JP4035431B2 - Method for producing electrode structure for polymer electrolyte fuel cell - Google Patents

Method for producing electrode structure for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP4035431B2
JP4035431B2 JP2002352921A JP2002352921A JP4035431B2 JP 4035431 B2 JP4035431 B2 JP 4035431B2 JP 2002352921 A JP2002352921 A JP 2002352921A JP 2002352921 A JP2002352921 A JP 2002352921A JP 4035431 B2 JP4035431 B2 JP 4035431B2
Authority
JP
Japan
Prior art keywords
layer
electrode
water vapor
polymer electrolyte
electrode structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002352921A
Other languages
Japanese (ja)
Other versions
JP2004186041A (en
Inventor
猛 松原
洋一 浅野
力 岩澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002352921A priority Critical patent/JP4035431B2/en
Publication of JP2004186041A publication Critical patent/JP2004186041A/en
Application granted granted Critical
Publication of JP4035431B2 publication Critical patent/JP4035431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体高分子型燃料電池用電極構造体の製造方法に関する。
【0002】
【従来の技術】
従来、この種の電極構造体として、固体高分子電解質膜と、その固体高分子電解質膜を挟む一対の電極層と、各電極層の外側に配置される一対の拡散層とを基本構成要素とするものが知られている。この場合、固体高分子電解質膜のプロトン導電性は、その膜が水分を失うと著しく低下するため、通常はアノードガス(燃料ガス)およびカソードガス(酸化剤ガス)をそれぞれ専用の加湿器により加湿してセル内に供給している。
【0003】
【発明が解決しようとする課題】
燃料電池を車両用として用いる場合には設置スペース上の制約からその付属機器は極力少ない方が望ましいが、従来のごとく、2台の加湿器を用いていたのでは前記要望に応ずることはできない。
【0004】
【課題を解決するための手段】
本発明は、水蒸気捕集機能を有し、カソードガス用加湿器を省くことを可能にした前記電極構造体の製造方法を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、固体高分子電解質膜と、その固体高分子電解質膜を挟む一対の電極層と、各電極層の外側に配置される一対の拡散層とを基本構成要素とし、一方側の電極層および拡散層の間ならびに他方側の電極層および拡散層の間にそれぞれ導電性水蒸気捕集層を設けてなる固体高分子型燃料電池用電極構造体の製造方法であって、前記導電性水蒸気捕集層の形成に当たり、平均粒径Dが0.1μm≦D≦10μmであり且つ平均細孔径dが0.3nm≦d≦15nmである複数の多孔質粒子が分散状態で導電材、導電助剤及びバインダと共に含まれる水蒸気捕集層形成用スラリを調整し、このスラリを、各拡散層を構成するカーボンペーパの一面に塗布した後、その塗布層を乾燥させて、前記多孔質粒子が層内に分散した前記導電性水蒸気捕集層を各拡散層上に形成することを特徴とする、固体高分子型燃料電池用電極構造体の製造方法が提供される。
【0006】
前記のような平均粒径Dで微細な平均細孔径dを有する多孔質粒子は毛管凝縮、つまり、水蒸気を毛管現象で捕え、それを凝縮して水に変える、といった現象を発生する。これにより、カソード側で生成された水蒸気は水蒸気捕集層によって捕集され、それによる水が電極層を介して固体高分子電解質膜に供給されるので、カソードガス用加湿器を省くことができる。また水蒸気捕集層によって生成水のカソード側拡散層への流出を防止し得るので、その拡散層におけるカソードガスの拡散を生成水が妨げる、といった不具合を回避することができる。一方、加湿器によるアノードガスの加湿は従来通り必要であるが、アノードガス導入側にも水蒸気捕集層を設けたので、その水蒸気捕集層にアノードガス中の過剰水蒸気を捕集させて、電極付近における水の滞留を防止し、これにより電極に対するアノードガスの透過性を良好に維持することができる。
