JP4030439B2 - Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas - Google Patents

Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas Download PDF

Info

Publication number
JP4030439B2
JP4030439B2 JP2003020725A JP2003020725A JP4030439B2 JP 4030439 B2 JP4030439 B2 JP 4030439B2 JP 2003020725 A JP2003020725 A JP 2003020725A JP 2003020725 A JP2003020725 A JP 2003020725A JP 4030439 B2 JP4030439 B2 JP 4030439B2
Authority
JP
Japan
Prior art keywords
water
tower
boiling point
exhaust gas
hydrophilic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003020725A
Other languages
Japanese (ja)
Other versions
JP2004230265A (en
Inventor
泰人 川瀬
基良 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Refine Co Ltd
Original Assignee
Nippon Refine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Refine Co Ltd filed Critical Nippon Refine Co Ltd
Priority to JP2003020725A priority Critical patent/JP4030439B2/en
Priority to TW092114542A priority patent/TWI255732B/en
Priority to CNB031483461A priority patent/CN100563788C/en
Priority to KR1020030045180A priority patent/KR100981073B1/en
Publication of JP2004230265A publication Critical patent/JP2004230265A/en
Application granted granted Critical
Publication of JP4030439B2 publication Critical patent/JP4030439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Secondary Cells (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中に含有されている水より高沸点で、水と共沸しない親水性、揮発性化学物質を水との沸点の差を利用して濃縮、回収すると共に排ガスを浄化する方法および装置に関する。
【0002】
【従来の技術】
従来、水より沸点の高い水溶性溶剤を含有する排ガスを浄化処理するには、吸収塔の下部から水溶性溶剤を含有する排ガスを吹きこみ、吸収塔の上部から多量の水を流して前記排ガスを洗浄していた。このような洗浄方法では、洗浄に多量の水を必要とするうえ、排水中に含まれる溶剤の濃度が極めて低いので、溶剤回収にコストがかかるため、実質的に溶剤回収は不可能であり、しかも廃水処理が必要になるという問題点があった。
【0003】
もう1つの従来技術としては、ゼオライトなどの吸着剤を充填した横向き配置のドラムを回転させながら、室温程度に冷却された前記排ガスを通し、通過ガスの一部はそのまま大気中に放出し、他の一部は加熱(吸着剤に吸着した成分を追い出すため)した後再び前記ゼオライトなどの吸着剤を充填した横向き配置のドラムに通し、吸着剤に吸着している溶剤を脱着し、脱着した溶剤を高濃度で含む処理ガスは再び冷却して溶剤を回収していた。この方法も排ガスを一度冷却し、吸着処理後加熱し、溶剤回収のため再び冷却するという操作を必要とするため、エネルギー効率が極めて悪い。
【0004】
例えば、リチウム電極の乾燥工程から排出される排ガス中に含まれるN−メチル−2−ピロリドン(NMP)を除去するためには、従来吸着法が用いられていたが、水分が存在するとN−メチル−2−ピロリドンの吸着効率が著しく低下するという事情から、前記乾燥工程から排出される高温の排ガスを冷却する工程が必要であり、吸着剤にN−メチル−2−ピロリドンを吸着させた後には、吸着剤からN−メチル−2−ピロリドンをパージするため、今度は反対に加熱するという操作が必要であった。このような従来工程は図に示す。
このように従来法によれば、冷却工程、吸着工程、脱着工程という三工程が必要であり、かつかなりの温度を持つ排ガスを冷却した後、再び加熱するため大きなエネルギー損失を伴うという問題を抱えていた。
【0005】
【発明が解決しようとする課題】
本発明の第1の目的は、排ガス中に含まれている水より高沸点で、水と共沸しない親水性、揮発性化学物質、例えば水溶性溶剤を水蒸気と置換することにより効率良く回収するとともに、排ガスを清浄化する方法および装置を提供する点にある。
本発明の第2の目的は、通常、リチウムイオン電池電極製造工程等より100℃〜120℃で排出される高温の排ガスの熱量を利用して、外部より導入される補給水を蒸発させることにより、排ガス中に含まれる水より沸点が高く水溶性の揮発性化学物質を凝縮させる、即ち、排ガス中の成分を水と置換する、ことにより効率よく回収するとともに、低温の補給水による吸収効果を付加することにより排ガスを清浄化する方法および装置を提供する点にある。
【0006】
本発明の第1は、トレイ上に存在する水の中を通らなければガスが上部に抜けられない構造のトレイを多段に設けてなる段塔または親水性充填物を充填した充填塔の下部から、水より高沸点の物質を含む排ガスを導入し、一方、塔上部からは水を供給し、塔下部では排ガスと水との気液平衡関係により前記水より高沸点の物質を濃縮するとともに、塔上部では残存する排ガス中の前記物質をさらに水中に移行させることを特徴とする排ガス中の「水より高沸点で、水と共沸しない親水性、揮発性化学物質」を濃縮する方法であって、塔上部から供給する水の量は、塔下部の濃度情報に基づき制御し、塔下部から回収する水より高沸点で、水と共沸しない親水性、揮発性化学物質の濃度は20〜100重量%になるように制御するものである排ガス中の水より高沸点で、水と共沸しない親水性、揮発性化学物質を濃縮する方法に関する。
本発明の第2は、前記水より高沸点で、水と共沸しない親水性、揮発性化学物質が、NMP(N−メチルピロリドン)、DMF(N,N−ジメチルホルムアミド)、DMAC(N,N−ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、EG(エチレングリコール)、DEG(ジエチレングリコール)、TEG(トリエチレングリコール)、PGME(プロピレングリコールモノエチルエーテル)、PG(プロピレングリコール)、1,4−BD(1,4−ブタンジオール)、MEA(モノエタノールアミン)およびDGME(ジエチレングリコールモノメチルエーテル)よりなる群から選ばれた溶剤類である請求項記載の排ガス中の水より高沸点で、水と共沸しない親水性、揮発性化学物質を濃縮する方法に関する。
本発明の第3は、
(1) トレイ上に存在する水の中を通らなければガスが上部に抜けられない構造の
トレイを多段に設けてなる段塔または親水性充填物を充填した充填塔、
(2) 前記多段トレイの上方であって前記段塔内に設けられた給水手段または充填層
の上方であって前記充填塔内に設けられた給水手段、
(3) 段塔の上部または充填層の上部に設けられた処理ガス放出口、
(4) 段塔の下部または充填層の下部に設けられた液状物排出口、
(5) 液状物排出口からパイプを通して連結された水より高沸点で、水と共沸しない
親水性、揮発性化学物質を含む液状物溜り、
(6) 段塔内または充填塔内に設けられた水より高沸点で、水と共沸しない親水性、
揮発性化学物質の系中濃度を検知するための測定手段、
(7) 前記測定手段からの情報により前記給水手段からの給水量を前記揮発性化学物
質の濃度が20〜100重量%になるように制御する手段、
よりなることを特徴とする排ガス中の「水より高沸点で、水と共沸しない親水性、揮発性化学物質」に対する濃縮装置に関する。
【0007】
本発明は、通常相当高い温度(例えば80〜120℃)を有していることが多い排ガスの熱量を有効利用し、段塔内または充填塔内に排ガスを通過させるという一工程で、排ガス中に含まれる水より沸点が高い物質の回収と排ガスの処理を同時に達成するという極めて効率的な方法と装置である。
本発明は、とくに、トレイ上に存在する水の中を通らなければガスが上部に抜けられない構造のトレイを多段に設けてなる段塔または親水性充填物を充填した充填塔の下部から、リチウムイオン電池電極製造工程より排出されるN−メチルピロリドンを含有する100〜120℃の高温排ガスを導入し、一方、塔上部からは水を供給し、塔下部では排ガスの熱量を利用して供給された水を蒸発させ、反対に排ガス中に含まれる水より沸点が高く、水溶性のN−メチルピロリドンを凝縮させて塔下部に落し、塔上部では残存する排ガス中の前記N−メチルピロリドンをさらに水中に移行させることにより、リチウムイオン電池電極製造工場の排ガスを浄化するとともに、N−メチルピロリドンを回収する方法や装置として極めて好適である。
