に当てはまる。
或る変形の実施形態では、ADSLおよび/またはSDSLおよび/またはHDSLおよび/またはおよび/またはVDSLのモデム・タイプについて伝送周波数に応じて電力スペクトルが測定される。それにより、あり得るSDSLモデム・タイプは少なくとも1つのG.991.2モデム・タイプを含むことが可能であり、かつ/またはADSLモデム・タイプは少なくとも1つのG.992.2モデム・タイプを含むことが可能である。ガウス変換モジュールによって、少なくともデータ伝送変調2B1Q(2 Binary、1 Quaternary)および/またはCAP(Carrierless Amplitude/Phase Modulation)および/またはDMT(Discrete Multitone)および/またはPAM(Pulse Amplitude Modulation)についてデータ転送マージンが判定されることが可能である。やはりガウス変換モジュールによって、少なくともトレリス変調符号化についてデータ転送マージンが判定されることが可能である。この変形実施形態は、中でも、xDSLモデム・タイプ、記述したデータ伝送変調およびトレリス変調符号化で普通の標準的な技術が使用され、それらが容易に市場で入手可能あり、その使用法が欧州と米国の両方で広く普及しているという利点を有する。
また別の変形実施形態では、補正因子は物理的長さおよび/またはケーブル・ワイヤ厚さに関して非線形の依存性を反映している、すなわち補正因子は非線形関数、例えば1よりも高い次数の多項式関数によって表わされることが可能である。この変形実施形態は、中でも、直線形の補正因子によるよりもはるかに複雑な依存性が考慮に入れられ、それで補正されることが可能であるという利点を有する。
やはり異なる変形実施形態は、デジタル・コンピュータの内部メモリ内に直接ロードされることが可能なコンピュータ・プログラム製品を含み、かつその製品がコンピュータ上で走ると前段の変形実施形態に従って工程を実行することが可能となるソフトウェアの符号部分を含む。この変形実施形態は、大規模なインストールをせずに管理および使用することが単純である本発明の技術的達成を可能にするという利点を有する。
特に、ネットワーク接続に関するビット・レートの判定については、送信器と受信器の間のネットワーク接続の物理的長さが判っており、あり得るモデム・タイプの伝送周波数に応じて電力スペクトルが電力測定装置によって測定され、計算ユニットのデータ・キャリア上に伝送され、
その計算ユニットでもって、ネットワーク接続の様々な物理的長さとケーブル・ワイヤ厚さについて減衰度が判定され、その減衰度ならびに電力スペクトルに基づいて受信器での実際の信号強度が記憶され、計算ユニットのデータ・キャリア上の第1のリスト内でそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当てられ、
第2のリスト内にノイズ・レベルが記憶され、ネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当てられ、計算ユニットのデータ・キャリア上では少なくともクロストーク・パラメータと干渉源の数に応じて、ノイズ・レベルが計算ユニットによって電力スペクトルに基づいて判定され、
ガウス変換モジュールによって計算ユニットが、様々なデータ伝送変調および/または変調符号化に関する第1のリストの実際の信号強度および対応する第2のリストのノイズ・レベルに基づいて所定のデータ転送マージンについてビット・レートを判定し、そのビット・レートを記憶し、計算ユニットのデータ・キャリア上でネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当て、
記憶されたビット・レートに基づいて計算ユニットが1つまたは複数の補正因子によって実際のビット・レートを判定し、その実際のビット・レートを記憶し、計算ユニットのデータ・キャリア上でネットワーク接続のそれぞれの物理的長さとケーブル・ワイヤ厚さに割り当て、補正因子が、実際のビット・レートに関する記憶されたビット・レートの平均偏差および/または等化器調節の補正のための等化器要素を含み、
かつ記憶された実際のビット・レートに基づき、送信器と受信器の間のネットワーク接続の判っている物理的長さを参照して計算ユニットがそれぞれのネットワーク接続に関してビット・レートを判定する。中でも、この変形実施形態は本方法とシステムがビット・レートの単純かつ迅速な判定を初めて可能にし、それによって莫大な技術的投資、人員に関する投資および時間に関する投資を約束せずにすむという利点を有する。特に、データ転送マージンおよび/またはビット・レートを測定するための遠隔測定システムと同様に、各地方の信号分配局における正確に判っていない様々な不確定性、または判っていない補正されるべきそれぞれの測定の誤りを伴なわずに不確定性が記述した補正によって補正されることが可能であり、誤りを判定するために両側の測定が必要となるのでこの誤りは片端性に起因して算定することが困難である。
或る変形の実施形態では、ADSLおよび/またはSDSLおよび/またはHDSLおよび/またはVDSLのモデム・タイプについて伝送周波数に応じて電力スペクトルが測定される。それにより、あり得るSDSLモデム・タイプは少なくとも1つのG.991.2モデム・タイプを含むことが可能であり、かつ/またはADSLモデム・タイプは少なくとも1つのG.992.2モデム・タイプを含むことが可能である。ガウス変換モジュールによって、少なくともデータ伝送変調2B1Qおよび/またはCAPおよび/またはDMTおよび/またはPAMについてデータ転送マージンが判定されることが可能である。やはりガウス変換モジュールによって、少なくともトレリス変調符号化についてデータ転送マージンが判定されることが可能である。この変形実施形態は、中でも、xDSLモデム・タイプ、記述したデータ伝送変調およびトレリス変調符号化で普通の標準的な技術が使用され、それらが容易に市場で入手可能あり、その使用法が欧州と米国の両方で広く普及しているという利点を有する。
また別の変形実施形態では、補正因子は物理的長さおよび/またはケーブル・ワイヤ厚さに関して非線形の依存性を有する、すなわち補正因子は非線形関数、例えば1よりも高い次数の多項式関数によって表わされることが可能である。この変形実施形態は、中でも、直線形の補正因子によるよりもはるかに複雑な依存性が考慮に入れられ、補正されることが可能であるという利点を有する。
さらなる変形実施形態では、ガウス変換モジュールによって、ビット・レートは3と9dBの間のデータ転送マージンについて判定される。この変形実施形態は、中でも、殆どの要求を満足させるQoSを伴なう受信を3と9dBの間の範囲が可能にするという利点を有する。特に、3と9dBの間のデータ転送マージンの範囲は他のQoSパラメータに関するビット・レートの最適化を可能にする。
さらなる変形実施形態では、ガウス変換モジュールによって、6dBのデータ転送マージンについてビット・レートが判定される。この変形実施形態は、中でも、前段の変形実施形態と同じ利点を有する。特に、上記のように、6dBのデータ転送マージンは他のQoSパラメータに関するビット・レートの最適化を可能にする。
再び異なる変形実施形態はデジタル・コンピュータの内部メモリ内に直接ロードされることが可能なコンピュータ・プログラム製品を含み、かつその製品がコンピュータ上で走ると前段の変形実施形態に従って工程を実行することが可能となるソフトウェアの符号部分を含む。この変形実施形態は、大規模なインストールをせずに管理および使用することが単純である本発明の技術的達成を可能にするという利点を有する。