【0007】
多孔質粒子において、その平均細孔径dがd<0.3nmでは水が移動しにくく、また水による目詰りが発生するとフラッディング(flooding) の原因となる。一方、平均細孔径dがd>15nmでは毛管凝縮が発生しにくくなる。
【0008】
【発明の実施の形態】
図1において、固体高分子型燃料電池に用いられる電極構造体1は、固体高分子電解質膜2と、その固体高分子電解質膜2を挟む一対の電極層、つまり、カソード側電極層3およびアノード側電極層4と、各電極層3,4の外側に配置される一対の拡散層5,6とを基本構成要素とする。
【0009】
この実施例においては、カソード側電極層3および拡散層5の間ならびにアノード側電極層4および拡散層6の間にそれぞれ導電性水蒸気捕集層7,8が設けられている。各水蒸気捕集層7,8は、その層7,8内に分散し、且つ平均細孔径dが0.3nm≦d≦15nmである複数の多孔質粒子を含有する。
【0010】
このような多孔質粒子には、合成ゼオライト粒子、活性アルミナ粒子、活性炭粒子、シリカゲル粒子等が該当する。これらの多孔質粒子は、その集合体である粉末として用いられ、その平均粒径Dは0.1μm≦D≦10μmが適当である。
【0011】
前記のような微細な平均細孔径dを有する多孔質粒子は毛管凝縮、つまり、水蒸気を毛管現象で捕え、それを凝縮して水に変える、といった現象を発生する。これにより、カソード側で生成された水蒸気は水蒸気捕集層7によって捕集され、それによる水がカソード側電極層3を介して固体高分子電解質膜2に供給されるので、カソードガス用加湿器を省くことができる。また水蒸気捕集層7によって生成水のカソード側拡散層5への流出を防止し得るので、その拡散層5におけるカソードガスの拡散を生成水が妨げる、といった不具合を回避することができる。一方、加湿器によるアノードガスの加湿は従来通り必要であるが、アノードガス導入側にも水蒸気捕集層8を設けたので、その水蒸気捕集層8にアノードガス中の過剰水蒸気を捕集させて、電極4付近における水の滞留を防止し、これにより電極4に対するアノードガスの透過性を良好に維持することができる。
【0012】
以下、具体例について説明する。
【0013】
A−1.水蒸気捕集用スラリの調製
多孔質粒子の集合体である粉末状主成分として、下記のものを選定した。
【0014】
(1) 合成ゼオライト:平均粒径D 5.0μm、平均細孔径d 0.4nm、 東ソー社製、商品名 A−4粉末)
(2) 活性アルミナ:平均粒径D 0.1μm、平均細孔径d 2.5nm、スミカアルケム社製、商品名 BK112)
(3) 活性炭:平均粒径D 10.0μm、平均細孔径d 1.0nm、クラレケミカル社製、商品名 FR10)
(4) シリカゲル(1):平均粒径D 2.5μm、平均細孔径d 13.9nm、水澤化学社製、商品名 P−73)
(5) シリカゲル(2):平均粒径D 2.2μm、平均細孔径d 20.9nm、水澤化学社製、商品名 P−707)
【0015】
次に、粉末状主成分、導電材、導電助剤およびバインダをそれぞれ下記の通り秤量した。
【0016】
粉末状主成分:合成ゼオライト……50重量部
導電材:カーボンウイスカ(昭和電工社製、商品名 VGCF)……20重量部
導電助剤:カーボンブラック(ケッチェンブラックインターナショナル社製、商品名 ケッチェンブラックEC600JD)……10重量部
バインダ:PVDF(クレハ化学工業社製、商品名 KFポリマー)……20重量部
これらの秤量物を、0.1LのNMP(N−メチル−2−ピロリドン)溶液と共にボールミルに投入して攪拌混合し、第1のスラリを調製した。次いで他の粉末状主成分を用い、前記と同様の方法で第2〜第5のスラリを得た。
【0017】
A−2.水蒸気捕集層の形成
第1のスラリを、カソード側拡散層5を構成するカーボンペーパの一面に、乾燥重量が2mg/cm2 となるように塗布し、次いで塗布層を乾燥して、カソード側拡散層5と一体化された水蒸気捕集層7を得た。次いで、前記同様の方法でアノード側拡散層6と一体化された水蒸気捕集層8を得た。これらを一組の第1二層積層物とする。
【0018】
その後、第2〜第5のスラリを順次用い、前記と同様の方法で、カソード側拡散層5と一体化された水蒸気捕集層7およびアノード側拡散層6と一体化された水蒸気捕集層8を順次得た。これらを一組の第2〜第5二積層物とする。
【0019】
B−1.電極層用ペーストの調製
