JP4031539B2 - 過大な入力電圧に対する負荷の保護回路を含む装置及び過大な入力電圧に対する負荷の保護方法 - Google Patents

過大な入力電圧に対する負荷の保護回路を含む装置及び過大な入力電圧に対する負荷の保護方法 Download PDF

Info

Publication number
JP4031539B2
JP4031539B2 JP29219795A JP29219795A JP4031539B2 JP 4031539 B2 JP4031539 B2 JP 4031539B2 JP 29219795 A JP29219795 A JP 29219795A JP 29219795 A JP29219795 A JP 29219795A JP 4031539 B2 JP4031539 B2 JP 4031539B2
Authority
JP
Japan
Prior art keywords
voltage
load
type mosfet
gate
depletion type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29219795A
Other languages
English (en)
Other versions
JPH08213619A (ja
Inventor
リチャード・ケイ・ウィリアムズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Siliconix Inc
Original Assignee
Siliconix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siliconix Inc filed Critical Siliconix Inc
Publication of JPH08213619A publication Critical patent/JPH08213619A/ja
Application granted granted Critical
Publication of JP4031539B2 publication Critical patent/JP4031539B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Protection Of Static Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electronic Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、負荷(特に半導体デバイスを含む負荷)を過大な電圧または極性が逆の電圧から保護するための回路に関する。本発明は、特に、車両に於いて発生する“ロードダンプ(load dump)”と呼ばれる状態から負荷を保護するための回路に関する。
【0002】
【従来の技術】
半導体デバイス、特に集積回路を含むデバイスは、“逆極性電圧”にさらされると破壊されることがある。このような逆極性の電圧は、例えば、正電圧が加えられるように設計された端子に負電圧が加えられた場合に発生する。このような状態は、車両などで、端子にバッテリーを不注意で逆に接続した場合に発生する。逆極性電圧が加えられると、半導体デバイス内のPN接合が順バイアスされて大きな電流が流れ、過熱によってアルミニウム線が溶け、デバイスが永久的に損傷されることがある。
【0003】
消費電力が小さいときは、図1A及び図1Bに示されているように、この問題はショットキーダイオードを負荷に直列に接続することによって解消される。ダイオード10はモジュール11内のPN接合を表している。バッテリーの極性が逆の場合(図1B)、ダイオード10は順バイアスされるおそれがあるが、ショットキーダイオード12が逆バイアスされ電流が阻止されることによって、モジュール11は保護される。バッテリーが適切に接続されている場合(図1A)、ショットキーダイオード12は順バイアスされ、そこで消費される電力はわずかである。
【0004】
消費電力がより大きい場合、米国特許出願第08/067,373号明細書に記載されているように、逆極性につながれたバッテリーから保護するため、パワーMOSFETと専用制御回路を用いることができる。この特許出願は、本出願に引証として加えられる。この方法は、技術的には魅力的な問題解決法であるが、回路内にパワーMOSFETを組み込むことはコストの増加につながる。
【0005】
過大なバッテリー電圧に対する処置を考えると、問題は一層複雑になる。過大な電圧は様々な状況で発生し得るが、車両に於いては、以下の2つの場合が特に重要である。まず、車両をジャンプスタートすると、電圧が通常のバッテリー電圧の約2倍(即ち24V)にまで達することがある。バッテリーにつながっている多くのICの動作範囲は、レギュレータICも含めて、6V乃至18Vであるため、24Vに達する電圧は問題である。24Vの電圧では、IC中の接合の中にはアバランシェブレークダウン(avalanche breakdown)を起こすものもあり得る。アバランシェブレークダウンによって生成されるエネルギー及び電流に耐えることができない場合ICは破壊される。
【0006】
“ロードダンプ”と呼ばれる状態では、より困難な問題が発生する。これは図2A乃至図2Cに示されている。ロードダンプは、通常、バッテリーを充電するべく最大電流で動作している発電機が、機械的な振動またはショックによってバッテリーの接続端子からはずれてしまった場合に発生する。その結果、回路が開状態(図2Aに於いてスイッチ20によって図示)となり、符号21及び符号22で示されているような回路内の様々なコイルを流れる電流が急激に減少する。当然、発電機自身もインダクタンス成分を含んでいる。よく知られた関係式
【0007】
V=L×dI/dt
【0008】
によると、これによって、数百Vのオーダの非常に高い電圧が発生し得る。このような電圧では、ほとんどのICが破壊されてしまう。
【0009】