本発明による方法に加えて、本発明は本方法を実行するためのシステムおよびコンピュータ製品にもやはり関することをここで述べておくべきである。
範例を参照しながら以下で本発明の変形実施形態が説明されるであろう。実施形態の範例は添付の図面によって図解される。
図1は本発明を達成するために使用される可能性のある構造体を具体的に示している。ネットワーク接続についてデータ転送マージンおよび/またはビット・レートを判定する方法とシステムに関するこの実施形態の例では、送信器10と受信器11の間の判定対象のネットワーク接続12の物理的長さ13は判っている。物理的長さが意味するものは実際のケーブル長さ、例えばではなくすなわち送信器10と受信器11の間の空中距離である。ネットワーク接続12は、例えば銅線の敷設ケーブルのようなアナログ媒体で構成されるはずである。この実施形態の例で使用したものは、例えば、公共電話ネットワーク(PSTN、Public Switched Telephone Network)の最終マイルに通常使用されるような線径0.4または0.6mmの銅ケーブルであった。最終マイルは図4に概略的に示されている。したがって参照番号70はネットワークへのルータを表わし、これは例えば10BTイーサネット77および公共電話ネットワーク(PSTN)72を経由してモデム端末を備えたサーバ71へと接続される。モデム端末サーバ71はDSLアクセス・マルチプレクサ(DSLAM)であってもよい。説明したように、参照番号72は公共電話ネットワーク(PSTN)であり、これに例えば光ファイバ・ケーブル78を介してモデム端末サーバ71が接続される。さらに、公共電話ネットワーク72またはモデム端末サーバ71それぞれが、通常では銅線ケーブル79および電話箱73を介してパーソナルコンピュータ(PC)75のモデム74へと接続される。したがって参照番号79は電話ネットワーク・オペレータの信号分配局からエンド・ユーザへのいわゆる「最終マイル」と述べられる。したがってエンド・ユーザ76は記述した接続によって彼のPCで直接ルータ70にアクセスすることが可能である。銅の普通の電話回線は、例えば2〜2400対の銅線で構成される可能性がある。しかしながら、他のアナログ媒体、特に例えば別の線径を備えた銅ケーブルもやはり考えられる。ネットワーク接続12各々が多様な直径もしくは厚さ141、142、143、144を有し得るだけでなく、個々のネットワーク接続が異なる線径もしくは厚さを備えたケーブルの組み合わせで構成される可能性がある、すなわちネットワーク接続が異なるワイヤ厚さを備えた複数のケーブル部分を含む可能性があることは明らかに指摘されるはずである。
電力スペクトルPSDModem(f)は電力測定装置20によってあり得るモデム・タイプ101、102、103、104について伝送周波数fに応じて測定され、計算ユニット30のデータ・キャリア上に伝送される。電力スペクトルはまた、電力スペクトル密度(PSD)として表わされ、連続周波数スペクトルの特定の帯域幅について、特定の帯域幅によって分割された特定の周波数帯域幅の合計エネルギーを反映する。帯域幅による分割はスケーリングに対応する。したがって、PSDは周波数fに依存する関数であり普通はワット/ヘルツで表示される。受信器11での電力測定装置20による電力測定については、例えば単純なA/Dコンバータが使用されることが可能であり、電圧は抵抗器を介して印加される。例えばエンド・ユーザから電話ネットワーク・オペレータの信号分配局への、およびその逆の回線12に対するデジタル信号の変調については、最も多様なタイプのモデムが使用される可能性がある。現状技術で知られているものは、例えばxDSL(デジタル加入者回線)技術であり、それの代表的な2つはADSL(非対称デジタル加入者回線)とSDSL(対称デジタル加入者回線)である。xDSL技術のさらなる代表はHDSL(高データ速度加入者回線)とVDSL(超高データ速度加入者回線)である。xDSL技術は銅線もしくはその他のアナログ媒体上のデータを変調するために高度に開発された変調の枠組みである。xDSL技術はしばしば「最終マイル技術」とも称され、正確にはその理由は、普通それらが終端の電話ネットワーク信号分配局を職場もしくは家庭のエンド・ユーザへと接続する目的に役立ち、個々の電話ネットワーク信号分配局間で使用されるものではないからである。xDSLは、それが既に存在する銅の回線上で動作することが可能である範囲でISDN(統合デジタル通信サービス網)に類似しており、両方共に次の電話ネットワーク・オペレータの信号分配局まで比較的短距離であることを必要とする。しかしながらxDSLはISDNはるかに高い伝送速度を提供する。xDSLはダウンストリーム速度(データ受信時、すなわち変調時の伝送速度)で最大32Mbps(bps:ビット/秒)およびアップストリーム速度(データ送信時、すなわち復調時の伝送速度)で32kbpsから6Mbpsのデータ伝送速度に達するが、それに対してチャネル当たりのISDNは64kbpsのデータ伝送速度をサポートする。ADSLは最近になって銅の回線上でデータを変調するのに極めて一般的になった技術である。ADSLはダウンストリーム速度で0から9Mbps、アップストリーム速度で0から800kbpsのデータ伝送速度をサポートする。ADSLは、それが異なるダウンストリームとアップストリームの速度をサポートするので非対称のDSLを意味する。他方でSDSLまたは対象のDSLは、それが同じダウンストリームとアップストリームの速度をサポートするので対称と呼ばれる。SDSLは最大2.3Mbpsの伝送を可能にする。ADSLは銅ケーブルの高い周波数領域でデジタル・インパルスを伝送する。これらの高い周波数は音響範囲(例えば声)の普通の音声伝送に使用されないので、ADSLは、例えば同時に同じ銅ケーブル上で電話の会話を送信するようにはたらくことが可能である。ADSLは北米で広く普及しており、それに対してSDSLはとりわけ欧州で開発された。ADSLならびにSDSLは特にそれのために装備されるモデムを必要とする。HDSLは対称DSL(SDSL)の代表である。対称HDSL(SDSL)に関する規格は現在、ITU(国際電気通信連合)のCCITT(国際電信電話諮問委員会)の国際規格として開発されたG.991.2として知られるG.SHDSLである。G.991.2は192kbpsと2.31Mbpsの間の転送速度で単純な銅線対上の対称のデータの受信と送信をサポートする。G991.2は、ADSLとSDSLの特徴を含み、かつIP(インターネット・プロトコル)のような標準的なプロトコル、特に最新バージョンのIPv4とIPv6またはIETF(インターネット技術標準化委員会)のIPngならびにTCP/IP(伝送制御プロトコル)、ATM(非同期転送モード)、T1、E1、およびISDNをサポートする。ここでxDSL技術の最後として記述すべきものはVDSL(超高速度デジタル加入者回線)である。VDSLはツイスト・ペアの銅ケーブルを経由して短距離(普通300〜1500mの間)にわたって13〜55Mbpsの範囲でデータを伝送する。VDSLでもって、距離が短くなるほど伝送速度が上がることが当てはまる。ネットワークの終端部分としてVDSLはユーザの職場もしくは家庭を隣接する光網終端装置(ONU)と呼ばれ、通常では例えば会社の主光ファイバ・ネットワーク(バックボーン)につながる光ネットワーク・ユニットへと接続する。VDSLはユーザが普通の電話回線を経由して最大帯域幅でネットワークにアクセスすることを可能にする。VDSLの規格はまだ充分に確立されていない。その結果、DMT(離散マルチトーン)に基づく回線コード化スキーマを有するVDSL技術が存在し、DMTはADSL技術に大きく類似するマルチキャリア・システムである。他のVDSL技術は、DMTと対照的に安価で一層少ないエネルギーしか必要としない直交振幅変調(QAM)に基づいた回線コード化スキーマを有する。この実施形態の例に関すると、モデム・タイプはADSLおよび/またはSDSLおよび/またはHDSLおよび/またはおよび/またはVDSLモデム・タイプ(101、102、103、104)を含む可能性がある。特に、あり得るモデム・タイプ(101、102、103、104)は少なくともG.991.2モデム・タイプを含むことが可能であり、かつ/またはADSLモデム・タイプ(101、102、103、104)は少なくともG.992.2モデム・タイプを含むことが可能である。しかしながら、この列挙が本発明の保護の範囲を限定する方式で適用されることを前提とするものではなく、対照的に他のモデム・タイプも考えられることは明らかである。