ファーネスブラック(ケッチェンブラックインターナショナル社製、商品名 ケッチェンブラックEC)に、Pt粒子をそれらの重量比が1対1になるように担持させて粉末状のPt担持カーボンを得た。この粉末状のPt担持カーボンと、プロトン導電性バインダとしての粉末状のナフィオン(デュポン社製、商品名 Nafion 112)とを重量比で1対1となるように秤量し、次いでナフィオンを溶剤である2−プロパノールに溶解してナフィオン溶液を調製し、その後ナフィオン溶液に粉末状のPt担持カーボンを投入して十分に混合し、ペーストを得た。
【0020】
B−2.電極層の形成
第1二層積層物のカソード側水蒸気捕集層7の表面に、前記ペーストをPt量が0.5mg/cm2 となるようにスクリーン印刷し、次いで60℃、10分間の乾燥を行い、その後、120℃にて減圧乾燥を行ってカソード側電極層3を形成した。次いで第1二層積層物のアノード側水蒸気捕集層8の表面に、前記同様の方法でアノード側電極層4を形成した。これらを一組の第1三層積層物とする。
【0021】
同様に、第2〜第5二層積層物を順次用い、前記と同様の方法で、カソード側水蒸気捕集層7表面に形成された電極層3およびアノード側水蒸気捕集層8表面に形成された電極層4を順次得た。これらを一組の第2〜第5三層積層物とする。
【0022】
C.電極構造体の製作
ナフィオン(デュポン社製、商品名 Nafion 112)よりなる固体高分子電解質膜2の一面に前記第1三層積層物のカソード側電極層3を当て、またその他面に前記第1三層積層物のアノード側電極層4をそれぞれ当てて重ね合せ物とし、次いでその重ね合せ物に140℃、2.5MPa、15分間の条件でットプレスを施して第1電極構造体を得た。
【0023】
その後、前記同様の固体高分子電解質膜2および順次、第2〜第5三積層物を用い、前記同様の方法で第2〜第5電極構造体を得た。
【0024】
D.電極構造体のドライタフネス試験
先ず、第1電極構造体を用いて製作されたセルを、十分に加湿(相対湿度100%)されたアノードガス(水素)およびカソードガス(空気)を用いて約420秒間運転し、このときのセル電圧V1 を測定した。次いでカソードガスを無加湿のカソードガスに切換え、その切換え後のセル電圧V2 を測定して両電圧の差(V1 −V2 )よりガス切換時のセル電圧低下量ΔVを求め、その電圧低下量ΔVが小さい程、電極構造体が優れたドライタフネスを有するものとした。同様の方法で、第2〜第5電極構造体についてセル電圧低下量ΔVを測定した。
【0025】
図2は第1電極構造体に関するセル電圧の経時変化を示し、表1は各電極構造体に関する試験結果を示す。
【0026】
【表1】

Figure 0004035431
【0027】
表1から明らかなように、水蒸気捕集層7,8に平均細孔径dが0.3nm≦d≦15nmの多孔質粒子を含有させると、セル電圧低下量ΔVを小さくして、優れたドライタフネスを有する電極構造体を得ることができるものである。
【0028】
【発明の効果】
本発明によれば前記のように構成することによって、カソードガス用加湿器を省いて固体高分子型燃料電池の車載性を良好にし、またカソードガスの拡散性およびアノードガスの電極透過性を良好に維持することが可能な電極構造体を提供することができる。
【図面の簡単な説明】
【図1】 電極構造体の断面図である。
【図2】 セル運転時間とセル電圧との関係を示すグラフである。
【符号の説明】
1………電極構造体
2………固体高分子電解質膜
3………電極
4………電極
5………拡散層
6………拡散層
7………水蒸気捕集層
8………水蒸気捕集層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing an electrode structure for a polymer electrolyte fuel cell.
[0002]
[Prior art]
Conventionally, as an electrode structure of this type, a solid polymer electrolyte membrane, a pair of electrode layers sandwiching the solid polymer electrolyte membrane, and a pair of diffusion layers arranged outside each electrode layer are basic components. What to do is known. In this case, the proton conductivity of the solid polymer electrolyte membrane is significantly reduced when the membrane loses moisture. Therefore, the anode gas (fuel gas) and cathode gas (oxidant gas) are usually humidified by dedicated humidifiers. Then, it is supplied into the cell.