この問題を改善するため、図2Aの回路では、トランソーブ(transorb)として知られているツェナーダイオード23が負荷24に並列に接続されている。ツェナーダイオード23は、通常、電圧を30V程度にクランプしたりするのに用いられる。しかしながら、実際には、ツェナーダイオード23が“発火”するには数十ns(ナノ秒)を要し、その間にバッテリーラインの電圧は50V乃至100Vに上昇してしまう。また、ツェナーダイオードと負荷との間の距離が離れていると、ロードダンプによって生じた過大な電圧をダイオードがクランプする能力が低下してしまう。
【0010】
その結果、ロードダンプは、車両のバッテリーラインに現れる50V乃至100Vの過渡的な電圧と考えられる。しかし、このような状態は数百msの間持続することがあり、半導体のダイ、パッケージ、その他の半導体部品は、約100ms内に熱平衡状態に達するため、ロードダンプはバッテリーラインに発生する50V乃至100Vの準直流電圧として考えなければならない。
【0011】
図2Aに於いて、Vbatt′はバッテリー25の両端の電圧を表し、Vbattは車両内のバッテリーラインの電圧を表す。図2Bには、時刻t=0に発電機が切り離されたものとして、Vbatt′とVbattの挙動が示されている。図示されているように、Vbattは約60Vまで急激に増加した後、ツェナーダイオード23がブレークダウンすることによって頭打ちになる。図2Cには、開路状態が発生する前後の発電機を流れる電流(Igen)とツェナーダイオード23を流れる電流(Idiode)の挙動が示されている。
【0012】
図3Aに示されているように、モジュール(または集積回路)内の最大電圧を制限するのに、直列抵抗30と第2ツェナーダイオード31がよく用いられる。図3Bに示されているように、負荷24にかかる電圧VDDは、ツェナーダイオード31のブレークダウン電圧BVzに制限される。また、図3Cに示されているように、モジュール内を流れる電流IDDは、(60−BVz)/Rseriesに制限される。ここでRseriesは抵抗30の抵抗値を表す。
【0013】
別の方法では、図4Aに示されているように、抵抗の代わりにPNPトランジスタが用いられる。バイポーラトランジスタ40は、そのベースに電流源41が接続された電流源として働く。電流源41によって供給される電流が小さい値に維持されていれば、バイポーラトランジスタ40のコレクタ電流も制限され、トランジスタ40がロードダンプによって生じる電圧のほとんどを担うこととなる。図4Bに示されているように、ロードダンプ発生時、負荷にかかる電圧VDDは一定であるが、一方トランジスタ40のコレクタ−エミッタ間電圧VCEはツェナーダイオード23のブレークダウン電圧からVDDを差し引いた値にまで上昇する。図4Cに示されているように、トランジスタ40のベース電流IBとコレクタ電流Icは一定値を保つ。
【0014】
抵抗によって電流を制限する方法(図3A)に関わる問題は、負荷が軽い場合にVDDが大きくなる(即ち、抵抗30の両端の電圧降下が小さくなる)ということである。それによって、ツェナーダイオード31がブレークダウンし、抵抗30を流れる電流の概ね全てがこのダイオード31を流れる。この場合、電力損失はVbatt2に比例することが示される。バッテリーが18Vに完全に充電されている場合、このような損失はかなり大きい。このため、実際上、抵抗によって電流を制限する方法は、電流負荷が小さく抵抗30を大きくできる場合に限定される。
【0015】
BVzがバッテリーの通常動作範囲よりも高く設定され、通常動作中のICの電力消費を小さくするようになっている場合、ツェナーダイオード31に直列に含まれる抵抗によって、ロードダンプ発生時に電圧が許容範囲を越えて上昇することがある。BVzを高くすると、ブレークダウン時のツェナーダイオード31の抵抗値もより高くなるからである。
【0016】
この方法に関する別の問題点は、電流がバッテリー電圧に比例して上昇するということである。そのため、60Vのバッテリー電圧では、電流は通常時の6倍も大きくなる。ツェナーダイオード31の電圧が一定とすると、IC内の電力消費は同じ割合で増加し、抵抗30における電力消費は36倍になる。このため、抵抗30をIC内に組み込むことはできず、高価な電力用巻線抵抗を使用しなければならない。
【0017】
自動車産業では、PNP線形レギュレータを用いた方法(図4A)が最もよく使用されている。しかしながら、この方法はいくつかの理由により余り好ましくない。即ち、入力電圧と出力電圧が大きく異なる場合、線形レギュレータはあまり効率がよくない。また、高電圧用PNPバイポーラトランジスタは、電流利得が小さいため、ベース電流が主要な電力消費源となってしまう。負荷に伝達される電力はバイポーラトランジスタの飽和時のコレクタ−エミッタ間電圧(この値は小電流の場合でも0.3Vより概ね大きい)によって制限される。レギュレータと負荷との間に長い結線を用いることは好ましくないため、各負荷は専用のレギュレータを持つ必要があるが、それによってコストも増加する。また、バイポーラトランジスタは温度上昇に伴いより多くの電流を流す性質があるため、熱に関する保護が困難である。
【0018】
バイポーラトランジスタのベース駆動に関する要求は、大きな問題となり得る。βを10とすると、2Aの電流に対しては200mAのベース電流が必要である。ベース駆動に関する電力損失は、この電流を全てバッテリー電圧から供給することによって生じる(この損失は、バイポーラトランジスタのベース−エミッタ間接合と、グランドに接続された電流吸収回路(図4Aに於いて電流源41として図示)とに分けられる)。バイポーラトランジスタに於ける全電力損失は、ベース駆動に関する損失とIc×VCEとを足しあわせたものであり、即ち、
【0019】
Figure 0004031539
【0020】
となる。
【0021】
負荷電流を2A、出力電圧を5Vとすると、18Vのバッテリー電圧に対する電力損失は約30Wとなり、ベース駆動に関する値だけでは3.6Wとなる。バッテリー電圧が6Vの場合、Ic×VCEによる損失は2Wにまで減少するが、ベース駆動損失は200mA×6V=1.2Wにしか減少しない。従って、ベース駆動に関する損失が50%以上を占めることとなる。
【0022】
負荷を流れる電流は小さく制限されるが、ロードダンプ状態に於いて消費される電力は、なお非常に大きい。更に、バイポーラトランジスタのベースに於ける望ましくない電力損失の問題の他に、このトランジスタは、BVceo即ちバイポーラトランジスタが支える電圧が最大定格より大きくなるように、その定格電圧に関して設計しなければならない。例えば、100Vの製品は、170VのBVcbo接合ブレークダウン電圧を必要とする。高温で動作させるときには、更に安全マージンが必要とされる。この電圧の問題は、βが小さい理由の一つとなっている。即ち、バイポーラトランジスタのベース駆動損失を低減するには、デバイスの高温に於ける安定性を犠牲にしなければならない。
【0023】
【発明が解決しようとする課題】
従って、本発明の目的は、上述したような問題点を解決するため、過大な電圧から負荷を保護するための改善された保護回路を含む装置及び過大な電圧から負荷を保護するための改善された方法を提供することにある。
【0024】
【課題を解決するための手段】
本発明によると、ロードダンプに対する回路の保護は、保護されるべき負荷にデプレッション型MOSFETを直列に接続することによってなされる。デプレッション型MOSFETは、ゲート−ソース間電圧Vgsが0の場合に導通状態にあり、Vgsがピンチオフ電圧になると非導通となるMOSFETである。ピンチオフ電圧はNチャネルデバイスでは負電圧である(即ち、ゲートがソースに対して負にバイアスされる)。また、PチャネルMOSFETでは、ピンチオフ電圧は正電圧である(即ち、ゲート電圧をソース電圧より上昇させることによってピンチオフが達成される)。
【0025】
第1グループの実施例では、デプレッション型MOSFETのゲートはそのMOSFETのソースに接続されるか、或いはソース電圧とグランドとの間のある基準電圧に接続される。このグループに於ける最後の実施例では、MOSFETのゲートは、MOSFETのソースとグランドとの間に接続されたツェナーダイオードのカソードに接続される。
【0026】
第2グループの実施例では、デプレッション型MOSFETのゲートは、MOSFETのソースが予め定められた値に達すると、第1のレベルから第2のレベルに切り替えられる。この予め定められた値は、ロードダンプ状態に於けるソース電圧に関連して設定される。このグループの実施例は、デプレッション型MOSFETを流れる電流がロードダンプの間概ね低減されるという利点を有する。
【0027】
第3グループの実施例では、デプレッション型MOSFETのゲート電圧を制御するのに負帰還が用いられる。
【0028】
【発明の実施の形態】
本発明に従う実施例は、保護されるべき負荷に直列に接続されたデプレッション型MOSFETを含む。
【0029】
図5は、負荷51に直列に接続されたMOSFET50を含む基本回路を図示している。MOSFET50のドレインとグランドとの間のダイオードD1は、例えば70Vといった比較的高いブレークダウン電圧を有する。MOSFET50のソースとグランドとの間に、負荷51と並列に接続された第2のダイオードD2は、通常、例えば8V(5V回路に対して)または18V(15V回路に対して)といった比較的低いブレークダウン電圧を有する。ダイオードD1とD2は、回路に絶対に必要というわけではないが、様々な利点を有する。集積化に於いてはダイオードD1とD2を除外することはできないだろう。ダイオードD1は、集積化されたDMOSトランジスタのドレインと基板との間の接合に関連し、一方ダイオードD2はCMOSトランジスタ対内または静電気放電(electrostatic discharge:ESD)保護回路内に存在し得る。回路に組み込まれている場合、ダイオードD1はロードダンプの間の好ましくない導通が避けられるように、ロードダンプ電圧より大きなアバランシェブレークダウン電圧を有していなければならない。ロードダンプの間に導通状態になると、ダイオードD1は極めて破壊されやすい。
【0030】
通常、デプレッション型MOSFET50のピンチオフ電圧Vpは−1V乃至−4Vの範囲にある。通常動作時、ダイオードD2はブレークダウンしておらず、MOSFET50のデバイスサイズとVpが適切に選ばれていると仮定すると、MOSFET50は抵抗として振る舞う。ロードダンプが発生すると、MOSFET50のソース電圧が上昇し、ダイオードD2のブレークダウン電圧に達する。その後さらに入力電圧が上昇し続けると、MOSFET50が増加した電圧を支え、飽和し、電流制限を始める。いったんMOSFET50が電流制限モードになると、MOSFET50で消費される電力の増加は、電圧上昇分だけとなる。従って、飽和したMOSFET50に於いて消費される電力は入力電圧の線形関数となる。
【0031】
図6に示されている実施例では、MOSFET50のゲートはグランドに接続されている。この実施例では、MOSFET50のVpは、例えば−8Vであり、VDDが8Vに達することができるようになっている。図6に示されている回路は、デプレッション型MOSFET50のサイズに対して過大な負荷電流が要求されない限り、ピンチオフ電圧に近い値(即ち、−Vp)にVDDを制限する性質を有する。
【0032】
別の方法として、MOSFET50のゲートが、図7に示されているように、グランドとMOSFETのソース電圧との間の基準電圧につながっていても良い。あるいは、図8に示されているように、ツェナーダイオードD3のカソードにつながっていても良い。図8の実施例では、電圧VDDはツェナーダイオードD3のプレイクダウン電圧とMOSFET50のピンチオフ電圧の絶対値との和に等しい最大値に効果的に制限される。
【0033】
デプレッション型MOSFET50に対する閾値の最適な決定は、デバイスサイズと必要とされる負荷電流の範囲とに依存する。デプレッション型MOSFET50が閾値電圧Vt=−Vpを有すると仮定すると、飽和電流は以下の式で与えられる。
【0034】
Id(sat)=kVp2
【0035】
ここでk=μCoxW/Lであり、μはMOSFETのキャリアの移動度、Coxはゲートの静電容量、Wはゲート幅、Lはチャネル長さである。同様に、MOSFET50のオン抵抗は、
【0036】
Rds=1/(kVp)
【0037】
となる。
【0038】
電流があまり大きくない通常動作の場合、MOSFET50は線形領域にあり、抵抗値Rdsを有する直列抵抗のように振る舞う。MOSFETの両端の電圧降下は、
【0039】
Figure 0004031539
【0040】
となる。
【0041】
ロードダンプの間はMOSFET50を流れる電流は飽和し、MOSFET50は定電流源となる。負荷51を流れる電流はロードダンプ電圧に比例して増加はしない。通常電流に対する飽和電流の増加は、以下の式によって表される。
【0042】
Figure 0004031539
【0043】
これは、デプレッション型のデバイスでは、ロードダンプ時の電流の増加率はデプレッション型のデバイスを通常動作時により高い電流密度で動作させることによってより小さくなることを意味している。従って、図5乃至図8に示されている回路では、通常動作時のMOSFET50に於ける電力損失と、ロードダンプ時のMOSFET50を流れる電流の増加との間にドレードオフの関係がある。
【0044】
図9Aは、抵抗による方法(図3A)、バイポーラトランジスタによる方法(図4A)、及びデプレッション型MOSFETによる方法(図5乃至図8)に対する電流の挙動を電圧の関数として表したものである。これらの3つの場合の全てに於いて、電流はバッテリー電圧がダイオードD2のブレークダウン電圧(即ち20V)を越えるまでは増加しない。MOSFET50と抵抗30とが同じ線形抵抗となるように選択されているとすると、MOSFET50が飽和し電流を制限するようになるまでは電流は直線的に増加する。抵抗30を流れる電流は直線的に増加し続ける。PNPトランジスタ40は、ベース電流の存在のためデバイスを流れる全電流がより大きいという点を除いては、MOSFET30と同じように振る舞う。
【0045】
図9Bは、同じデバイスに対して、電力損失を電圧の関数として表したものである。これらの3つのデバイス全てに対して、電力損失は、ツェナーダイオードのブレークダウン電圧までは直線的に増加するが、バイポーラトランジスタ40に於ける電力損失は幾分か大きい。その後、電力損失は幾何級数的に(二乗特性で)増加し始める。バイポーラトランジスタ30とMOSFET50では、電流が飽和すると電力はまた直線的に増加し始める。一方、抵抗30を流れる電流は幾何級数的に増加し続ける。
【0046】
図10A及び図10Bには、ロードダンプが発生するとMOSFET50のゲートが切り替えられるようになっている改善された実施例が示されている。図10Aの回路は、基準電圧VREFに接続された負入力端子と、ツェナーダイオードD4のアノードに接続された正入力端子とを有する比較器70を含んでいる。比較器70からの出力はインバータ71に入力され、インバータ71の出力はMOSFET50のゲートに接続されている。
【0047】
VDDがツェナーダイオードD4のブレークダウン電圧よりも低いときは、比較器70の正入力はグランドに接続され、インバータ71はVDDに等しい電圧をMOSFET50のゲートに対して出力する。この状態では、回路は、MOSFET50のゲートとソースが短絡されている図5に示した回路と等価である。
【0048】
ロードダンプが発生すると、VDDが上昇してツェナーダイオードD4がブレークダウンし、抵抗72と共に分圧回路を形成する。比較器70の正入力の電圧が上昇してVREFを越えると、比較器70は、インバータ70がMOSFET50のゲートにグランド電位を供給するように電圧を出力する。
【0049】
この場合、MOSFET50の飽和電流は、以下の式で表される値まで低減される。
【0050】
Id(sat)=k(Vp−BVzener)2
【0051】
ここで、BVzenerはツェナーダイオードD4のブレークダウン電圧である。18Vといった高いバッテリー電圧に於いてもツェナーダイオードD2をブレークダウンさせたくない場合は、ツェナーダイオードD4が15Vのブレークダウン電圧を有するようにしてもよい。
【0052】
別の方法として、図10Bに示されている回路を用いて、ロードダンプの間、MOSFET50のゲートを中間的なバイアス電圧値に切り替えても良い。この回路では、インバータ71はロードダンプが発生するとMOSFET50のゲートに対し予め定められた基準電圧VREFを供給する。以下の式は、デプレッション型MOSFET50のVgsをロードダンプ状態に於ける望ましい最大電流値Imaxの関数として表したものである。
【0053】
【数1】
Figure 0004031539
【0054】
図11Aと図11Bは、それぞれ、MOSFET50を流れる電流とMOSFET50で消費される電力を、ゲートが固定されている場合(図5乃至図8)と、ゲートが切り替えられる場合(図10A及び図10B)に対して示したものである。ゲートが切り替えられる場合に対する曲線に現れているバンプは、切り替えに時間がかかることによるものである。図10A及び図10Bに示されている回路の変形として、電圧の検出をデプレッション型MOSFET50のドレイン側で行っても良いが、この場合、検出回路がロードダンプに耐えられなければならない。
【0055】
図12に示されている回路では、VDDの増加を抑えるように、差動増幅器90によってMOSFET50のゲートに負帰還電圧が加えられる。差動増幅器90の正入力端子は、基準電圧VREFに接続され、差動増幅器90の負入力端子はVDDに接続されている。コンデンサC1は回路が振動しないようにフィルタリング機能を果たすものである。ロードダンプの間、差動増幅器90はMOSFET50のゲートに負電圧を供給し、それによってMOSFET50を流れる電流を減少させ、VDDの増加を制限する。デプレッション型MOSFET50のゲート駆動電圧は、正の電源供給ラインの電圧を超えることはないため、このデバイスを駆動するのにチャージポンプ(charge pump)は不要である。更に、MOSFET50は通常オン状態にあり、従って、最初の電源投入時、ゲートを駆動する制御回路が動作状態になる前に始動電流を供給することができる。
【0056】
本発明のロードダンプに対する保護回路は、極性が逆に接続されたバッテリーに対して回路素子を保護するためのデバイスと共に用いることもできる。図13A乃至図13Cの実施例では、ダイオードD5が回路に追加されており、そのアノードはVbattに接続され、そのカソードはMOSFET50のドレインに接続されている。図13Aに示されている基本的なロードダンプ回路は、図5に示した回路に対応しており、図13Aに示されている回路は図10Bに示した回路に対応しており、図13Cに示されている回路は図12に示した回路に対応している。ダイオードD5がない場合、バッテリーが逆極性につながれた状態によってダイオードD1に過大な電流が流れるであろう。
【0057】
本発明による特定の好適実施例について説明してきたが、理解されるように、本発明の広範囲に渡る原理は、様々な構成、構造に於いて実施され得る。例えば、開示された実施例はNチャネルMOSFETを含み、負荷の正側に接続されているが、極性を変えることもできるし、PチャネルMOSFETを用いることも可能である。本発明は、そのような変形変更を全て含むものである。本発明は、特許請求の範囲によって画定される。
【0058】
尚、本出願は、“Electrostatic Discharge Protection Device For Integrated Circuit”というタイトルの米国特許出願第08/326,172号(代理人整理番号SIL7016)と関連しており、この特許出願は本出願に引証として加えられる。
【図面の簡単な説明】
【図1】図1はA及びBからなり、逆極性のバッテリーに対するショットキーダイオードを含む従来の保護回路である。
【図2】図2はA乃至Cからなり、図2Aはロードダンプに於いて生じる現象を説明するための模式的な回路図であり、図2Bは、図2Aに示した回路に於けるロードダンプの前及びロードダンプの間の負荷の両端の電圧を表すグラフであり、図2Cは、図2A示した回路に於けるロードダンプの前後に於ける発電機を流れる電流と保護用ツェナーダイオードを流れる電流を表したグラフである。
【図3】図3はA乃至Cからなり、図3Aは、直列抵抗とツェナーダイオード電圧クランプ素子とを含む従来のロードダンプ保護回路を表した図であり、図3Bは、図3Aに示した回路に於けるロードダンプの前及びロードダンプの間の負荷の両端の電圧挙動を表したグラフであり、図3Cは、図3Aの回路に於けるロードダンプの前後のツェナーダイオード電圧制御素子を流れる電流を表したグラフである。
【図4】図4はA乃至Cからなり、図4Aは、バイポーラトランジスタを含む従来のロードダンプに対する保護回路の回路図であり、図4Bは、図4Aに示した回路に於けるロードダンプの前及びロードダンプの間の負荷の両端の電圧を表した図であり、図4Cは、図4Aに示した回路に於けるロードダンプの前及びロードダンプの間の負荷を流れる電流を表したグラフである。
【図5】図5は、本発明による保護回路を図示したものであり、この実施例ではデプレッション型MOSFETのソースはそのMOSFETのゲートに接続されている。
【図6】図6は、本発明による保護回路を図示したものであり、この実施例ではデプレッション型MOSFETのゲートはグランドに接続されている。
【図7】図7は、本発明による保護回路を図示したものであり、この実施例ではデプレッション型MOSFETのゲートはソース電圧とグランドとの間の基準電圧に接続されている。
【図8】図8は、本発明による保護回路を図示したものであり、この実施例ではデプレッション型MOSFETのゲートはグランドとソースとの間に接続されたツェナーダイオードのカソードに接続されている。
【図9】図9はA及びBからなり、図9Aは、図3A及び図4Aに示した回路に於ける電流と比較して図5乃至図8に示した実施例のデプレッション型MOSFETを流れる電流の挙動を電圧の増加に対して表した図であり、図9Bは、図3A及び図4Aに示した回路に於いて消費される電力と比較して図5乃至図8に示した実施例のデプレッション型MOSFETに於ける電力消費を電圧の増加に対して表した図である。
【図10】図10はA及びBからなり、それぞれ、本発明による別の保護回路を表したものであり、図10Aの実施例ではデプレッション型MOSFETのゲートはロードダンプ状態の間ソース電圧からグランド電位に切り替えられるようになっており、図10Bの実施例ではデプレッション型MOSFETのゲートはロードダンプ状態の間ソース電圧から基準電圧に切り替えられるようになっている。
【図11】図11はA及びBからなり、図11Aは、本発明の実施例に於いて、ゲートが切り替えられる場合と切り替えられない場合について、MOSFETを流れる電流値を電圧の関数として表し比較したグラフであり、図11Bは、本発明の実施例に於いて、ゲートが切り替えられる場合と切り替えられない場合について、MOSFETに於いて消費される電力を電圧の関数として表し比較したグラフである。
【図12】図12は、更に別の保護回路を図示したものであり、この実施例ではデプレッション型MOSFETのゲート電圧が負帰還によって制御される。
【図13】図13はA乃至Cからなり、それぞれ入力電圧の極性の反転に対しても負荷を保護することのできる保護回路を図示している。
【符号の説明】
10 ダイオード
11 モジュール(IC)
12 ショットキーダイオード
20 ロードダンプの発生を表すスイッチ
21、22 コイル
23 ツェナーダイオード
24 負荷
25 バッテリー
30 抵抗
31 ツェナーダイオード
40 バイポーラトランジスタ
41 電流源
50 MOSFET
51 負荷
70 比較器
71 インバータ
72 抵抗
90 差動増幅器
BVz ブレークダウン電圧
C1 コンデンサ
D1 ダイオード
D2 ダイオード
D3 ツェナーダイオード
D4 ツェナーダイオード
D5 ダイオード
Vbatt′ バッテリー電圧
Vbatt バッテリーラインの電圧
VDD 負荷にかかる電圧
IB ベース電流
Ic コレクタ電流
Idiode ツェナーダイオードを流れる電流
IDD モジュール内を流れる電流
Igen 発電機電流
Rseries 抵抗値
VCE コレクタ−エミッタ間電圧
Vp ピンチオフ電圧
VREF 基準電圧

Claims (11)

  1. 車両において電源と負荷の間に接続されて、車両において発生するロードダンプから負荷を保護する負荷保護装置であって、
    前記負荷保護装置が、ドレインが前記負荷保護装置の入力に接続され、ソースが前記負荷保護装置の出力に接続され、ゲートがある値の電圧に接続されたデプレッション型MOSFETを含み、
    前記入力電圧が通常レベルにある時には、前記デプレッション型MOSFETは抵抗としてふるまい、前記入力電圧が過大な値になると前記デプレッション型MOSFETが飽和し、それによって前記負荷が過大な電流から保護されるように、前記デプレッション型MOSFETのサイズとピンチオフ電圧が選択されていることを特徴とし、
    前記デプレッション型MOSFETと直列に接続されたダイオードを更に含み、前記ダイオードが前記負荷を逆流する電流を防ぐように接続されていることを特徴とし、
    前記ロードダンプ発生時には、初めに前記ダイオードがブレークダウンし、さらに電圧が上昇しつづけると前記デプレッション型MOSFETが飽和して電流制限を始めるように、前記ダイオードのブレークダウン電圧が選択されていることを特徴とする負荷保護装置
  2. 前記デプレッション型MOSFETの前記ゲートが前記デプレッション型MOSFETのソースに接続されていることを特徴とする請求項1に記載の装置。
  3. 前記デプレッション型MOSFETの前記ゲートがグランドに接続されていることを特徴とする請求項1に記載の装置。
  4. 前記入力電圧が通常動作レベルにあるとき、前記デプレッション型MOSFETがその飽和電流の近くで動作するように、前記デプレッション型MOSFETと前記負荷が適合されていることを特徴とする請求項1に記載の装置。
  5. 切り替え回路を更に含み、前記入力電圧が過大な値に達すると、前記切り替え回路によって前記デプレッション型MOSFETのゲートがグランドに接続されることを特徴とする請求項1に記載の装置。
  6. 切り替え回路を更に含み、前記入力電圧が通常レベルにあるときには、前記デプレッション型MOSFETのゲートが前記デプレッション型MOSFETのソースと等しい電位に接続され、前記入力電圧が過大な値に達すると、前記切り替え回路によって前記デプレッション型MOSFETのゲートが基準電圧に接続されことを特徴とする請求項1に記載の装置。
  7. 切り替え回路を更に含み、前記入力電圧が過大な値に達すると、前記切り替え回路によって前記デプレッション型MOSFETのゲートが前記MOSFETのソース電圧より低い電圧に接続されることを特徴とする請求項1に記載の装置。
  8. 前記切り替え回路がツェナーダイオードと比較器とを含み、前記比較器の出力信号が前記デプレッション型MOSFETの前記ゲートの電圧を供給するのに用いられることを特徴とする請求項7に記載の装置。
  9. 前記デプレッション型MOSFETの前記ゲートが、前記入力電圧が過大な値に達すると、グランドに接続されることを特徴とする請求項8に記載の装置。
  10. 前記デプレッション型MOSFETの前記ゲートが、前記入力電圧が過大な値に達すると、グランドより高い基準電圧に接続されることを特徴とする請求項8に記載の装置。
  11. 車両であって、
    バッテリーと、
    負荷と、
    前記請求項1乃至10の何れかに記載の、車両において電源と負荷の間に接続されて、車両において発生するロードダンプから負荷を保護する負荷保護装置とを含むことを特徴とする車両。
JP29219795A 1994-10-19 1995-10-13 過大な入力電圧に対する負荷の保護回路を含む装置及び過大な入力電圧に対する負荷の保護方法 Expired - Lifetime JP4031539B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/325,860 US5585991A (en) 1994-10-19 1994-10-19 Protective circuit for protecting load against excessive input voltage
US08/325,860 1994-10-19

Publications (2)

Publication Number Publication Date
JPH08213619A JPH08213619A (ja) 1996-08-20
JP4031539B2 true JP4031539B2 (ja) 2008-01-09

Family

ID=23269773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29219795A Expired - Lifetime JP4031539B2 (ja) 1994-10-19 1995-10-13 過大な入力電圧に対する負荷の保護回路を含む装置及び過大な入力電圧に対する負荷の保護方法

Country Status (5)

Country Link
US (1) US5585991A (ja)
EP (1) EP0708515B1 (ja)
JP (1) JP4031539B2 (ja)
DE (1) DE69518049T2 (ja)
HK (1) HK1014402A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261164B (zh) * 2010-05-24 2014-04-16 香港理工大学 Frp-混凝土-钢双壁组合管梁及采用该梁的梁板式组合结构

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368124B2 (ja) * 1995-10-26 2003-01-20 キヤノン株式会社 過充電防止回路
US6185082B1 (en) 1999-06-01 2001-02-06 System General Corporation Protection circuit for a boost power converter
DE19964097A1 (de) * 1999-12-31 2001-07-26 Nokia Mobile Phones Ltd Schutzschaltung für eine elektronische Einheit gegen länger anhaltende Überspannung
JP2002299569A (ja) * 2001-03-29 2002-10-11 Sanyo Electric Co Ltd スイッチング用mosトランジスタの保護回路
DE10135168A1 (de) * 2001-07-19 2003-02-13 Bosch Gmbh Robert Vorrichtung zum Schutz elektronischer Bauelemente
ITTO20020263A1 (it) * 2002-03-25 2003-09-25 Sila Holding Ind Spa Circuito di interfaccia fra una sorgente di tensione continua ed un circuito di pilotaggio di un carico,particolarmente per l'impiego a bord
US6700765B2 (en) * 2002-05-31 2004-03-02 Delphi Technologies, Inc. High current series-pass over-voltage protection circuit
WO2004012317A2 (en) * 2002-07-29 2004-02-05 Raytheon Company Method and system for protecting a vehicle system from a load dump
US6882513B2 (en) * 2002-09-13 2005-04-19 Ami Semiconductor, Inc. Integrated overvoltage and reverse voltage protection circuit
US6970337B2 (en) * 2003-06-24 2005-11-29 Linear X Systems Inc. High-voltage low-distortion input protection current limiter
JP4574960B2 (ja) * 2003-06-24 2010-11-04 ルネサスエレクトロニクス株式会社 車両用電源制御装置及び制御チップ
DE10344182A1 (de) * 2003-09-24 2005-04-21 Bosch Gmbh Robert Schaltungsanordnung mit Verpolschutz für ein Kraftfahrzeug
JP4148162B2 (ja) * 2004-03-05 2008-09-10 株式会社デンソー 回路システム
US7271989B2 (en) * 2004-06-03 2007-09-18 Altera Corporation Electrostatic discharge protection circuit
US7139157B2 (en) * 2004-07-30 2006-11-21 Kyocera Wireless Corp. System and method for protecting a load from a voltage source
JP4847970B2 (ja) 2005-01-31 2011-12-28 ジョージア テック リサーチ コーポレイション アクティブサージ電流制限器
US7245135B2 (en) * 2005-08-01 2007-07-17 Touchdown Technologies, Inc. Post and tip design for a probe contact
CA2627313C (en) 2005-10-24 2014-12-16 Georgia Tech Research Corporation Reduction of inrush current due to voltage sags
JP2007329998A (ja) * 2006-06-06 2007-12-20 Ricoh Co Ltd 過電圧保護回路、過電圧保護回路の過電圧保護方法及び過電圧保護回路を有する半導体装置
WO2008124587A1 (en) * 2007-04-05 2008-10-16 Georgia Tech Research Corporation Voltage surge and overvoltage protection
CN101291108B (zh) * 2007-04-19 2010-11-17 立锜科技股份有限公司 电荷泵启动电路与方法
US7489182B2 (en) * 2007-05-17 2009-02-10 Richtek Technology Corporation Charge pump start up circuit and method thereof
US7800869B1 (en) 2007-08-27 2010-09-21 National Semiconductor Corporation Apparatus and method for power supply overvoltage disconnect protection
US7660090B1 (en) 2007-08-27 2010-02-09 National Semiconductor Corporation Apparatus and method for input voltage transient protection with a low-voltage reset circuit
US7561394B2 (en) * 2007-12-10 2009-07-14 Visteon Global Technologies, Inc. System and method for overvoltage protection
US8922961B2 (en) * 2009-09-25 2014-12-30 Hamilton Sundstrand Corporation Two-level lightning protection circuit
DE102009046606A1 (de) 2009-11-11 2011-05-12 Robert Bosch Gmbh Schutzelement für elektronische Schaltungen
JP5558938B2 (ja) * 2010-06-30 2014-07-23 日立アロカメディカル株式会社 超音波診断装置の受信入力保護回路
CN102315629A (zh) * 2010-07-01 2012-01-11 鸿富锦精密工业(深圳)有限公司 保护电路及具有该保护电路的电子装置
JP5593904B2 (ja) * 2010-07-16 2014-09-24 株式会社リコー 電圧クランプ回路およびこれを用いた集積回路
WO2012092606A2 (en) 2010-12-30 2012-07-05 Innovolt, Inc. Line cord a ride-through functionality for momentary disturbances
CA2833384C (en) 2011-04-18 2019-08-20 Innovolt, Inc. Voltage sag corrector using a variable duty cycle boost converter
US8659860B2 (en) * 2011-07-14 2014-02-25 Cooper Technologies Company Transient voltage blocking for power converter
JP2013074749A (ja) * 2011-09-28 2013-04-22 Seiko Instruments Inc 過充電防止回路及び半導体装置
US9030792B2 (en) 2012-04-20 2015-05-12 Continental Automotive Systems, Inc. Overvoltage protection method using exposed device supply rail
US20130295869A1 (en) * 2012-05-01 2013-11-07 Microsemi Corporation Square law extension technique for high speed radio detection
FR2994750B1 (fr) * 2012-08-23 2015-12-11 St Microelectronics Rousset Alimentation d'une charge a potentiel flottant
FR3016751B1 (fr) * 2014-01-21 2017-10-06 Mersen France Sb Sas Dispositif de protection d'un circuit contre des surtensions et organe d'alimentation electrique comprenant un tel dispositif
US10205313B2 (en) 2015-07-24 2019-02-12 Symptote Technologies, LLC Two-transistor devices for protecting circuits from sustained overcurrent
EP3353870B1 (en) * 2015-09-21 2023-06-07 Symptote Technologies LLC One-transistor devices for protecting circuits and autocatalytic voltage conversion therefor
US10516262B2 (en) * 2016-12-01 2019-12-24 Osypka Medical Gmbh Overvoltage protection device and method
US11095111B2 (en) * 2018-04-02 2021-08-17 Allegro Microsystems, Llc Systems and methods for transient pulse protection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835416A (en) * 1987-08-31 1989-05-30 National Semiconductor Corporation VDD load dump protection circuit
EP0401410B1 (de) * 1989-06-08 1993-12-29 Siemens Aktiengesellschaft Schaltungsanordnung zum Schutz elektronischer Schaltungen vor Überspannung
US5302889A (en) * 1992-06-19 1994-04-12 Honeywell Inc. Voltage regulator
US5517379A (en) * 1993-05-26 1996-05-14 Siliconix Incorporated Reverse battery protection device containing power MOSFET
GB2374346B (en) 2001-04-10 2003-04-23 Mon-Sheng Lin Liquid bubble solution for producing luminous bubbles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102261164B (zh) * 2010-05-24 2014-04-16 香港理工大学 Frp-混凝土-钢双壁组合管梁及采用该梁的梁板式组合结构

Also Published As

Publication number Publication date
EP0708515A1 (en) 1996-04-24
US5585991A (en) 1996-12-17
EP0708515B1 (en) 2000-07-19
DE69518049D1 (de) 2000-08-24
DE69518049T2 (de) 2000-12-21
HK1014402A1 (en) 1999-09-24
JPH08213619A (ja) 1996-08-20

Similar Documents

Publication Publication Date Title
JP4031539B2 (ja) 過大な入力電圧に対する負荷の保護回路を含む装置及び過大な入力電圧に対する負荷の保護方法
US8120097B2 (en) Method and apparatus for controlling a circuit with a high voltage sense device
KR100748570B1 (ko) 반도체 장치
US5465190A (en) Circuit and method for protecting power components against forward overvoltages
US7724046B2 (en) High side/low side driver device for switching electrical loads
US4495536A (en) Voltage transient protection circuit
EP0736974A1 (en) Gate drive circuit
US6577480B1 (en) Adjustable trigger voltage circuit for sub-micrometer silicon IC ESD protection
EP2066032A2 (en) Power supply control circuit including overvoltage protection circuit
US6169439B1 (en) Current limited power MOSFET device with improved safe operating area
JPH0213115A (ja) 電力用電界効果トランジスタ駆動回路
US20130021083A1 (en) Active clamp circuit
CN109285726B (zh) 具有温度保护的用于对电感器进行放电的放电电路
US4547828A (en) Circuit for preventing excessive power dissipation in power switching semiconductors
US6255890B1 (en) Circuit for controlling the switching of a load by means of an emitter-switching device
US20230327554A1 (en) Three output dc voltage supply with short circuit protection
JP2006352931A (ja) スイッチング素子保護回路
US20220247404A1 (en) Power switch drive circuit and device
CN107977035B (zh) 栅极驱动器电路及其操作方法和用于电路保护的***
US5488533A (en) Methods and apparatus for isolating a power network from a load during an overcurrent condition
JP2006050776A (ja) 半導体スイッチ回路および電力変換装置およびインバータ装置および空気調和機
JPH0851184A (ja) 半導体装置
CN117394660A (zh) 一种具有反接保护功能的开关管驱动电路
CN118367908A (zh) 具有栅极电流分流能力的晶体管组件及其相关方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060609

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070626

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term