計算ユニット30でもって、ネットワーク接続12の多様な物理的長さ13および、例えば0.4mmと0.6mmといったケーブルのコアの厚さ141、142、143、144について減衰度Hが判定され、その減衰度H(f)ならびに電力スペクトルPSD(f)に基づいて受信器11での実際の信号強度S(f)が記憶され、計算ユニット30のデータ・キャリア上の第1のリスト内でそれぞれの物理的長さL13およびケーブル・ワイヤ厚さD141、142、143、144に割り当てられる。したがって、実際の信号強度S(f)と同様に減衰度H(f,L,D)も周波数fに依存性である。こうして、送信器10から送られる信号はPSDModem(f)であり、その一方で受信器では実際の信号強度S(f)=PSDModem(f)H(f,L,D)がそれでも得られる。第2のリスト内にノイズ・レベルN(f)40が記憶され、計算ユニット30のデータ・キャリア上でネットワーク接続12のそれぞれの物理的長さ13およびケーブル・ワイヤ厚さ141、142、143、144に割り当てられ、少なくともクロストーク・パラメータXtalkと干渉源の数Aに応じて、計算ユニット30によって電力スペクトルに基づいてノイズ・レベルN(f)40が判定される。すなわち、
Figure 0004037829
である。
指数iを伴なう総和は、ネットワーク接続の並列接続で作用するXtalkのタイプによって決まるすべての不本意な変調(SModem)の上を走る。PSDSModem(i)はi番目のSmodemの電力スペクトルである。Hxpはクロストークによって決まる減衰度である。説明したように、クロストークの問題は銅ケーブル上でデータの変調に伴なって生じる物理的現象である。電磁気的相互作用によって、銅ケーブル内の隣り合う銅ケーブル・ワイヤは対になってモデムにより発生する部分信号を得る。これが、隣接するワイヤに割り当てられて搬送されるxDSLモデムへとつながり、相互に干渉する。物理的効果としてのクロストークはISDN(最大120kHzまでの周波数範囲)については殆ど無視し得るものであるが、しかしながら、例えばADSL(最大1MHzまでの周波数範囲)については重要となり、VDSL(最大12MHzまでの周波数範囲)については決定的因子となる。説明したように、従来式の電話の銅回線は2〜2400の銅線で構成される。例えば4対を使用することを可能にするために、送信器のデータストリームは多数の並列データストリームへと分割され、4の因数で実際のデータ処理能力を上げる受信器で再び組み合わされる。これは最大100Mbpsを備えたデータ伝送を可能にするであろう。付け加えると、4対の銅線のケースでは同じ品質のデータを同時に反対方向で輸送するのに同じ4対のワイヤが使用される可能性がある。各々の対の銅線にわたる双方向のデータ伝送は伝送可能な情報容量を2倍にする。このケースでは、これは従来式の伝送と比較してデータ伝送速度を8倍に上げ、そこでは各々のケースで一方向について2対が使用される。上述したようなデータ伝送については、クロストーク・ノイズは大きな制限因子である。クロストークのタイプとして、一方の端部にある送信器10の信号50の、同じ端部にある受信器11の信号50への不本意な結合を説明する近端クロストーク(Next)51、および他方の端部にある受信器11への送信時の信号50の不本意な結合を説明する遠端クロストーク(FEXT)52の間で区別が為され、信号50は送信時に隣り合う銅線対の信号50へと結合し、受信器11でノイズとして現れる(図1参照)。普通、NEXT51は近端の干渉源だけを有すると想定される。Xtalkのタイプはしたがって場所とストリーム(アップ/ダウン)によって決まり、すなわちXtalkタイプ(ストリーム、場所)である。普通の(通常2と2400本のワイヤがある)ケースである2本を超える銅線がある場合、上述した対になった結合はもはや事実化しない。例えば、同時に4対のワイヤが使用されるケースに関すると、結果的に3つの不本意な干渉源が存在し、それらがそのエネルギーを信号50に結合させる。Aについては、このケースではA=3が当てはまる。同じことがFEXTクロストーク52に当てはまる。
ガウス変換モジュール31によって、計算ユニット30は様々なデータ伝送変調および/または変調符号化に関する第1のリストの実際の信号強度S(f)および対応する第2のリストのノイズ・レベルR(f)に基づいて所定のビット・レートについてデータ転送マージンを判定し、データ転送マージンを記憶し、計算ユニット30のデータ・キャリア上でネットワーク接続12のそれぞれの物理的長さ13とケーブル・ワイヤ厚さ141、142、143、144に割り当てる。第1のリストの実際の信号強度S(f)およびノイズ・レベルN(f)でもって、信号S対ノイズR(原文のまま、またはN)比SNR(信号対雑音比)が計算ユニット30によって算出されることが可能であり、それにより、
Figure 0004037829
である。
この式はCAP、2B1QおよびPAM変調だけに当てはまるが、しかしDMT変調に当てはまらない。DMTはさらに以下で一層綿密に説明されるであろう。したがってTは符号の間隔またはナイキスト周波数の逆数の半分である。ナイキスト周波数はまだ正確にサンプリングされることが可能な最高のあり得る周波数である。信号がサンプリングされるときに不本意な周波数が発生し、その周波数はサンプリング周波数の半分よりも高いので、ナイキスト周波数はサンプリング周波数の半分である。nは加算指数である。実際では、普通はnが−1から1へと走ることで充分である。もしもこれが充分でなければ、所望の精度が達成されるまで0、±1/T、±2/Tなどのさらなる最大値が含まれる可能性がある。さらに上で述べたように、データ転送マージンはデータ伝送変調および/または変調符号化によって決まる。この実施形態の例では、例えば、HDSLモデム、2B1Q変調(2Binary、1Quaternary)およびCAP変調(Carrierless Amplitude/Phase Modulation)に関する依存性をADSL DMT変調(離散マルチトーン技術)に関する範例として、かつトレリス符号化信号のための変調符号化に関連して示す。しかしながら、あとは苦もなく、本発明による方法とシステムがPAM(パルス振幅変調)などといった他のデータ伝送変調および/または変調符号化にも当てはまることもやはり明らかである。2B1Q変調ならびにCAP変調はHDSLモデムを伴なって使用され、所定のビット・レートを有する。DMT変調はADSLモデムを伴なって使用され、他方で、可変のビット・レートを有する。