[0003]
[Problems to be solved by the invention]
When a fuel cell is used for a vehicle, it is desirable that the number of attached devices be as small as possible due to restrictions on installation space. However, if two humidifiers are used as in the prior art, the demand cannot be met.
[0004]
[Means for Solving the Problems]
An object of the present invention is to provide a method for producing the electrode structure having a water vapor collecting function and capable of omitting a cathode gas humidifier.
[0005]
In order to achieve the above object, according to the present invention, a basic structure includes a solid polymer electrolyte membrane, a pair of electrode layers sandwiching the solid polymer electrolyte membrane, and a pair of diffusion layers disposed outside each electrode layer. as an element, whereas the production of the side of the electrode layer and between the diffusion layer and the other side of the electrode layer and the diffusion layer each conductive vapor trapping layer disposed name Ru solid polymer fuel cell electrode structure between A plurality of porous particles having an average particle diameter D of 0.1 μm ≦ D ≦ 10 μm and an average pore diameter d of 0.3 nm ≦ d ≦ 15 nm in forming the conductive water vapor collection layer. After adjusting the slurry for forming a water vapor trapping layer contained together with the conductive material, conductive auxiliary agent and binder in a dispersed state, this slurry is applied to one surface of the carbon paper constituting each diffusion layer, and then the applied layer is dried. Let the porous particles in the layer A method for producing an electrode structure for a polymer electrolyte fuel cell is provided , wherein the dispersed conductive water vapor collection layer is formed on each diffusion layer .
[0006]
Porous particles having an average particle diameter D and a fine average pore diameter d as described above cause capillary condensation, that is, a phenomenon in which water vapor is captured by capillary action and condensed into water. As a result, the water vapor generated on the cathode side is collected by the water vapor collecting layer, and the resulting water is supplied to the solid polymer electrolyte membrane via the electrode layer, so that the cathode gas humidifier can be omitted. . Also, since the water vapor collecting layer can prevent the generated water from flowing out to the cathode side diffusion layer, it is possible to avoid the problem that the generated water hinders the diffusion of the cathode gas in the diffusion layer. On the other hand, humidification of the anode gas by the humidifier is necessary as usual, but since the water vapor collection layer is also provided on the anode gas introduction side, the excess water vapor in the anode gas is collected in the water vapor collection layer, It is possible to prevent water from staying in the vicinity of the electrode, thereby maintaining good permeability of the anode gas to the electrode.
[0007]
In the porous particles, when the average pore diameter d is d <0.3 nm, it is difficult for water to move, and when clogging with water occurs, it causes flooding. On the other hand, when the average pore diameter d is d> 15 nm, capillary condensation hardly occurs.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, an electrode structure 1 used in a solid polymer fuel cell includes a solid polymer electrolyte membrane 2 and a pair of electrode layers sandwiching the solid polymer electrolyte membrane 2, that is, a cathode side electrode layer 3 and an anode. The side electrode layer 4 and a pair of diffusion layers 5 and 6 disposed outside the electrode layers 3 and 4 are used as basic constituent elements.
[0009]
In this embodiment, conductive water vapor collection layers 7 and 8 are provided between the cathode side electrode layer 3 and the diffusion layer 5 and between the anode side electrode layer 4 and the diffusion layer 6, respectively. Each of the water vapor collection layers 7 and 8 contains a plurality of porous particles dispersed in the layers 7 and 8 and having an average pore diameter d of 0.3 nm ≦ d ≦ 15 nm.
[0010]
Such porous particles include synthetic zeolite particles, activated alumina particles, activated carbon particles, silica gel particles, and the like. These porous particles are used as a powder as an aggregate, and the average particle diameter D is suitably 0.1 μm ≦ D ≦ 10 μm.