【0008】
前記補給される水の量は、排ガス処理後に段塔上部から放出される処理済ガスに含まれて系から出てゆく水の量(B)と水より沸点の高い揮発性化学物質の凝縮物と共に塔下部より出てゆく水の量(C)とを補う量(A)でよい。いいかえれば
A≒B+C
でよいから、従来技術における水洗による排ガス処理法に較べると水の使用量は桁違いに少なく、この点だけをみても、省資源を達成していると共に廃水処理を必要とする排水が実質的に発生しないという点も大きなメリットである。
【0009】
塔頂部の温度は、外気温度より高いものとする。飽和含水量は温度が高い方が大きくなるから、段塔内のガス中の水分は簡単にいつも飽和点を下回っていることにより、補給水を加えても、Xac≦Xsを満たす条件をつくりだすことができる。なお、Xacは計算含水率であり、Xsはガス飽和含水率である。補給水の温度は、吸収効率上は低い方がよいが、低すぎると塔内の流下水量が不足するだけでなく、冷却のためのエネルギーが必要となる。尚、外気は通常飽和ではなくて、湿度で表される飽和に達しない含水率で存在するので補給水の量は飽和の状態より多くなる。
【0010】
本発明の水より高沸点の物質としては、揮発性化学物質を挙げることができる
【0011】
水より高沸点の揮発性化学物質としては、とくに水より沸点の高い水溶性溶剤が代表的なものである。
【0012】
このような溶剤類としては、NMP(N−メチルピロリドン、BP:197℃)、DMF(N,N−ジメチルホルムアミド、BP:153℃)、DMAC(N,N−ジメチルアセトアミド、BP:165℃)、DMSO(ジメチルスルホキシド、BP:189℃)、EG(エチレングリコール、BP:197℃)、DEG(ジエチレングリコール、BP:245℃)、TEG(トリエチレングリコール、BP:278℃)、PGME(プロピレングリコールモノエチルエーテル)、PG(プロピレングリコール、BP:188℃)、1,4−BD(1,4−ブタンジオール、BP:235℃)、MEA(モノエタノールアミン、BP:170.5℃)およびDGME(ジエチレングリコールモノメチルエーテル)など水と共沸しない性質のものが好適である。
【0013】
前記トレイ内に存在する水の中を通らなければガスが上部に抜けられない構造のトレイとしては、最も古くから用いられているバルブキャップトレイ(泡鐘板)があり、これ以外にはその後開発されたシーブトレイ(多孔板)などを挙げることができる。安定性の面からはバルブキャップトレイの方がよいが、コスト面からはシーブトレイの方がよい。
【0014】
前記親水性充填物を充填した充填塔における親水性充填物は、規則充填物の形であっても不規則充填物の形であってもよいが、圧力損失のことを考えると規則充填物の方が好ましい。これらの充填物は親水性であり表面積の大きいもの、たとえば親水性の材質で作られた多孔質物、具体的には多孔質セラミックス、多孔質カーボンなどを挙げることができる。
【0015】
本発明は、とくにリチウムイオン電池の製造工場において、N−メチル−2−ピロリドン(NMP)溶剤を除去するための乾燥工程から排出される排ガスの処理に好適に利用できる。図1に示すように、N−メチル−2−ピロリドン(NMP)溶剤を除去するためには、工場外から通常空気を取り込み、これを濾過した後、加熱した空気を送風機により乾燥工程に送風する。
通常の工場外からの取り込み空気は
外気温度 t
流量 V Nm/min
含水率 Xa kg/m
水分量 V・〔(273+t)/273〕・Xa kg/min
である。リチウムイオン電池製造工場におけるN−メチル−2−ピロリドン(NMP)溶剤を除去するための乾燥工程から排出される排ガスは
排ガス温度 t=100〜120℃
NMP含有量 Cn=0.0005〜0.01 kg/
(113〜2260ppm,vol./vol.)
NMP流量 VCn kg/min
排ガスの流量 V Nm/min
水分量 V・〔(273+t)/273〕・Xa kg/min
の条件で段塔(水置換塔)の下部から吹き込まれる。水置換塔内に多段に設けられたバルブキャップトレイやシーブトレイなどの最上段から、通常常温たとえばt℃の補給水をM kg/minの流量で供給する。水置換塔上部から放出される処理済ガス(ガス温度t)は、RをNMPなどの揮発性化学物質の回収率(重量分率)として、
放出量 V Nm/min
計算含水量 V・〔(273+15)/273〕・Xa
〔M−VCnR(1/Xn−1)〕 kg/min
計算含水率 Xac={〔(273+15)/273〕・Xa+
〔M−VCnR(1/Xn−1)〕/V}・
〔273/(273+t )〕 kg/m
ガス温度tの時、ガス飽和含水率:Xs
制御条件としては、Xac≦Xsの時
本装置は正常に運転可能である。
一方、水置換塔下部からは水を含有するN−メチル−2−ピロリドン(液温t)が回収される。
【0016】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれにより何等限定されるものではない。実施例中の%は指示がないかぎり重量%である。
【0017】
実施例1
図1に示すリチウムイオン電池のN−メチル−2−ピロリドン(NMP)溶剤を除去するための乾燥工程における取り込み空気は、
外気温度 t=15℃
流量 V=4 Nm/min
含水率 Xa=0.0128 kg/m(飽和状態と仮定する)
水分量 V・〔(273+15)/273〕・Xa=0.054 kg/minであった。リチウムイオン電池製造工場におけるN−メチル−2−ピロリドン(NMP)溶剤を除去するための乾燥工程から排出される排ガスは
排ガス温度 t=120℃
NMP含有量 Cn=0.0031 kg/
(700ppm,vol./vol.)
NMP流量 VCn=0.0124 kg/min
排ガスの流量 V=4 Nm/min
水分量 V・〔(273+15)/273〕・Xa=0.054kg/minの条件で段塔(水置換塔)の下部から吹き込まれる。水置換塔内に多段に設けられたバルブキャップトレイの最上段から水温t=20℃の補給水をM=0.1786 kg/minの流量で供給する。水置換塔上部から放出される処理済ガス(ガス温度t=42℃)は
放出量 V=4 Nm/min
計算含水量 V〔(273+15)/273〕・Xa
〔M−VCnR(1/Xn−1)〕=0.2208 kg/min
計算含水率 Xac={〔(273+15)/273〕・Xa+
〔M−VCnR(1/Xn−1)〕/V}・
〔273/(273+t )〕=0.0478 kg/m
ガス温度t=42℃の時、ガス飽和含水率:Xs=0.0565 kg/m
従って、
Xac=0.0478 kg/m≦Xs=0.0565 kg/m
NMP含有量 Cn(1−R)=0.00015 kg/
本装置は正常に運転可能である。
一方、水置換塔下部からは下記条件で水を含有するN−メチル−2−ピロリドン(液温t=80℃)が回収できた。
=80℃
収集液中の水 VCnR(1/Xn−1)=0.0118 kg/min
収集液中のNMP VCnR=0.0118 kg/min
NMPの回収率 R=0.95(重量分率)
NMP濃度 Xn=0.50(重量分率)
なお、水置換塔物質収支は図2に示すとおりであった。
【0018】
【発明の効果】
(1)本発明により、著しい工程の簡略化と省エネルギー化が達成できた。
(2)従来法においては、回収すべき溶剤成分などを上部から水を供給して、その水に溶剤を溶解させて下に流し落とすという手段が採用されている。この場合、系の温度が高いと水に溶けた溶剤が再び揮発してしまうから、洗浄塔に供給される水はあらかじめ室温程度まで冷却しておく必要がある。したがって冷却のためのエネルギーが必要である。一方、本発明では排ガスの熱を有効利用するものであるから、濃縮装置に供給される排ガスは加熱や冷却をすることなく、そのまま供給できるので、熱効率が極めて高い。
(3)本発明によれば、回収に使用する水は、ほんのわずかの補給水ですむが、従来技術ではいわゆる洗浄水を用いることになるので、本発明においては従来法に較べて水の使用量は約千分の1程度に少なくすることができる。
【図面の簡単な説明】
【図1】実施例1に用いた本発明の回収方法を示すフローシートである。
【図2】実施例1の熱収支分析図および物質収支を示すフローシートである。
【図3】従来の吸着剤を用いた回収方法を示すフローシートである。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method for concentrating and recovering hydrophilic and volatile chemical substances having a boiling point higher than that of water contained in exhaust gas and not azeotropically with water using the difference in boiling point with water and purifying the exhaust gas. And device .
[0002]
[Prior art]