CAPとDMTは同じ基礎的変調技術、QAM(直交振幅変調)を使用したが、しかしこの技術は異なって使用される。QAMは2つのデジタル・キャリア信号が同じ伝送帯域幅を占めることを可能にする。それにより、同じ周波数を有するが振幅と位相で異なる2つのキャリア信号を変調するために2つの独立したいわゆるメッセージ信号が使用される。QAM受信器は、例えば銅線の対の上でノイズおよび干渉を未然に防ぐために必要となる振幅と位相の数が低いか高いかによって区別されることが可能である。2B1Qはまた「4段階パルス振幅変調」(PAM)としても知られている。それは信号パルスに関して2つの電圧段階を使用し、例えばAMI(交番マーク反転法)のような1段階ではない。正と負の段階の区別もやはり為されるので、4段階の信号を得る。各々のケースで複数のビットが最終的に2つに組み合わされ、それらの対の各々が電圧段階に対応する(したがって2ビット)。それにより、バイポーラのAMIと同様に、同じビット・レートを伝送するために必要な信号周波数は2B1Qで半分にされる。2B1QまたはCAP変調を伴なったHDSLモデムで、SNRに関するデータ転送マージンの次の依存性が存在し、
Figure 0004037829
ここでξは誤り率(符号誤り率)εの関数として決定されることが可能である。LAN(IP)については、ε=10−7で普通は充分であり、すなわち平均で各10ビットが誤りを有して伝送される。会社は通常、その会社のネットワークについてε=10−12を必要とする。例えば、εが伝送されるデータ・パケットのサイズ(例えば10−3)の等級に近づけば、それは逆に各々のパケットが正しく到着するまで平均で2回伝送される必要があることを意味するであろう。2B1Qについては、εに例えば、
Figure 0004037829
が符号化されていない信号について、および
Figure 0004037829
がトレリス符号化信号について当てはまり、その一方でCAP変調については、
Figure 0004037829
が符号化されていない信号について、および
Figure 0004037829
がトレリス符号化信号について当てはまる。両方の符号化Gは相補的ガウス関数であって
Figure 0004037829
を伴ない、2B1Qについては変調Mは2B1Q用にM=4を備えたモーメント数であり、その一方でCAPについては変調Mは配座の大きさMxMである。上記のように、Tは符号の間隔またはナイキスト周波数の逆数の半分である。DMT変調を伴なうADSLモデムについては依存性は異なる。説明したように、ADSLは可変のビット・レートを有する。これはそれ自体をMに類似するように表現する。当てはまるのは、
Figure 0004037829
であり、ここでξ(f)は信号対ノイズ比S(f)/N(f)である。xrefは基準マージンであって、この実施形態の例では通常、6dBすなわちxref=100.6に選択された。しかしながら、基準マージンに関する他の値は考えられ得る。Δfは伝送のために使用される全体の周波数幅またはそれぞれに全体の周波数帯域である。積分は周波数を介して為される。Dは、例えばb/s(ビット/秒)の単位のビット・レートである。Γは補正因子である。この実施形態の例ではΓは、例えばΓ=9.55に定められる。この実施形態の例では積分は周波数fを介して実行される。同様に、それは時間または他の物理的値にわたって実行されることもやはり可能であり、そのとき、上式はそれに従って適合化されねばならない。
概して、上記のように得られたデータ転送マージンは実験値に対応しない。したがって記憶されたデータ転送マージンに基づいて少なくとも1つの補正因子によって計算ユニット30が実際のデータ転送マージンを判定する。この実施形態の例については、補正因子は、得られたデータ転送マージンと実際のデータ転送マージンの間で充分な対応が達成されるように選択された。しかしながら、ここで例えば+/−3dBで充分であったと仮定すると、他の値も考えられ得る。+/−3dBのこの最大偏差を達成するために2つのパラメータが決定される。Mimpは製造業者によるモデムの導入が良好であるかまたは低質であるかを考慮に入れている。Mimpは、異なる製造業者から得たものであるけれども匹敵するハードウェアを備えた同じモデムおよび同じデータ伝送変調および/または変調符号化が、アナログ信号をデジタル信号へ、およびその逆へと翻訳する間に異なる結果を供給し、それがそれらの最大ビット・レートまたは特定のネットワーク接続に関するそれらの最大範囲に影響を及ぼすという事実に基づいて導入された。これはデータ転送マージンに関して補正されなければならない。第2のパラメータとして導入されたものはNintであった。Nintはモデム内の(アナログからデジタルへの変換の)ノイズの定量化、ならびに伝送時の等化器のあり得る粗末な適合化を考慮に入れている。伝送が送信器10と受信器11の間で生じれば、モデム内の等化器は指導配列によって伝送速度を、例えば回線の減衰度、位相歪みなどといった、通信中の2つのモデム間で前後方向に送られるネットワーク接続の状況に適合させる。等化器による粗末な適合化は結果の歪みにつながり、補正されるべきである。線形等化器については、例えば次の式、すなわち
Figure 0004037829
Figure 0004037829
が使用されることが可能であり、ここでSNRDFEは信号対ノイズ比、Sは等化器が受け取る信号、Nはノイズ、fは周波数である。判定帰還型等化器(DFE)については、次の式、すなわち
Figure 0004037829
Figure 0004037829
が使用されることが可能であり、ここでSNRDFEは信号対ノイズ比、Sは上記の通り等化器が受け取る信号、Nはノイズ、fは周波数である。SNRDFEの判定については、計算ユニット30は例えば次の近似式
Figure 0004037829
を使用することが可能である。
したがってそれは実際のデータ・マージンに関して前のようにS(f)=PSDModem(f)H(f,L,D)に続く。ノイズは次のように補正される。
Figure 0004037829
計算ユニット30内で、補正はハードウェアもしくはソフトウェアを使用してモジュール内に導入されることが可能である。そのようなモジュールでもって、補正Nintに基づいて可変のノイズ因子が導入され、それが例えば等化器の調和などを考慮に入れることが可能であることを指摘することが重要である。これは現在あるがままの技術状態では見出し得ないものであり、とりわけ本発明の大きな利点である。実際のデータ転送マージンMeffはMeff=M−Mimpを通じてなっており(与えられており)、上述したNintに加えてこれが考慮に入れられる。MとNintに関する正しい値は実験データとの比較の中で計算ユニット30によって算出されることが可能である。通常、パラメータを望ましい偏差内で正しく決定するために、計算ユニット30は様々な実験からこの目的でデータに対するアクセスを有するべきである。したがって、補正因子を用いて、それは実際のデータ転送マージンに関する記憶されたデータ転送マージンの平均偏差を含み、上述した実際のデータ転送マージンが判定され、同様に計算ユニット30のデータ・キャリア上でネットワーク接続12のそれぞれの物理的長さL13とケーブル・ワイヤ厚さD141、142、143、144に割り当てられる。補正因子は必ずしも線形因子、すなわち一定である必要がなく、代わりに非線形の依存性を備えた補正関数をまさに適切に有することもやはり可能であることは指摘されるべきである。それにより、用途に応じて、実験データのさらに複雑な偏差が考慮に入れられることもやはり可能である。