[0011]
The porous particles having a fine average pore diameter d as described above generate capillary condensation, that is, a phenomenon that water vapor is captured by capillary action and condensed into water. As a result, the water vapor generated on the cathode side is collected by the water vapor collection layer 7, and the water thus produced is supplied to the solid polymer electrolyte membrane 2 via the cathode side electrode layer 3, so that the cathode gas humidifier Can be omitted. Moreover, since the water vapor collection layer 7 can prevent the produced water from flowing out to the cathode side diffusion layer 5, it is possible to avoid the problem that the produced water prevents the diffusion of the cathode gas in the diffusion layer 5. On the other hand, the humidification of the anode gas by the humidifier is necessary as usual, but since the water vapor collection layer 8 is also provided on the anode gas introduction side, the water vapor collection layer 8 collects excess water vapor in the anode gas. Thus, the retention of water in the vicinity of the electrode 4 can be prevented, whereby the permeability of the anode gas to the electrode 4 can be maintained well.
[0012]
Hereinafter, specific examples will be described.
[0013]
A-1. Preparation of slurry for collecting water vapor The following were selected as powdery main components, which are aggregates of porous particles.
[0014]
(1) Synthetic zeolite: average particle diameter D 5.0 μm, average pore diameter d 0.4 nm, manufactured by Tosoh Corporation, trade name A-4 powder)
(2) Activated alumina: average particle diameter D 0.1 μm, average pore diameter d 2.5 nm, manufactured by Sumika Alchem Co., Ltd., trade name BK112)
(3) Activated carbon: average particle diameter D 10.0 μm, average pore diameter d 1.0 nm, manufactured by Kuraray Chemical Co., Ltd., trade name FR10)
(4) Silica gel (1): average particle diameter D 2.5 μm, average pore diameter d 13.9 nm, manufactured by Mizusawa Chemical Co., Ltd., trade name P-73)
(5) Silica gel (2): average particle diameter D 2.2 μm, average pore diameter d 20.9 nm, manufactured by Mizusawa Chemical Co., Ltd., trade name P-707)
[0015]
Next, the powdery main component, conductive material, conductive additive and binder were weighed as follows.
[0016]
Powdery main component: Synthetic zeolite: 50 parts by weight Conductive material: Carbon whisker (trade name VGCF, manufactured by Showa Denko KK): 20 parts by weight Conductive auxiliary agent: Carbon black (manufactured by Ketjen Black International, trade name: Ketjen Black EC600JD) ... 10 parts by weight Binder: PVDF (Kureha Chemical Industries, trade name KF polymer) ... 20 parts by weight These weighed materials together with 0.1 L of NMP (N-methyl-2-pyrrolidone) solution A first mill was prepared by adding to a ball mill and stirring and mixing. Next, second to fifth slurries were obtained using the other powdery main components in the same manner as described above.
[0017]
A-2. Formation of the water vapor collecting layer The first slurry is applied to one surface of the carbon paper constituting the cathode side diffusion layer 5 so that the dry weight becomes 2 mg / cm 2, and then the applied layer is dried to form the cathode side. A water vapor collecting layer 7 integrated with the diffusion layer 5 was obtained. Subsequently, the water vapor collection layer 8 integrated with the anode side diffusion layer 6 was obtained by the same method as described above. Let these be a pair of first two-layer laminates.
[0018]
Thereafter, the water vapor collection layer 7 integrated with the cathode side diffusion layer 5 and the water vapor collection layer integrated with the anode side diffusion layer 6 are sequentially used in the same manner as described above using the second to fifth slurries. 8 were obtained sequentially. Let these be a set of second to fifth bi-layers.
[0019]
B-1. Preparation of electrode layer paste Pt particles are supported on furnace black (trade name Ketjen Black EC, manufactured by Ketjen Black International Co., Ltd.) so that their weight ratio is 1: 1, and powdery Pt-supported carbon is prepared. Obtained. This powdery Pt-supported carbon and powdered Nafion (trade name Nafion 112, manufactured by DuPont) as a proton conductive binder are weighed to have a weight ratio of 1: 1, and then Nafion is a solvent. A Nafion solution was prepared by dissolving in 2-propanol, and then powdered Pt-supported carbon was added to the Nafion solution and mixed well to obtain a paste.
[0020]
B-2. Formation of electrode layer The paste was screen-printed on the surface of the cathode-side water vapor collecting layer 7 of the first two-layer laminate so that the amount of Pt was 0.5 mg / cm 2, and then dried at 60 ° C. for 10 minutes. Thereafter, vacuum drying was performed at 120 ° C. to form the cathode-side electrode layer 3. Next, the anode-side electrode layer 4 was formed on the surface of the anode-side water vapor collecting layer 8 of the first two-layer laminate by the same method as described above. Let these be a set of first three-layer laminates.