Conventionally, in order to purify exhaust gas containing a water-soluble solvent having a boiling point higher than that of water, the exhaust gas containing a water-soluble solvent is blown from the lower part of the absorption tower, and a large amount of water is allowed to flow from the upper part of the absorption tower. Was washing. In such a cleaning method, a large amount of water is required for cleaning, and since the concentration of the solvent contained in the waste water is extremely low, the solvent recovery is costly, so that the solvent recovery is practically impossible. Moreover, there is a problem that wastewater treatment is required.
[0003]
As another prior art, while rotating the horizontally arranged drum filled with an adsorbent such as zeolite, the exhaust gas cooled to about room temperature is passed through, and a part of the passing gas is released into the atmosphere as it is. Part of the sample is heated (to expel the component adsorbed on the adsorbent) and then passed again through a horizontally arranged drum filled with adsorbent such as zeolite, and the solvent adsorbed on the adsorbent is desorbed. The process gas containing a high concentration of was cooled again to recover the solvent. This method is also very inefficient in energy efficiency because it requires an operation of cooling the exhaust gas once, heating it after the adsorption treatment, and cooling it again for solvent recovery.
[0004]
For example, a conventional adsorption method has been used to remove N-methyl-2-pyrrolidone (NMP) contained in exhaust gas discharged from the drying process of the lithium electrode. In view of the fact that the adsorption efficiency of -2-pyrrolidone is significantly reduced, a step of cooling the high-temperature exhaust gas discharged from the drying step is necessary, and after adsorbing N-methyl-2-pyrrolidone on the adsorbent In order to purge N-methyl-2-pyrrolidone from the adsorbent, this time, an operation of heating in the opposite direction was necessary. Such prior art processes are shown in Figure 3.
According to the conventional method, the cooling step, the adsorption step, it must be a three steps of the desorption step, and after cooling the exhaust gas with a considerable temperature, the problem of involving a large energy loss for heating again had It was.
[0005]
[Problems to be solved by the invention]
The first object of the present invention is to recover efficiently by substituting water vapor with a hydrophilic or volatile chemical substance that has a boiling point higher than that of water contained in the exhaust gas and does not azeotrope with water , for example, a water-soluble solvent. A further object is to provide a method and apparatus for purifying exhaust gas.
The second object of the present invention is to evaporate the makeup water introduced from the outside by using the calorific value of the high temperature exhaust gas discharged from 100 ° C. to 120 ° C. from the lithium ion battery electrode manufacturing process or the like. The water-soluble volatile chemicals that have a higher boiling point than the water contained in the exhaust gas are condensed, that is, the components in the exhaust gas are replaced with water for efficient recovery, and the absorption effect of the low-temperature makeup water is improved. It is the point which provides the method and apparatus which cleans waste gas by adding.
[0006]
In the first aspect of the present invention, a tray having a structure in which gas cannot escape to the upper part unless passing through water existing on the tray is provided in a multistage manner, or from a lower portion of a packed tower packed with a hydrophilic packing. In addition, an exhaust gas containing a substance having a boiling point higher than that of water is introduced, while water is supplied from the upper part of the tower, and a substance having a higher boiling point than that of water is concentrated in the lower part of the tower due to a gas-liquid equilibrium relationship between the exhaust gas and water, "in a boiling point higher than that of water, forming an azeotropic mixture with water and not hydrophilic, volatile chemicals" in the exhaust gas in the upper portion of the column, characterized in that shifting to more water the substances in the exhaust gas remaining method for concentrating met Thus, the amount of water supplied from the top of the tower is controlled based on the concentration information at the bottom of the tower, and the concentration of hydrophilic and volatile chemical substances having a boiling point higher than that of water recovered from the bottom of the tower and not azeotropic with water is 20 to Exhaust that is controlled to 100% by weight In a boiling point higher than that of water in the scan, forming an azeotropic mixture with water and not hydrophilic, to a method of concentrating the volatile chemicals.
In the second aspect of the present invention, hydrophilic and volatile chemical substances having a boiling point higher than that of water and not azeotropic with water are NMP (N-methylpyrrolidone), DMF (N, N-dimethylformamide), DMAC (N, N-dimethylacetamide), DMSO (dimethyl sulfoxide), EG (ethylene glycol), DEG (diethylene glycol), TEG (triethylene glycol), PGME (propylene glycol monoethyl ether), PG (propylene glycol), 1,4-BD (1,4-butanediol), MEA (monoethanolamine) and DGME at a boiling point higher than that of water in the exhaust gas according to claim 1, wherein the (diethylene glycol monomethyl ether) solvents, selected from the group consisting of water and co The present invention relates to a method for concentrating non-boiling hydrophilic and volatile chemical substances.
The third aspect of the present invention is
(1) A multi-stage tray tower or a packed tower packed with a hydrophilic packing, in which the gas cannot escape upward unless it passes through the water present on the tray,
(2) A water supply means provided in the stage tower above the multi-stage tray or above the packed bed or a water supply means provided in the packed tower above
(3) A processing gas discharge port provided at the top of the plate tower or the top of the packed bed,
(4) Liquid discharge port provided at the lower part of the column tower or the lower part of the packed bed,
(5) A liquid reservoir containing hydrophilic and volatile chemicals that has a higher boiling point than water connected through a pipe from the liquid discharge outlet and does not azeotrope with water.
(6) Hydrophilicity that has a higher boiling point than water provided in the stage column or packed column and does not azeotrope with water.
Measuring means for detecting the concentration of volatile chemicals in the system,
(7) The amount of water supplied from the water supply means is determined by the information from the measurement means as the volatile chemical.
Means for controlling the quality concentration to be 20-100% by weight ;
The present invention relates to a concentrating device for “hydrophilic and volatile chemical substances having a boiling point higher than water and not azeotropic with water” in exhaust gas.
[0007]
In the present invention, the amount of heat of exhaust gas, which usually has a considerably high temperature (for example, 80 to 120 ° C.), is effectively used , and the exhaust gas is passed through the stage column or packed column in one step. Is an extremely efficient method and apparatus for simultaneously recovering substances having a boiling point higher than that of water and treating exhaust gas.
The present invention, in particular, from the lower part of a stage column or a packed column packed with a hydrophilic packing, in which a tray having a structure in which the gas cannot escape to the upper part unless passing through the water present on the tray, High temperature exhaust gas at 100 to 120 ° C. containing N-methylpyrrolidone discharged from the lithium ion battery electrode manufacturing process is introduced, while water is supplied from the upper part of the tower and supplied using the calorific value of the exhaust gas at the lower part of the tower. On the other hand, water having a boiling point higher than that of water contained in the exhaust gas and water-soluble N-methylpyrrolidone is condensed and dropped to the lower part of the tower. Furthermore, it is very suitable as a method and apparatus for purifying exhaust gas from a lithium ion battery electrode manufacturing factory and recovering N-methylpyrrolidone by transferring it to water.
[0008]
The amount of water to be replenished is the amount of water (B) that is contained in the treated gas released from the upper part of the column tower after exhaust gas treatment and the condensate of volatile chemicals having a boiling point higher than that of water. At the same time, it may be an amount (A) that compensates for the amount of water (C) coming out from the bottom of the tower. In other words A ≒ B + C
Therefore, the amount of water used is much less than that of the conventional exhaust gas treatment method by water washing, and even if only this point is seen, it has achieved resource saving and substantially discharged wastewater that requires wastewater treatment. It is also a great merit that it does not occur.
[0009]
The temperature at the top of the column is higher than the outside air temperature. Since the higher the temperature, the higher the saturated moisture content, the moisture in the gas in the column tower is always below the saturation point, so even if make-up water is added, the conditions to satisfy Xac ≦ Xs can be created. Can do. Xac is the calculated moisture content, and Xs is the gas saturated moisture content. The temperature of the make-up water is preferably low in terms of absorption efficiency, but if it is too low, not only the amount of water flowing down in the tower will be insufficient, but also energy for cooling will be required. Since the outside air is not normally saturated and exists at a moisture content that does not reach saturation represented by humidity, the amount of makeup water is larger than that in the saturated state.
[0010]
Examples of the substance having a boiling point higher than that of the water of the present invention include volatile chemical substances.
[0011]
And a high boiling point of the volatile chemical substances from the water, and more particularly to a high water-soluble solvent having a boiling point than water representative.
[0012]
Examples of such solvents include NMP (N-methylpyrrolidone, BP: 197 ° C), DMF (N, N-dimethylformamide, BP: 153 ° C), DMAC (N, N-dimethylacetamide, BP: 165 ° C). , DMSO (dimethyl sulfoxide, BP: 189 ° C.), EG (ethylene glycol, BP: 197 ° C.), DEG (diethylene glycol, BP: 245 ° C.), TEG (triethylene glycol, BP: 278 ° C.), PGME (propylene glycol mono Ethyl ether), PG (propylene glycol, BP: 188 ° C), 1,4-BD (1,4-butanediol, BP: 235 ° C), MEA (monoethanolamine, BP: 170.5 ° C) and DGME ( Diethylene glycol monomethyl ether) and other non-azeotropic properties It is preferred.
[0013]
There is a valve cap tray (bubble bell plate) that has been used since the oldest as a tray with a structure that allows gas to escape to the top if it does not pass through the water present in the tray. And a sieve tray (perforated plate). The valve cap tray is better from the viewpoint of stability, but the sheave tray is better from the viewpoint of cost.
[0014]
The hydrophilic packing in the packed tower packed with the hydrophilic packing may be in the form of regular packing or irregular packing, but considering the pressure loss, Is preferred. These fillers are hydrophilic and have a large surface area, such as porous materials made of a hydrophilic material, specifically porous ceramics and porous carbon.
[0015]
The present invention can be suitably used for treating exhaust gas discharged from a drying process for removing N-methyl-2-pyrrolidone (NMP) solvent, particularly in a lithium ion battery manufacturing plant. As shown in FIG. 1, in order to remove the N-methyl-2-pyrrolidone (NMP) solvent, normal air is taken from outside the factory, filtered, and then heated air is blown to the drying process by a blower. .
Normal intake air from outside the factory is outside temperature t
Flow rate V Nm 3 / min
Moisture content Xa kg / m 3
Water content V · [(273 + t) / 273] · Xa kg / min
It is. The exhaust gas discharged from the drying process for removing the N-methyl-2-pyrrolidone (NMP) solvent in the lithium ion battery manufacturing factory is exhaust gas temperature t 1 = 100 to 120 ° C.
NMP content Cn = 0.005-0.01 kg / N m 3
(113-2260 ppm, vol./vol.)
NMP flow rate VCn kg / min
Flow rate of exhaust gas V Nm 3 / min
Water content V · [(273 + t) / 273] · Xa kg / min
It is blown from the lower part of the stage tower (water displacement tower) under the conditions of From the uppermost stage such as valve cap trays and sheave trays provided in multiple stages in the water displacement tower, make-up water at normal temperature, for example, t 3 ° C is supplied at a flow rate of M kg / min. The treated gas (gas temperature t 2 ) released from the upper part of the water displacement tower is obtained by using R as the recovery rate (weight fraction) of volatile chemical substances such as NMP.
Release amount V Nm 3 / min
Calculated water content V · [(273 + 15) / 273] · Xa +
[M-VCnR (1 / Xn-1)] kg / min
Calculated moisture content Xac = {[(273 + 15) / 273] · Xa +
[M-VCnR (1 / Xn-1)] / V}.
[273 / (273 + t 2 )] kg / m 3
When the gas temperature t 2, gas saturated water content: Xs
As a control condition, when Xac ≦ Xs, the apparatus can be operated normally.
On the other hand, N-methyl-2-pyrrolidone (liquid temperature t 4 ) containing water is recovered from the lower part of the water displacement column.
[0016]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto. In the examples, percentages are by weight unless otherwise indicated.
[0017]
Example 1
The intake air in the drying process for removing the N-methyl-2-pyrrolidone (NMP) solvent of the lithium ion battery shown in FIG.
Outside air temperature t = 15 ℃
Flow rate V = 4 Nm 3 / min
Moisture content Xa = 0.0128 kg / m 3 (assuming saturation)
The water content was V · [(273 + 15) / 273] · Xa = 0.054 kg / min. The exhaust gas discharged from the drying process for removing the N-methyl-2-pyrrolidone (NMP) solvent in the lithium ion battery manufacturing plant is exhaust gas temperature t 1 = 120 ° C.
NMP content Cn = 0.0031 kg / N m 3
(700 ppm, vol./vol.)
NMP flow rate VCn = 0.124 kg / min
Flow rate of exhaust gas V = 4 Nm 3 / min
Moisture amount V · [(273 + 15) / 273] · Xa = 0.054 kg / min. Make-up water with a water temperature t 3 = 20 ° C. is supplied at a flow rate of M = 0.1786 kg / min from the uppermost stage of the valve cap tray provided in multiple stages in the water displacement tower. The treated gas released from the upper part of the water displacement tower (gas temperature t 2 = 42 ° C.) is released V = 4 Nm 3 / min
Calculated water content V [(273 + 15) / 273] · Xa +
[M-VCnR (1 / Xn-1)] = 0.2208 kg / min
Calculated moisture content Xac = {[(273 + 15) / 273] · Xa +
[M-VCnR (1 / Xn-1)] / V}.
[273 / (273 + t 2 )] = 0.0478 kg / m 3
When gas temperature t 2 = 42 ° C., gas saturated moisture content: Xs = 0.0565 kg / m 3
Therefore,
Xac = 0.0478 kg / m 3 ≦ Xs = 0.0565 kg / m 3
NMP content Cn (1-R) = 0.00015 kg / N m 3
This device can be operated normally.
On the other hand, N-methyl-2-pyrrolidone (liquid temperature t 4 = 80 ° C.) containing water was recovered from the lower part of the water displacement column under the following conditions.
t 4 = 80 ° C
Water in the collected liquid VCnR (1 / Xn-1) = 0.118 kg / min
NMP in the collected liquid VCnR = 0.118 kg / min
NMP recovery rate R = 0.95 (weight fraction)
NMP concentration Xn = 0.50 (weight fraction)
The water displacement column material balance was as shown in FIG.
[0018]
【The invention's effect】
(1) According to the present invention, remarkable simplification of the process and energy saving can be achieved.
(2) In the conventional method, a means is adopted in which water is supplied from the top of the solvent component to be recovered, etc., and the solvent is dissolved in the water and poured down. In this case, if the temperature of the system is high, the solvent dissolved in the water volatilizes again, so that the water supplied to the washing tower needs to be cooled to about room temperature in advance. Therefore, energy for cooling is required. On the other hand, in the present invention, the heat of the exhaust gas is used effectively, so that the exhaust gas supplied to the concentrating device can be supplied as it is without heating or cooling, so that the thermal efficiency is extremely high.
(3) According to the present invention, only a small amount of replenishing water is required for recovery, but so-called washing water is used in the prior art, so in the present invention, water is used compared to the conventional method. The amount can be reduced to about a thousandth.
[Brief description of the drawings]
1 is a flow sheet showing the recovery method of the present invention used in Example 1. FIG.
FIG. 2 is a flow sheet showing a heat balance analysis diagram and a material balance of Example 1.
FIG. 3 is a flow sheet showing a recovery method using a conventional adsorbent.

Claims (3)

トレイ上に存在する水の中を通らなければガスが上部に抜けられない構造のトレイを多段に設けてなる段塔または親水性充填物を充填した充填塔の下部から、水より高沸点の物質を含む排ガスを導入し、一方、塔上部からは水を供給し、塔下部では排ガスと水との気液平衡関係により前記水より高沸点の物質を濃縮するとともに、塔上部では残存する排ガス中の前記物質をさらに水中に移行させることを特徴とする排ガス中の「水より高沸点で、水と共沸しない親水性、揮発性化学物質」を濃縮する方法であって、塔上部から供給する水の量は、塔下部の濃度情報に基づき制御し、塔下部から回収する水より高沸点で、水と共沸しない親水性、揮発性化学物質の濃度は20〜100重量%になるように制御するものである排ガス中の水より高沸点で、水と共沸しない親水性、揮発性化学物質を濃縮する方法。Substances with a boiling point higher than water from the bottom of a packed column or a packed column filled with a hydrophilic packing, in which multiple trays with a structure in which gas cannot escape through the water present on the tray are not allowed to escape. On the other hand, water is supplied from the upper part of the tower, and substances having a higher boiling point than the water are concentrated in the lower part of the tower due to the vapor-liquid equilibrium relationship between the exhaust gas and water, and in the remaining exhaust gas at the upper part of the tower The above-mentioned substance is further transferred to water, which is a method for concentrating “hydrophilic and volatile chemical substances having a higher boiling point than water and not azeotropic with water” in exhaust gas , which is supplied from the upper part of the tower The amount of water is controlled based on the concentration information at the bottom of the tower so that the concentration of hydrophilic and volatile chemicals that have a higher boiling point than water recovered from the bottom of the tower and does not azeotrope with water is 20 to 100% by weight. Higher than the water in the exhaust gas being controlled In point, the method of concentrating water azeotroped not hydrophilic, volatile chemicals. 前記水より高沸点で、水と共沸しない親水性、揮発性化学物質が、NMP(N−メチルピロリドン)、DMF(N,N−ジメチルホルムアミド)、DMAC(N,N−ジメチルアセトアミド)、DMSO(ジメチルスルホキシド)、EG(エチレングリコール)、DEG(ジエチレングリコール)、TEG(トリエチレングリコール)、PGME(プロピレングリコールモノエチルエーテル)、PG(プロピレングリコール)、1,4−BD(1,4−ブタンジオール)、MEA(モノエタノールアミン)およびDGME(ジエチレングリコールモノメチルエーテル)よりなる群から選ばれた溶剤類である請求項記載の排ガス中の水より高沸点で、水と共沸しない親水性、揮発性化学物質を濃縮する方法。Hydrophilic and volatile chemical substances having a boiling point higher than that of water and not azeotropic with water are NMP (N-methylpyrrolidone), DMF (N, N-dimethylformamide), DMAC (N, N-dimethylacetamide), DMSO. (Dimethyl sulfoxide), EG (ethylene glycol), DEG (diethylene glycol), TEG (triethylene glycol), PGME (propylene glycol monoethyl ether), PG (propylene glycol), 1,4-BD (1,4-butanediol) ), MEA (monoethanolamine) and DGME (boiling point higher than that of water in the exhaust gas according to claim 1, wherein the solvents, selected from the group consisting of diethylene glycol monomethyl ether), water and azeotroped not hydrophilic, volatile A method of concentrating chemical substances. (1) トレイ上に存在する水の中を通らなければガスが上部に抜けられない構造の
トレイを多段に設けてなる段塔または親水性充填物を充填した充填塔、
(2) 前記多段トレイの上方であって前記段塔内に設けられた給水手段または充填層
の上方であって前記充填塔内に設けられた給水手段、
(3) 段塔の上部または充填層の上部に設けられた処理ガス放出口、
(4) 段塔の下部または充填層の下部に設けられた液状物排出口、
(5) 液状物排出口からパイプを通して連結された水より高沸点で、水と共沸しない
親水性、揮発性化学物質を含む液状物溜り、
(6) 段塔内または充填塔内に設けられた水より高沸点で、水と共沸しない親水性、
揮発性化学物質の系中濃度を検知するための測定手段、
(7) 前記測定手段からの情報により前記給水手段からの給水量を前記揮発性化学物
質の濃度が20〜100重量%になるように制御する手段、
よりなることを特徴とする排ガス中の「水より高沸点で、水と共沸しない親水性、揮発性化学物質」に対する濃縮装置。
(1) A multi-stage tray tower or a packed tower packed with a hydrophilic packing, in which the gas cannot escape upward unless it passes through the water present on the tray,
(2) A water supply means provided in the stage tower above the multi-stage tray or above the packed bed or a water supply means provided in the packed tower above
(3) Process gas discharge port provided at the upper part of the column tower or the upper part of the packed bed,
(4) Liquid discharge port provided at the lower part of the column tower or the lower part of the packed bed,
(5) A liquid reservoir containing hydrophilic and volatile chemicals that has a higher boiling point than water connected through a pipe from the liquid discharge outlet and does not azeotrope with water.
(6) Hydrophilicity that has a higher boiling point than water provided in the stage column or packed column and does not azeotrope with water.
Measuring means for detecting the concentration of volatile chemicals in the system,
(7) The amount of water supplied from the water supply means is determined by the information from the measurement means as the volatile chemical.
Means for controlling the quality concentration to be 20-100% by weight ;
A concentrating device for "hydrophilic and volatile chemical substances having a boiling point higher than water and not azeotropic with water" in exhaust gas, characterized by comprising:
JP2003020725A 2003-01-29 2003-01-29 Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas Expired - Lifetime JP4030439B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003020725A JP4030439B2 (en) 2003-01-29 2003-01-29 Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas
TW092114542A TWI255732B (en) 2003-01-29 2003-05-29 Method and device for condensing materials with a boiling point higher than that of water from an exhaust
CNB031483461A CN100563788C (en) 2003-01-29 2003-06-30 Concentrate the method and apparatus of material higher in the exhaust than water boiling point
KR1020030045180A KR100981073B1 (en) 2003-01-29 2003-07-04 Method and apparatus for concentrating a substance having a higher boiling point than water in an exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020725A JP4030439B2 (en) 2003-01-29 2003-01-29 Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas

Publications (2)

Publication Number Publication Date
JP2004230265A JP2004230265A (en) 2004-08-19
JP4030439B2 true JP4030439B2 (en) 2008-01-09

Family

ID=32950276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020725A Expired - Lifetime JP4030439B2 (en) 2003-01-29 2003-01-29 Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas

Country Status (4)

Country Link
JP (1) JP4030439B2 (en)
KR (1) KR100981073B1 (en)
CN (1) CN100563788C (en)
TW (1) TWI255732B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593264B2 (en) * 2004-01-30 2010-12-08 三菱化学エンジニアリング株式会社 N-methyl-2-pyrrolidone recovery device and recovery method thereof
JP4778403B2 (en) * 2006-11-08 2011-09-21 日本リファイン株式会社 A method and apparatus for purifying exhaust gas by collecting and concentrating VOC from exhaust gas containing VOC.
CN101791509B (en) * 2010-03-31 2011-12-28 苏州巨联科技有限公司 Ternary cycle DMF waste gas recovery method and device
JP6180704B2 (en) 2011-12-12 2017-08-16 日本リファイン株式会社 Gas-liquid contact device
JP6665063B2 (en) 2015-11-24 2020-03-13 株式会社西部技研 Drying equipment
CN107715651A (en) * 2017-10-17 2018-02-23 华南理工大学 A kind of efficient low damage solvent for being used to absorb toluene and flow

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2134890Y (en) * 1992-07-31 1993-06-02 张家港市化肥厂 Ring-edge sealed bubble-cap tower
JPH11253733A (en) * 1997-12-25 1999-09-21 Chiyoda Corp Method for two stage wet detoxification treatment of incinerator gas
JP4183331B2 (en) * 1999-03-05 2008-11-19 日本リファイン株式会社 Shelf type gas-liquid contact device
JP2003024736A (en) * 2001-07-11 2003-01-28 Fuji Photo Film Co Ltd Gas-liquid contact apparatus and freezing, concentration, and separation method

Also Published As

Publication number Publication date
JP2004230265A (en) 2004-08-19
CN100563788C (en) 2009-12-02
TW200413077A (en) 2004-08-01
TWI255732B (en) 2006-06-01
KR20040069939A (en) 2004-08-06
KR100981073B1 (en) 2010-09-08
CN1517144A (en) 2004-08-04

Similar Documents

Publication Publication Date Title
JP3841479B2 (en) Organic solvent recovery system and organic solvent recovery method
JP6543481B2 (en) Steam supply apparatus, steam drying apparatus, steam supply method and steam drying method
JPS6240285B2 (en)
JP4703889B2 (en) Method for circulating concentration treatment of dry type dehumidifier regeneration gas
WO2012120948A1 (en) Method for removing organic solvent, and removal device
JP5248767B2 (en) Concentrator for volatile organic compounds
JP4030439B2 (en) Method and apparatus for concentrating substances having higher boiling point than water in exhaust gas
JP2005238046A (en) Gas adsorption/desorption apparatus
KR101723507B1 (en) System for separating chemical material from exhaust gas
JP6318580B2 (en) Organic solvent recovery system
JP4548891B2 (en) Organic solvent recovery method
KR100375079B1 (en) Method for recovery of volatile organic compounds by adsorption-condensation and apparatus therefor
JP2009273975A (en) System for treatment of gas containing organic solvent
JP2005246218A (en) Concentration method for substance with higher boiling point than that of water in exhaust gas and apparatus therefor
JPH1157372A (en) Method of recovering hydrocarbon vapor using cooling condensation
JPH02307527A (en) Solvent adsorbing material and solvent recovery apparatus
JP2011092871A (en) Organic solvent recovery system
JP2001293329A (en) Device and method for recovering organic solvent
JP3183381B2 (en) Method for recovering organic solvent from small air volume gas containing high concentration organic solvent
JPH11276840A (en) Method and device for recovering organic solvent
JP7434891B2 (en) Organic solvent recovery system
JP4736268B2 (en) Gas processing apparatus and gas processing method
JP2008073590A (en) Solvent-recovery system and solvent recovery method
JP2926932B2 (en) Exhaust gas treatment method
JP2009262121A (en) System for treating organic solvent-containing gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4030439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term