最後に、データ転送マージンを備えて記憶されたマトリックスを用いて、送信器10と受信器11の間で判定されるべきネットワーク接続12の判っている物理的長さに関する記憶された実際の転送マージンに基づいて、特定のネットワーク接続について計算ユニット30がデータ転送マージンを判定する。数回述べたように、データ転送マージンはdBで表示される。通常、モデムは>0dBの値について作動し、それに対して<0dBの値でそれは作動しない。良好で確実な動作を保証するために、それは例えば下限として6dBを選択するとつじつまが合う可能性がある。しかしながら概して、その他のデータ転送マージン、例えば3dBと9dBの間の値もやはり下限として適切である。以上の指摘から得られるように、データ転送マージンを備えたマトリックスに代わって、例えば6dBのデータ転送マージンで、様々なネットワーク接続に関するビット・レートを備えたマトリックスが同じ構成を用いてADSLモデムについて判定されることが可能である。したがってそれは、ビット・レート6dB=Meffを伴なうマトリックスを判定することにつながる。HDSLモデムのケースでは、例えば2B1QまたはCAPといった一定のビット・レート、ここでは例えば2.048Mb/sではたらくHDSLで符号化するという範囲でこれはどのような意味もなさない。ADSLモデムとの関係におけるこの差異の理由は、HDSLシステムが高いビット・レートを備えたアクセスの点のために設計されるに過ぎず、確実性(SNR)だけに関わることである。
図3はADSLモデムについて伝送速度(ビット・レート)に応じたネットワーク接続の伝送距離を示している。したがって参照番号60と61は異なるノイズ環境を表わす。上述したように、記憶されたマトリックスまたはそれぞれのリストに基づいてビット・レートが示されている。
送信器10と受信器11の間の所定の物理的長さ13を備えたネットワーク接続12についてデータ転送マージンまたはそれぞれのビット・レートを判定するための本発明による変形実施形態の構造体を概略的に示すブロック図である。 一方の端部にある送信器10の信号50の、同じ端部にある受信器11の信号50への不本意な結合を説明する近端クロストーク(Next)51、および他方の端部にある受信器11への送信時の信号50の不本意な結合を説明する遠端クロストーク(FEXT)52を伴なうクロストーク相互作用を概略的に示す図であって、信号50は送信時に隣り合う銅線対の信号50へと結合し、受信器11でノイズとして現れる。 本発明によるシステムで得られることが可能な、ADSLモデムに関する伝送速度(ビット・レート)に応じたネットワーク接続の伝送距離を概略的に示す図である。したがって参照番号60と61は異なるノイズ環境を表わす。 通常では家庭のエンド・ユーザとネットワークの間に存在して公共電話ネットワークを経由して到達すると考えられる、公共電話ネットワーク(PSTN、Public Switched Telephone Network)のいわゆる最終マイルを概略的に示す図である。
符号の説明
10 送信器(トランシーバ)
101、102、103、104 様々なモデム・タイプ(ADSL、HDSLなど)
11 受信器
12 ネットワーク接続(伝送用回線)
13 ネットワーク接続の物理的長さ
141、142、143、144 ケーブルの厚さ
20 電力測定装置
30 計算ユニット
31 ガウス変換モジュール
40 ノイズ
50 信号
51 近端クロストーク(NEXT)
52 遠端クロストーク(FEXT)
60、61 異なるノイズ環境
70 ルータ
71 モデム端末サーバ
72 公共電話ネットワーク(PSTN)
73 電話アクセス・ポイントまたはそれぞれの電話箱
74 モデム
75 パーソナルコンピュータ
76 エンド・ユーザ
77 10BTイーサネット
78 光ファイバ・リンク
79 銅線(HDSLもしくはADSLを備えたアナログあるいはISDNを備えたデジタル)

Claims (17)

  1. ネットワーク接続のためのデータ転送マージンを判定するための方法であって、送信器(10)と受信器(11)の間の判定対象のネットワーク接続(12)の物理的距離(13)が判っており、
    あり得るモデムのタイプ(101、102、103、104)に関する転送周波数に応じて、電力測定装置(20)によって電力スペクトルが測定され、計算ユニット(30)のデータ・キャリア上に伝送されること、
    計算ユニット(30)でもってネットワーク接続(12)の様々な物理的長さ(13)およびケーブル・ワイヤの厚さ(141、142、143、144)について減衰度が判定され、減衰度ならびに電力スペクトルに基づいて受信器(11)での実際の信号強度が、計算ユニット(30)のデータ・キャリア上の第1のリスト内で記憶され、それぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てられること、
    第2のリスト内でノイズ・レベル(40)が記憶され、計算ユニットのデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てられ、少なくともクロストーク・パラメータ、干渉源の数に応じて、ノイズ・レベル(40)が計算ユニット(30)によって電力スペクトルに基づいて判定されること、
    ガウス変換モジュール(31)によって計算ユニット(30)が、様々なデータ伝送変調および/または変調符号化に関する第1のリストの実際の信号強度および対応する第2のリストのノイズ・レベルに基づいて所定のビット・レートについてデータ転送マージンを判定し、それらを記憶し、計算ユニット(30)のデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てること、
    記憶されたデータ転送マージンに基づいて計算ユニット(30)が少なくとも1つの補正因子を用いて実際のデータ転送マージンを判定し、それらを記憶し、計算ユニット(30)のデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当て、補正因子が、実際のデータ転送マージンに関する記憶されたデータ転送マージンの平均偏差および/または等化器調節の補正のための等化器要素を含むこと、および
    記憶された実際のデータ転送マージンに基づき、送信器(10)と受信器(11)の間の判定対象のネットワーク接続(12)の判っている物理的長さ(13)を参照して計算ユニット(30)がそれぞれのネットワーク接続(12)についてデータ転送マージンを判定することを特徴とする方法。
  2. 補正因子が、物理的長さ(13)および/またはケーブル/ワイヤ厚さ(141、142、143、144)に関して非線形の依存性を反映することを特徴とする、請求項1に記載の方法。
  3. 電力スペクトルが、ADSLおよび/またはSDSLおよび/またはHDSLおよび/またはおよび/またはVDSLモデム・タイプ(101、102、103、104)に関する伝送周波数に応じて測定されることを特徴とする、請求項1または2のいずれか1項に記載の方法。
  4. あり得るSDSLモデム・タイプ(101、102、103、104)が少なくとも1つのG.991.2モデム・タイプを含み、かつ/またはADSLモデム・タイプ(101、102、103、104)が少なくとも1つのG.992.2モデム・タイプを含むことを特徴とする、請求項3に記載の方法。
  5. ガウス変換モジュール(31)によって、データ転送マージンが少なくともデータ伝送変調2B1Qおよび/またはCAPおよび/またはDMTおよび/またはPAMについて算出されることを特徴とする、請求項1乃至4のいずれか1項に記載の方法。
  6. ガウス変換モジュール(31)によって、データ転送マージンが少なくともトレリス変調符号化について判定されることを特徴とする、請求項1乃至5のいずれか1項に記載の方法。
  7. コンピュータ・プログラム製品であって、デジタル・コンピュータの内部メモリ内に直接ロードされることが可能であり、かつ製品がコンピュータ上で実行されると請求項1乃至6のいずれか1項に記載の工程が実行可能となるソフトウェア符号部分を含む製品。
  8. ネットワーク接続のためのビット・レートを判定するための方法であって、送信器(10)と受信器(11)の間のネットワーク接続(12)の物理的距離(13)が判っており、
    あり得るモデムのタイプ(101、102、103、104)に関する転送周波数に応じて電力測定装置(20)によって電力スペクトルが測定され、計算ユニット(30)のデータ・キャリア上に伝送されること、
    計算ユニット(30)でもってネットワーク接続の様々な物理的長さ(13)およびケーブル・ワイヤの厚さ(141、142、143、144)について減衰度が判定され、減衰度ならびに電力スペクトルに基づいて受信器での実際の信号強度が、計算ユニット(30)のデータ・キャリア上の第1のリスト内で記憶され、それぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てられること、
    第2のリスト内でノイズ・レベル(40)が記憶され、計算ユニットのデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てられ、少なくともクロストーク・パラメータ、干渉源の数に応じて、ノイズ・レベル(40)が計算ユニット(30)によって電力スペクトルに基づいて判定されること、
    ガウス変換モジュール(31)によって計算ユニット(30)が、様々なデータ伝送変調および/または変調符号化に関する第1のリストの実際の信号強度および対応する第2のリストのノイズ・レベルに基づいて所定のデータ転送マージンについてビット・レートを判定し、それらビット・レートを記憶し、計算ユニット(30)のデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当てること、
    記憶されたビット・レートに基づいて計算ユニット(30)が補正因子を用いて実際のビット・レートを判定し、それら実際のビット・レートを記憶し、計算ユニット(30)のデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤ厚さ(141、142、143、144)に割り当て、補正因子が、実際のビット・レートに関する記憶されたビット・レートの平均偏差および/または等化器調節の補正のための等化器要素を含むこと、および
    記憶された実際のビット・レートに基づき、送信器(10)と受信器(11)の間の判定対象のネットワーク接続(12)の判っている物理的長さ(13)を参照して計算ユニット(30)がそれぞれのネットワーク接続(12)についてビット・レートを判定することを特徴とする方法。
  9. ガウス変換モジュール(31)によって、3と9dBの間のデータ転送マージンについてビット・レートが判定されることを特徴とする、請求項8に記載の方法。
  10. ガウス変換モジュール(31)によって、6dBのデータ転送マージンについてビット・レートが判定されることを特徴とする、請求項8に記載の方法。
  11. 補正因子が物理的長さ(13)および/またはケーブル・ワイヤ厚さ(141、142、143、144)に関して非線形の依存性を反映することを特徴とする、請求項8乃至10のいずれか1項に記載の方法。
  12. 電力スペクトルが、ADSLおよび/またはSDSLおよび/またはHDSLおよび/またはVDSLモデム・タイプ(101、102、103、104)に関する伝送周波数に応じて測定されることを特徴とする、請求項8乃至11のいずれか1項に記載の方法。
  13. あり得るSDSLモデム・タイプ(101、102、103、104)が少なくとも1つのG.991.2モデム・タイプを含み、かつ/またはADSLモデム・タイプ(101、102、103、104)が少なくとも1つのG.992.2モデム・タイプを含むことを特徴とする、請求項12に記載の方法。
  14. ガウス変換モジュール(31)によって、ビット・レートが少なくともデータ伝送変調2B1Qおよび/またはCAPおよび/またはDMTおよび/またはPAMについて算出されることを特徴とする、請求項8乃至13のいずれか1項に記載の方法。
  15. ガウス変換モジュール(31)によって、ビット・レートが少なくともトレリス変調符号化について判定されることを特徴とする、請求項8乃至14のいずれか1項に記載の方法。
  16. コンピュータ・プログラム製品であって、デジタル・コンピュータの内部メモリ内に直接ロードされることが可能であり、かつ製品がコンピュータ上で実行されると請求項8乃至15のいずれか1項に記載の工程が実行可能となるソフトウェア符号部分を含む製品。
  17. ネットワーク接続のためのデータ転送マージンを判定するためのシステムであって、送信器(10)と受信器(11)の間の判定対象のネットワーク接続(12)の物理的距離(13)が判っており、
    本システムが、あり得るモデム・タイプ(101、102、103、104)に関する伝送周波数に応じて電力スペクトルを測定するための測定装置(20)、ならびに電力スペクトルを記憶させることが可能な計算ユニット(30)のデータ・キャリアを含むこと、
    計算ユニットがネットワーク接続(12)の様々な物理的長さ(13)およびケーブル・ワイヤの厚さ(141、142、143、144)について減衰度を判定するための手段を含み、減衰度ならびに電力スペクトルに基づいて受信器(11)での実際の信号強度が、計算ユニット(30)のデータ・キャリア上の第1のリスト内で記憶され、それぞれの物理的長さ(13)およびケーブル・ワイヤの厚さ(141、142、143、144)に割り当てられること、
    少なくともクロストーク・パラメータ、干渉源の数に応じて、電力スペクトルに基づいてノイズ・レベル(40)を判定するための手段を計算ユニット(30)が含み、ノイズ・レベル(40)が記憶され、計算ユニット(30)のデータ・キャリア上の第2のリスト内でネットワーク接続(12)のそれぞれの物理的長さ(13)およびケーブル・ワイヤの厚さ(141、142、143、144)に割り当てられること、
    計算ユニット(30)が、様々な伝送変調および/または変調符号化に関する第1のリスト実際の信号強度および対応する第2のリストのノイズ・レベルに基づいて所定のビット・レートについてデータ転送マージンを判定するためのガウス変換モジュール(31)を含み、データ転送マージンが、計算ユニット(30)のデータ・キャリア上で記憶され、それぞれの物理的長さ(13)およびネットワーク接続(12)のケーブル・ワイヤの厚さ(141、142、143、144)に割り当てられること、
    計算ユニット(30)が補正用モジュールを含み、それが、記憶されたデータ転送マージンに基づき、少なくとも1つの補正因子を用いて実際の転送マージンを判定し、それらを記憶し、計算ユニット(30)のデータ・キャリア上でネットワーク接続(12)のそれぞれの物理的長さ(13)とケーブル・ワイヤの厚さ(141、142、143、144)に割り当て、補正因子が実際のデータ転送マージンに関する記憶されたデータ転送マージンの平均偏差および/または等化器調節の補正のための等化器要素を含むことを特徴とするシステム。
JP2003544964A 2001-11-15 2001-11-15 ネットワーク接続に関してデータ転送マージンを判定するための方法とシステム Expired - Lifetime JP4037829B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2001/000673 WO2003043257A1 (de) 2001-11-15 2001-11-15 Verfahren und system zum bestimmen von datentransfermargins für netzwerkverbindungen

Publications (3)

Publication Number Publication Date
JP2005510127A JP2005510127A (ja) 2005-04-14
JP2005510127A5 JP2005510127A5 (ja) 2005-12-22
JP4037829B2 true JP4037829B2 (ja) 2008-01-23

Family

ID=4358261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003544964A Expired - Lifetime JP4037829B2 (ja) 2001-11-15 2001-11-15 ネットワーク接続に関してデータ転送マージンを判定するための方法とシステム

Country Status (9)

Country Link
US (1) US7388945B2 (ja)
EP (1) EP1444802B1 (ja)
JP (1) JP4037829B2 (ja)
CN (1) CN1322694C (ja)
AT (1) ATE355666T1 (ja)
CA (1) CA2466572C (ja)
CZ (1) CZ302246B6 (ja)
DE (1) DE50112141D1 (ja)
WO (1) WO2003043257A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7126984B2 (en) * 2001-12-19 2006-10-24 Stmicroelectronics, Inc. Near-end crosstalk noise minimization and power reduction for digital subscriber loops
US8108500B2 (en) * 2003-06-13 2012-01-31 Broadcom Corporation Probing-based auto moding
US7269673B2 (en) 2004-02-18 2007-09-11 Silicon Image, Inc. Cable with circuitry for asserting stored cable data or other information to an external device or user
WO2006062552A1 (en) * 2004-12-06 2006-06-15 Thomson Licensing Multiple flows for incremental forward error corection mechanisms
AU2007248256B2 (en) * 2006-05-01 2012-07-19 Adaptive Spectrum And Signal Alignment, Inc. Methods and apparatus to perform line testing at customer premises
JP4986702B2 (ja) * 2006-06-02 2012-07-25 京セラ株式会社 割当方法およびそれを利用した基地局装置
JP4978084B2 (ja) * 2006-07-05 2012-07-18 日本電気株式会社 セルラシステム及びその周波数キャリア割当方法並びにそれに用いる基地局制御装置及び基地局
EP2074776B1 (en) * 2006-10-11 2013-02-27 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement for power minimization in a multi-tone transmission-based communication system
CN101159777B (zh) * 2007-11-09 2011-02-09 华为技术有限公司 线路测量方法以及测量装置
FR2943476B1 (fr) * 2009-03-18 2011-04-15 Sagem Comm Procede et un dispositif de reduction des interferences entre un signal courant porteur et un signal de type vdsl
US9066055B2 (en) * 2011-07-27 2015-06-23 Texas Instruments Incorporated Power supply architectures for televisions and other powered devices
US11005527B2 (en) 2017-03-31 2021-05-11 British Telecommunications Public Limited Company Method and apparatus for transmitting signals over wire connections
EP3577775B1 (en) 2017-03-31 2020-11-18 British Telecommunications Public Limited Company Method and apparatus for transmitting signals over wire connections
CN110521195B (zh) 2017-03-31 2021-03-05 英国电讯有限公司 向一个或更多个接收器装置发送数据的方法和发送器装置
CN110521194B (zh) 2017-03-31 2021-11-02 英国电讯有限公司 发送器装置和向一个或更多个接收器装置发送数据的方法
EP3577890A1 (en) * 2017-03-31 2019-12-11 British Telecommunications Public Limited Company Method and apparatus for transmitting signals over wire connections
WO2019179644A1 (de) * 2018-03-19 2019-09-26 Leoni Kabel Gmbh Verfahren sowie vorrichtung zur ermittlung einer aktuellen temperatur
CN110932802B (zh) * 2019-11-29 2022-05-20 Oppo广东移动通信有限公司 干扰测试方法、装置、终端及存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0898833A1 (en) * 1996-06-04 1999-03-03 TELEFONAKTIEBOLAGET L M ERICSSON (publ) An access network over a shared medium