[0021]
Similarly, the second to fifth two-layer laminates are sequentially used and formed on the surfaces of the electrode layer 3 and the anode-side water vapor collection layer 8 formed on the surface of the cathode-side water vapor collection layer 7 in the same manner as described above. The electrode layers 4 were sequentially obtained. Let these be a pair of second to fifth three-layer laminates.
[0022]
C. Manufacture of electrode structure The cathode-side electrode layer 3 of the first three-layer laminate is applied to one surface of a solid polymer electrolyte membrane 2 made of Nafion (trade name Nafion 112, manufactured by DuPont), and the first surface is applied to the other surface. of a three layer laminate of anode layer 4 and combined product stacked against each and then 140 ° C. in the overlapping thereof, 2.5 MPa, to obtain a first electrode structure by performing e Ttopuresu in for 15 minutes .
[0023]
Then, the 2nd-5th electrode structure was obtained with the same method as the above using the same solid polymer electrolyte membrane 2 and the 2nd- 5th 3rd laminated body sequentially.
[0024]
D. Dry toughness test of electrode structure First, a cell manufactured using the first electrode structure was subjected to about 420 using a sufficiently humidified anode gas (hydrogen) and cathode gas (air) with a relative humidity of 100%. The cell voltage V 1 at this time was measured. Next, the cathode gas is switched to a non-humidified cathode gas, the cell voltage V 2 after the switching is measured, and the cell voltage drop amount ΔV at the time of gas switching is obtained from the difference between the two voltages (V 1 −V 2 ). The smaller the amount of decrease ΔV, the better the electrode structure had dry toughness. In the same manner, the cell voltage drop amount ΔV was measured for the second to fifth electrode structures.
[0025]
FIG. 2 shows the change over time of the cell voltage for the first electrode structure, and Table 1 shows the test results for each electrode structure.
[0026]
[Table 1]
Figure 0004035431
[0027]
As is apparent from Table 1, when the water vapor collection layers 7 and 8 contain porous particles having an average pore diameter d of 0.3 nm ≦ d ≦ 15 nm, the cell voltage drop amount ΔV is reduced and excellent dryness is achieved. An electrode structure having toughness can be obtained.
[0028]
【The invention's effect】
According to the present invention, by configuring as described above, the cathode gas humidifier is omitted to improve the in-vehicle property of the polymer electrolyte fuel cell, and the cathode gas diffusibility and the anode gas electrode permeability are excellent. It is possible to provide an electrode structure that can be maintained at the same time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an electrode structure.
FIG. 2 is a graph showing the relationship between cell operation time and cell voltage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ......... Electrode structure 2 ......... Solid polymer electrolyte membrane 3 ......... Electrode 4 ......... Electrode 5 ......... Diffusion layer 6 ......... Diffusion layer 7 ......... Water vapor collection layer 8 ......... Water vapor collection layer

Claims (1)

固体高分子電解質膜(2)と、その固体高分子電解質膜(2)を挟む一対の電極層(3,4)と、各電極層(3,4)の外側に配置される一対の拡散層(5,6)とを基本構成要素とし、一方側の電極層(3)および拡散層(5)の間ならびに他方側の電極層(4)および拡散層(6)の間にそれぞれ導電性水蒸気捕集層(7,8)を設けてなる固体高分子型燃料電池用電極構造体の製造方法であって
前記導電性水蒸気捕集層(7,8)の形成に当たり、平均粒径Dが0.1μm≦D≦10μmであり且つ平均細孔径dが0.3nm≦d≦15nmである複数の多孔質粒子が分散状態で導電材、導電助剤及びバインダと共に含まれる水蒸気捕集層形成用スラリを調整し、
このスラリを、各拡散層(5,6)を構成するカーボンペーパの一面に塗布した後、その塗布層を乾燥させて、前記多孔質粒子が層(7,8)内に分散した前記導電性水蒸気捕集層(7,8)を各拡散層(5,6)上に形成することを特徴とする、固体高分子型燃料電池用電極構造体の製造方法
Solid polymer electrolyte membrane (2), a pair of electrode layers (3, 4) sandwiching the solid polymer electrolyte membrane (2), and a pair of diffusion layers arranged outside each electrode layer (3,4) (5, 6) as the basic constituent elements, conductive between the electrode layer (3) and the diffusion layer (5) on one side and between the electrode layer (4) and the diffusion layer (6) on the other side, respectively. a method of manufacturing a solid polymer type fuel cell electrode structure ing provided steam trapping layer (7,8),
A plurality of porous particles having an average particle diameter D of 0.1 μm ≦ D ≦ 10 μm and an average pore diameter d of 0.3 nm ≦ d ≦ 15 nm in forming the conductive water vapor collection layer (7, 8). Adjusting the slurry for forming a water vapor collection layer contained together with the conductive material, conductive auxiliary agent and binder in a dispersed state,
The slurry is applied to one surface of the carbon paper constituting each diffusion layer (5, 6), and then the applied layer is dried so that the porous particles are dispersed in the layer (7, 8). A method for producing an electrode structure for a polymer electrolyte fuel cell, wherein a water vapor collecting layer (7, 8) is formed on each diffusion layer (5, 6) .