RU2218673C2 (ru) * 1996-10-15 2003-12-10 Сименс Акциенгезелльшафт Способ обработки соединений в сети связи
KR100228493B1 (ko) * 1997-08-30 1999-11-01 윤종용 비대칭 디지털 가입자 라인 시스템에서 송출 전력제어방법
US6130882A (en) * 1997-09-25 2000-10-10 Motorola, Inc. Method and apparatus for configuring a communication system
US6075821A (en) * 1997-12-16 2000-06-13 Integrated Telecom Express Method of configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US6310909B1 (en) * 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
US6895081B1 (en) * 1999-04-20 2005-05-17 Teradyne, Inc. Predicting performance of telephone lines for data services
US7027405B1 (en) * 2000-10-06 2006-04-11 Fluke Corporation System and method for broadband analysis of telephone local loop
CA2466579C (en) * 2001-11-16 2008-07-15 Swisscom Fixnet Ag Method and system for classifying network connections

Also Published As

Publication number Publication date
WO2003043257A1 (de) 2003-05-22
US7388945B2 (en) 2008-06-17
CA2466572A1 (en) 2003-05-22
CN1613222A (zh) 2005-05-04
JP2005510127A (ja) 2005-04-14
US20050078744A1 (en) 2005-04-14
EP1444802A1 (de) 2004-08-11
EP1444802B1 (de) 2007-02-28
CZ2004594A3 (cs) 2005-01-12
CA2466572C (en) 2012-09-04
CN1322694C (zh) 2007-06-20
CZ302246B6 (cs) 2011-01-12
ATE355666T1 (de) 2006-03-15
DE50112141D1 (de) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4037829B2 (ja) ネットワーク接続に関してデータ転送マージンを判定するための方法とシステム
US6055268A (en) Multimode digital modem
US6052411A (en) Idle mode for digital subscriber line
US5987061A (en) Modem initialization process for line code and rate selection in DSL data communication
US7356049B1 (en) Method and apparatus for optimization of channel capacity in multi-line communication systems using spectrum management techniques
US6731678B1 (en) System and method for extending the operating range and/or increasing the bandwidth of a communication link
US6801570B2 (en) Intelligent rate option determination method applied to ADSL transceiver
JP4005972B2 (ja) ネットワーク接続を分類する方法およびシステム
RU2273958C2 (ru) Способ и устройство для определения запасов ресурсов передачи данных для сетевых соединений
RU2276461C2 (ru) Способ и устройство для классификации сетевых соединений
US20060153229A1 (en) System and method for extended distance digital subscriber line based services
KR100512172B1 (ko) 비대칭 디지털 가입자 라인 시스템
Coulibaly Cisco IOS releases: the complete reference
Anwar et al. Performance analysis of ADSL
Akujuobi et al. VoDSL information management for broadband communication network access
US7190731B2 (en) System and method for applying transmit windowing in ADSL+networks
Musa et al. Statistical analysis of VoDSL technology for the efficiency of listening quality of 640k/640k
KR980013165A (ko) 전송용 디지탈 데이타 프레임 생성 방법 및 개선된 이산 멀티톤 송신기
Wu et al. TI DSP implementation of a medium speed DSL (MDSL) for multimedia applications
Provolt xDSL Tutorial
Opara et al. Statistical Analysis of VoDSL Technology for the Efficiency of
Gupta Residential broadband technologies for high-speed internet access

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071101

R150 Certificate of patent or registration of utility model

Ref document number: 4037829

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term