JP2002352921A 2002-12-04 2002-12-04 Method for producing electrode structure for polymer electrolyte fuel cell Expired - Fee Related JP4035431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002352921A JP4035431B2 (en) 2002-12-04 2002-12-04 Method for producing electrode structure for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002352921A JP4035431B2 (en) 2002-12-04 2002-12-04 Method for producing electrode structure for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004186041A JP2004186041A (en) 2004-07-02
JP4035431B2 true JP4035431B2 (en) 2008-01-23

Family

ID=32754387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002352921A Expired - Fee Related JP4035431B2 (en) 2002-12-04 2002-12-04 Method for producing electrode structure for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP4035431B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10340834B4 (en) 2003-09-04 2018-12-06 Daimler Ag Membrane electrode arrangement for a fuel cell
KR101856311B1 (en) 2016-03-10 2018-05-09 현대자동차주식회사 Membrane electrode assembly and fuel cell comprising the same
CN111668525B (en) * 2019-03-06 2021-10-12 清华大学 Self-charging energy storage device

Also Published As

Publication number Publication date
JP2004186041A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
CN103563143B (en) Gas diffusion layer for fuel cell
EP1950826B1 (en) Gas diffusion electrode substrate, gas diffusion electrode and process for its production, and fuel cell
JP5488254B2 (en) Hydrophilic porous layer for fuel cell, gas diffusion electrode, production method thereof, and membrane electrode assembly
CN103608955B (en) Fuel cell fine porous matter layer of sheet material and manufacture method thereof
JP2009140927A (en) Independent electrode catalyst layer for fuel cell and method of manufacturing membrane-electrode assembly using this
WO2011074327A1 (en) Gas diffusion layer for fuel cell, and membrane electrode assembly using said gas diffusion layer for fuel cell
JP4612569B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP5165205B2 (en) Membrane electrode structure for polymer electrolyte fuel cell
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
US20200251748A1 (en) Fuel cell catalyst
EP2047547B1 (en) Method of manufacturing a membrane-electrolyte assembly for fuel cells, and membrane-electrolyte assembly
JP4035431B2 (en) Method for producing electrode structure for polymer electrolyte fuel cell
JP2003123769A (en) Electrode for solid polymer fuel cell
JP4093566B2 (en) Electrode structure for polymer electrolyte fuel cell
JP2002100367A (en) Solid high polymer molecule type fuel cell
JP2007242392A (en) Membrane electrode structure for solid-polymer fuel cell
WO2021206171A1 (en) Membrane-electrode assembly, and solid polymer fuel cell
JP4065862B2 (en) Electrode for polymer electrolyte fuel cell
JP2002216777A (en) Polymer electrolyte fuel cell
JP2009252587A (en) Manufacturing method of catalyst layer for fuel cell, and performance evaluation method of catalyst layer for fuel cell
JP5071653B2 (en) Fuel cell electrode paste, membrane electrode assembly, and method for producing electrode paste
JP2002015746A (en) Fuel cell and fuel cell electrode member
WO2022014683A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
US20220021005A1 (en) Electrode catalyst for fuel battery, electrode catalyst layer of fuel battery, membrane-electrode assembly, and fuel battery
JP5624879B2 (en) Solid polymer electrolyte fuel cell and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4035431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees