JP4029882B2 - 欠陥検査方法および欠陥検査システム - Google Patents

欠陥検査方法および欠陥検査システム Download PDF

Info

Publication number
JP4029882B2
JP4029882B2 JP2005058321A JP2005058321A JP4029882B2 JP 4029882 B2 JP4029882 B2 JP 4029882B2 JP 2005058321 A JP2005058321 A JP 2005058321A JP 2005058321 A JP2005058321 A JP 2005058321A JP 4029882 B2 JP4029882 B2 JP 4029882B2
Authority
JP
Japan
Prior art keywords
defect
inspection
observation
position coordinates
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005058321A
Other languages
English (en)
Other versions
JP2005195607A (ja
Inventor
隆典 二宮
静志 磯貝
繁 松井
利栄 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005058321A priority Critical patent/JP4029882B2/ja
Publication of JP2005195607A publication Critical patent/JP2005195607A/ja
Application granted granted Critical
Publication of JP4029882B2 publication Critical patent/JP4029882B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、半導体ウエーハや半導体デバイスの製造に用いられるマスク等の基板に存在する欠陥の検査に係る欠陥検査方法および欠陥検査システムに関する。
半導体ウエーハやマスク等の基板に存在する欠陥は検査装置等で検出され、その欠陥の詳細を観察したり、あるいは、その観察画像を収集したり、欠陥を分析するには観察装置が用いられる。このような欠陥検査システムにおいては、検査装置で検出された欠陥が基板のどこにあるかを観察装置で迅速に位置決めできることが求められている。
従来、基板の欠陥を観察する方法としては、予め基板全体あるいはその一部分を検査し、欠陥の有無を確認し、発見された欠陥の位置を基板上の座標として記憶し、次にこの記憶された座標を観察装置に通信手段あるいは記憶媒体を介して入力し、この座標をもとに観察装置の観察視野の中に欠陥が入るように位置合わせして観察するものが知られている。
この場合、検査する装置と観察する装置とが同一の基板保持機構および基板移動機構を兼用するものであって、検査から観察に移行する際、基板を基板保持機構に保持したままである場合には、観察装置に対する位置合わせは単に指定された位置座標へ観察視野を移動するだけで十分であり、観察視野の中に欠陥が入るようにすることは容易である。
しかしながら、高いスループットを要求される検査装置と高い観察解像度を要求される観察装置とは別々の装置であることが多く、観察装置における上記のような容易な位置合わせは困難である。このため、何らかの手段を用いて、検査装置と観察装置に対する基板の座標系の共有化が必要になる。例えば、基板上の予め定められた複数の点の位置を検査装置と観察装置とで検知し、これをもとにそれぞれの装置固有の座標系を補正し、基板上の座標系を共有にする処理が行われている。
その具体的な方法として、例えば、位置決めの基準となる、基板の外周に設けられた複数点を、機械的に基板保持機構により拘束する方法や、基板上に予め存在する予め定められたパターンの画像を検出し、このパターンの位置をもとに座標系を補正する方法などが知られている。
このような、検査装置や観察装置を含む複数の装置間で、共通の座標系を用いる方法の一例が、特開平3−156947号公報(特許文献1)に記載されている。
上述した従来技術の機械的に基板を拘束する方法では、機械的な位置再現性、すなわち寸法精度に問題があり、例えば、マイクロメートルのレベルでの高精度な位置合わせは困難である。
また、上述した検出されたパターン位置をもとに座標系を補正する方法では、例えばパターン形成前の基板には適用できないことはもちろんであるが、さらに、例えば、検査装置が光学式であり観察装置が電子線式である場合など、パターンの検出方法が異なって検出精度が異なる場合には、同一のパターンを共通に検出できない場合があり、この方法が適用できない。
例えば、透明酸化膜で覆われているような場合で、酸化膜下のパターンを光学式検査装置の位置合わせに用いるような場合、これを電子線式の観察装置で検知することは困難である。
検査装置と観察装置の検出方法が異なる場合の異物等の検出方法の一例が、特開平11−167893号公報(特許文献2)に記載されている。これは異物の基板上の座標値と、ステージ上の座標値との両方を用いて、検査装置と観察装置の装置間の座標の共有化をはかり、検査装置で検出された異物を観察装置で見つけ易くしたものである。さらに、検出された異物を大きさ等の特徴によって自動的に選別して、座標の共有化のための補正式の信頼度を高めるものである。
しかしながら、検査装置と観察装置の検出方式が同様のものを用いている場合であっても、例えば、検査した基板に対していくつかの処理工程を施した後、検査時に検出されていた欠陥がどのような形態に変化したかを観察しようとした場合には、パターンが処理工程の成膜下になって、同一のパターンを検出できない。
特開平3−156947号公報。 特開平11−167893号公報。
このように、従来、パターン形成前の基板を検査し、観察する場合や、検査装置と観察装置とで同一のパターンを検知できないような場合において、検査装置で検出された欠陥を高い精度で観察装置の観察視野に入れることは困難であった。そして、この対策として、例えば、観察装置の観察倍率を低倍にして欠陥を探したり、高い倍率のままでオペレータが試行錯誤で欠陥を探索するなどがなされていたが、このような作業には多くの手間と時間を要するという問題があった。
また、従来、検査方法と観察方法とで、使用する光学条件が異なるような場合において、検査装置で検出された欠陥候補が、必ずしも観察装置では容易に観察できず、観察条件を変えたり、欠陥があるあたりを探索するなどして、無駄な時間を費やすという問題があった。
本発明は、検査装置で検出された欠陥を観察装置で観察や観察画像の収集や欠陥分析を行う場合、検出された欠陥を高い精度で位置合わせし、一度により高い倍率での画像検出を可能にすることによって、欠陥観察作業,欠陥画像収集作業,欠陥分析作業の高効率化,短時間化を図ることを目的とする。
また、本発明は、検査方法と観察方法が異なる場合において、観察方法で検出不可能な欠陥候補を検査結果より排除して、短時間に効率よい欠陥の観察を可能にすることを目的とするものである。
本発明の実施態様によれば、検査装置によって抽出された複数の欠陥の基板上の座標系における位置座標に加え、欠陥の属性、例えば寸法や種類,散乱光量,明るさの局所的な変化,輪郭形状などの情報を出力する。
つぎに、検査装置からの欠陥の位置座標と属性とに基づき、観察装置によって容易に検出可能と判定される欠陥を複数選択し、その位置座標をもとに観察装置で画像検出を行って欠陥を発見し、この画像内の欠陥の位置に基づき、観察装置側で定義される基板座標系での欠陥の位置座標を算出する。本来であれば、基板座標系は基板に固定されたものであるから、検査装置側で定義される基板座標系で表現された検査装置からの欠陥位置座標と、観察装置側で定義される基板座標系での欠陥の位置座標は、完全に一致するはずである。
しかしながら、前述したように、例えば、基板外周などの機械的な位置合わせ機構によって高精度が望めない概略位置合わせが行われているので、観察装置側で定義される基板座標系と検査装置で定義される基板座標系とは、この時点では異なっているのが通例である。
そこで、検査装置で選択された欠陥に対して、観察装置側で定義される基板座標系での欠陥位置座標と、検査装置から入力された検査装置側で定義される基板座標系での欠陥位置座標とに基づき、検査装置で定義される基板座標系から観察装置で定義される基板座標系への座標変換を導き出す。
この座標変換に基づき、検査装置からの欠陥位置座標を観察装置で定義される基板座標系に変換し、以降、欠陥の観察などは、この変換された位置座標に基づき行う。
また、この座標変換の情報を、検査装置と観察装置の組を単位としてデータベースに記憶,格納し、次の機会に観察する際には、まずこの座標変換の情報を用いて位置合わせを行い、上記した方法によって新たな座標変換が導き出された場合には、上記した座標変換の情報を更新する。
本発明では、実際に基板上に存在し、また、観察装置で共通かつ容易に検出可能な欠陥を選択して基板位置合わせの基準に用いるので、基板上に位置合わせ用のパターンがない場合や、あっても検査装置と観察装置で共通に使い得ない場合においても、観察装置で欠陥位置に高精度に位置合わせ可能になる。
また、本発明では、欠陥位置座標と属性に基づき観察装置によって容易に検出可能と判定される欠陥のみを観察することにより、効率的な欠陥観察が可能になる。
さらに、検査装置と観察装置の座標変換情報をデータベースに記憶して用い、また更新することにより、常により正確な位置決めによる欠陥観察が可能になる。
上述したように、本発明によれば、検査装置で検出された欠陥を観察装置で観察や観察画像の収集や欠陥分析を行う場合、検出された欠陥を高い精度で位置合わせすることによって、一度により高い倍率での画像検出を可能にし、欠陥観察作業,欠陥画像収集作業,欠陥分析作業の高効率化,短時間化を図ることができる。
また、本発明によれば、検査方法と観察方法が異なる場合において、観察方法では検出不可能な欠陥候補を検査結果より排除して、短時間に効率よく欠陥を観察する方法を提供することができる。
本発明の第一の実施例を図1から図7を用いて説明する。図1は、欠陥検査システムの構成を示す概念図である。
本実施例において、検査対象はエッチングによるパターン形成を行う前の半導体ウエーハであり、レーザ光の散乱光の検出を用いた光学式検査装置である検査装置1を用いて表面の欠陥を検査し、その欠陥の観察を、走査型電子顕微鏡である観察装置2で行うものである。本実施例では欠陥の例として異物を対象としているが、回路パターンのショートや欠損などのパターン欠陥も、同様の考え方で検査,観察が可能である。
図1に示した検査装置1の内部の主要部の構成を示す側面図を、図2に示す。また、図3は、検査対象である半導体ウエーハ3が検査装置1に設置された状態の一例を示す平面図、図4は、同じく検査対象である半導体ウエーハ3が検査装置1に設置された状態の一例を示す平面図である。
図2において、検査装置は、レーザ9よりレーザ光を斜め方向より照射し、その散乱光10を上方(あるいは斜方)より検出器11で検出する。ステージ12a,ステージ12bを移動させることで、半導体ウエーハ3の全面にわたって複数の異物を検出することができる。検出器11での検出光量を2値化器14で2値化し、所定閾値13を超えたものが異物とみなされ、欠陥として抽出される。
座標系xyでのこの欠陥の位置座標4を、ステージ制御器15からのステージ制御情報18に基づいて、異物欠陥判定器16から出力する。さらにその際、属性判定器17により、散乱光量を欠陥の属性5として合わせて出力する。
この場合、半導体ウエーハ3に固定された座標系xyは、図3に示すように、半導体ウエーハ3の切り欠き部であるノッチ6、あるいは、図4に示すように、直線部のオリエントフラット、すなわちオリフラ7を使って、ステージ12b上のウエーハホルダ等に設けられた位置決めピン8a,位置決めピン8b,位置決めピン8cなどで機械的に決定することができる。また、欠陥の属性5の具体例としては、寸法,種類,散乱光の量等がある。
つぎに、このようにして得られた欠陥の位置座標4および属性5を用いて、欠陥の検査に引き続いて行われる欠陥の観察時の欠陥の位置合わせを行う。図6および図7は、検査方法の手順を示すフローチャートである。
図6のステップ601において、図1において検査装置1で複数の欠陥の位置座標4と属性5が抽出あるいは決定され、一旦、エリアネットワーク,イントラネット,インターネットなどの通信手段102を介して、データベース103に格納される。データベース103に格納された欠陥の位置座標4と属性5は、必要なときに通信手段102を介して読み出される。なお、必ずしも通信手段102を介する必要はなく、磁気ディスクや光ディスク等の記憶媒体を用いて情報の授受を行ってもよい。
つぎに、ステップ602で、上記欠陥の中から、欠陥の属性5を利用して観察装置2で検出可能な欠陥を選択する。例えば、レーザ散乱光量と欠陥である異物の大きさとの間に一定の相関関係があることを利用して、これらの異物が観察装置2で検出可能な一定基準内の大きさ、例えば、1マイクロメートル以上3マイクロメートル以下に相当する散乱光量の異物を、図1に示す欠陥選択部100により選び出す。つぎに、ステップ603で、選び出された欠陥を観察装置2によって検出し、それらの位置座標104を算出する。つぎに、ステップ604で、座標対応決定部101により、観察装置2で検出された欠陥の位置座標104と検査装置1による欠陥の位置座標4とから、欠陥の観察における座標系の相関関係の情報401を算出する。
この相関関係の情報401は、ステップ605で、検査装置1と観察装置2のそれぞれの識別番号(または記号)の組とともに、通信手段102に送られ、データベース103に格納される。この相関関係の情報401は、基板等の試料の観察を実施する度に、上記と同様の工程を経て算出され、データベース103に格納される相関関係の情報401が更新される。
なお、相関関係の情報401を格納するデータベース103は、通信手段102を介さずに座標対応決定部101に直接接続されていても良い。また、上記した欠陥の観察において、既にデータベース103に座標系の相関関係の情報401が格納されている場合には、これを用いて、検査装置1からの欠陥の位置座標4を補正し、観察の際に用いても良い。
このようにして、容易に検出可能なものと想定される欠陥の属性5を用いて選び出しが行われるが、これは検査装置1で行っても良い。また、検査装置1から出力された欠陥の属性5を用いて、別の装置で行っても良い。さらには、欠陥の属性5を観察装置2に取り込み、観察装置2で行っても良い。
つぎに、データベース103に格納された相関関係の情報401を用いて、観察装置2で所望の欠陥を検出する手法を説明する。
図7において、ステップ701では、図6のステップ601でデータベース103に格納された検査装置1で検出された複数の欠陥のうち、観察装置2で検出可能な選択された欠陥の位置座標4と属性5とを、座標対応決定部101は通信手段102を介して受信する。つぎに、ステップ702で、座標対応決定部101は該欠陥の位置座標4とデータベース103に格納された相関関係の情報401とから変換された位置座標105を算出し、観察装置2へ送信する。観察装置2はステップ703で、上記欠陥の変換された位置座標105に基づいて、該欠陥を検出する。そして、ステップ704で、この検出された欠陥を指標として、観察装置2で詳細に観察したい所望の欠陥を検出し、観察する。
以上の欠陥選択部100と座標対応決定部101における処理は、本実施例では、ソフトウエアシステムで実施する形態としている。
図1中の観察装置2として走査型電子顕微鏡を用いた場合の例を、つぎに説明する。図5は、観察装置2である走査型電子顕微鏡の構成を一部横断面を用いて表した側面図である。
電子源20より発せられた電子線を偏向器21でxy方向に偏向し、収束レンズ22で収束させた電子線で、半導体ウエーハ3を走査したときに発せられる2次電子を、シンチレータ23と光電子増倍管24とからなる検出器で電気信号に変換する。この電気信号を同期器25によって電子線の偏向と同期させた表示器26に出力することによって、2次元電子線像を得る。2次元電子線像の倍率は、電子線の偏向幅を変化させることによって容易に変えることができる。
ステージ制御器28は、図1中の欠陥選択部100から送られた欠陥の位置座標4と、座標対応決定部101から送られた変換された位置座標105と、ステージ27a,ステージ27bの位置を制御するステージ制御情報19とを、欠陥位置決定部29へ送る。
欠陥位置決定部29は、同期器25からの電子線の位置の情報と、ステージ制御器28からの情報とから、欠陥の位置座標104を算出し、図1中の座標対応決定部101へ送る。
また、シンチレータ23と光電子増倍管24とからなる検出器で検出された電気信号を、AD変換器(図示せず)でデジタル変換し、イントラネットまたはインターネットなどの通信手段200を用いてデータベース201に、欠陥の位置座標などと関連づけて記憶させることによって、画像情報の保存と再利用が可能である。
ここで、データベース201は観察装置外に置かれ、通信手段200を用いて情報が伝達されるものを例示したが、観察装置2の内部に設けてもよい。また、データベース201を用いずに、メモリなどの記憶媒体に記憶させても良い。
観察装置2における半導体ウエーハ3の位置決めについては、検査装置1と同様に、図3ないし図4に示した位置決めピンなどの機械的な方法による位置決め、あるいは、これに加えて、位置決め用のマークを観察して検査対象物の座標系を決定する方法による位置決めが考えられる。本実施例においては、パターン形成前の半導体ウエーハを検査対象としているので、位置決め用のマークは形成されていず、したがって位置決めピンなどの機械的な方法による位置決めを用いている。
ここで決定された座標系は、検査対象に固有の座標系であって、本来、検査装置1によって決定される座標系と同一になるように算出される。しかしながら、観察装置2における位置決めの方法(この場合位置決めピンの位置など)は、必ずしも検査装置1と同一ではない場合が多いし、座標系を決定する際の誤差が、検査装置1と観察装置2の双方に存在するので、観察装置2が決定した座標系と、検査装置1における座標系とは完全には一致しない。従って、検査装置1の出力である欠陥の位置座標4をそのまま用いて、観察装置2である走査型電子顕微鏡のステージ27a,ステージ27bを移動させて観察視野を移動しその画像を検出しようとしても、観察視野の中心に欠陥が発見できない場合が多い。
そこで、図1に示した欠陥選択部100によって選択された欠陥に限定した欠陥画像の検出をまず行う。欠陥選択部100によって選択された欠陥は、上記したように、観察装置2における検出が容易であることを基準として選ばれた、例えば、1マイクロメートル以上の大きさの複数の欠陥であるので、確実に視野に入る程度の低い倍率、たとえば、
5000倍以下においても容易にその存在を確認することができる。また、選択される欠陥の大きさの上限を規定しているので、観察視野をはみ出すこともない。この場合、検出画像から欠陥位置を自動的に知る方法としては、単に検出画像の明るさが周辺に比べて明るいかあるいは暗いかによって、欠陥の位置を知ることができる。
以上のような方法をとっても選択された欠陥が観察装置2で検出されないような場合は、選択から除外する。または、データベース103に検査装置1と観察装置2の座標系の関係が予め格納されている場合は、これによって座標変換を行って、再度欠陥を検出しても良い。
このようにして、検査装置1によって検出された欠陥のうち、観察装置2でまず検出すべき欠陥として選択されたものについて、検査装置が決定した検査対象物の座標系xyにおける欠陥の位置座標4(x,y)と、観察装置が決定した検査対象物の座標系x′y′における欠陥の位置座標104(x′,y′)の対が得られる。このような対をN組作成し、これらN組の対をなす座標群(xi,yI)(x′i,y′i)(i=1,2,・・・,N)を用いて、検査装置1の座標系から観察装置2の座標系への変換式を導く。
例えば、検査装置1における座標系xyと観察装置2における座標系x′y′との間の変換式を数1とし、最小2乗近似法を用いるとすると、数2で定義されるe2 を、a11,a12,a21,a22,x0,y0でそれぞれ偏微分し、=0とおいて解くことによって、2組の3元1次方程式、数3,数4から、各係数a11,a12,a21,a22,x0,y0を求めることができる。
Figure 0004029882
Figure 0004029882
Figure 0004029882
Figure 0004029882
この場合、更に欠陥を絞り込み、検査対象物全面に一様に分布するように欠陥を選択して、観察装置2での検出を行うことによって、変換式の精度、および画像検出,計算時間の短縮が可能である。
さて、このようにして求めた変換式を用いて、図1に示すように、検査装置1より出力された全欠陥の位置座標4を観察装置2の座標系に変換し、この変換された位置座標105を用いて、以降この座標位置に図5に示したステージ27a,ステージ27bによって半導体ウエーハ3を位置合わせし、倍率を、例えば、2万倍以上に上げて画像検出する事によって、全検出欠陥を詳細に観察し、あるいはその詳細観察画像を記録することができる。
本実施例によれば、パターン形成前の半導体ウエーハであっても、異物や欠陥などを、短時間で詳細に観察することができる。
このような、欠陥検査方法または欠陥検査システムを用いて、半導体ウエーハの欠陥の観察をすることにより、半導体デバイスの製造プロセスにおける欠陥発生の原因を早期に発見することができ、歩留りの良好な半導体デバイスを得ることができる。
つぎに、本発明の第二の実施例を、図8ないし図9を用いて説明する。図8は、図1と同じく欠陥検査システムの構成を示す概念図、図9は、光学式検査装置の内部の主要部の構成を示す側面図である。
本実施例においても検査対象は半導体ウエーハであるが、エッチングによるパターンが形成された、あるいはレジストパターンなどが形成されたパターン付きウエーハである。
図8に示す欠陥検査システムは、明視野照明による画像検出および画像比較を用いた光学式検査装置301を用いて、半導体ウエーハに形成されたパターンのショート,欠損などの欠陥やパターンの表面の異物を検査し、その欠陥の観察を、観察装置2である走査型電子顕微鏡で行うものである。
図9において、光学式検査装置301によって半導体ウエーハ3が検査され、検出された欠陥の位置座標4が、検査対象基板である半導体ウエーハ3に固定された座標系xyに従った座標によって出力される。また、欠陥の位置座標4と共に検出された欠陥の属性5も合わせて出力される。この場合、半導体ウエーハ3に固定された座標系xyは、本発明の第一の実施例で述べた図3あるいは図4に示されるものと同様に、半導体ウエーハ3のノッチ6あるいは、オリフラ7を使って位置決めピンなどで機械的に決定された後、半導体ウエーハ3に予め定められた位置および形状で形成された位置決め用マークを観察して正確に決定される。
光学式検査装置301では、図9に示すように、照明光源302からの照明光を上方よりレンズ304aを用いて半導体ウエーハ3上に照射し、反射光をレンズ304bを介して上方の画像センサ303で検出する。ステージ312a,ステージ312bを動作させることによって、半導体ウエーハ3の全面にわたって画像を検出する。
パターン付きの半導体ウエーハ3には、パターンを露光するときの露光単位、あるいはその整数分の1を単位とした繰り返しパターンがある。この繰り返しパターンは、ダイ毎、あるいはダイ内でのメモリセル毎にある。検査では、これらの繰り返し間隔に対応する遅延量をメモリ305を用いて生成し、これを参照画像として検出された画像とを比較器306で比較し、その差が、2値化器314で一定閾値313以上と判定された場合を欠陥として検出する。そして、その座標系xyでの欠陥の位置座標4を、ステージ制御器
315からのステージの位置情報および画像上の欠陥の位置に対応付けて、欠陥判定器
316から出力する。さらに、属性判定器317により欠陥の属性5を合わせて出力する。
検出された欠陥について、その属性を出力する方法としては、例えば、欠陥の大きさをその属性の一つとして出力する方法がある。上記した光学式検査装置301では、画像検出の際、画素と呼ばれる検出単位の明るさの集合として画像検出を行うので、例えば、画像比較によって不一致として検出される欠陥も、画素を単位として表現される。したがって、画素の数によって面積を表現することができ、また、縦方向,横方向、あるいは長手方向の画素数によってその寸法、大きさを表現することができる。したがって、大きさを欠陥の属性として用いたとき、例えば0.7 マイクロメートル以上2マイクロメートル以下というように、ある一定範囲の寸法を基準とし、この範囲に含まれる欠陥の位置を観察装置で画像検出して見つける場合、明るさと数を画素単位で見るので、低い倍率であっても確実にその欠陥を発見することができる。
また、大きさ以外の他の属性としては、例えば、検出された欠陥部分の明るさの局所的な変化を用いることもできる。すなわち、例えば検出欠陥領域内の2×2画素の各部分における最大値と最小値との差について総和をとり、それを欠陥の大きさ(すなわち画素数)で割って正規化することによって、その欠陥のいわゆる「ざらざら度」を判定できる。また、他の属性としては、検出欠陥の輪郭の長さの2乗を面積で割ることによって、その大小から輪郭形状のいわゆる「ギザギザ度」を判定できる。これら「ざらざら度」,「ギザギザ度」が大きい欠陥は、検査対象物の表面に露出した欠陥であることが多いため、これら「ざらざら度」,「ギザギザ度」を利用すると、検査対象の内部の欠陥か表面に露出した欠陥かを判定することができる。
特に本実施例においては、観察装置2に走査型電子顕微鏡を用いているので、表面に露出している欠陥でなければ観察できない可能性が高く、これらの属性は有効である。この属性を用いて光学式検査装置301からの欠陥情報をふるいにかけ、走査型電子顕微鏡によって観察可能な欠陥のみを抽出して観察することにより、観察時間の短縮を図ることができる。
つぎに、図8において、このようにして得られた欠陥の位置座標4およびその属性5を用いて、欠陥の検査に引き続いて行われる欠陥の観察における欠陥の位置合わせを精度良く行う。この場合、欠陥の位置座標4とその属性5は、記憶媒体あるいはイントラネット又はインターネットなどの通信手段を用いて、欠陥選択部100,座標対応決定部101に送られる。もちろん、通信手段にデータベースを設けて、これを介したデータ授受を行っても良い。
まず、欠陥選択部100により、上記した一定基準内の大きさであり、かつ「ざらざら度」と「ギザギザ度」が一定基準を越えるものを、欠陥の観察において、容易に検出可能なものと想定して選び出す。これを観察装置2における欠陥の観察においてまず検出し、座標対応決定部101により、観察装置2で決定された欠陥の位置座標104と検査装置301による欠陥の位置座標4から、欠陥の観察における座標系の相関関係を決定する。
このようにして、容易に検出可能なものと想定される欠陥の属性を用いた選び出しができるが、これを第一の実施例と同様に、光学式検査装置301で行っても良いし、光学式検査装置301から出力された属性を用いて別の装置で行っても良い。さらには、属性を観察装置2に取り込み、観察装置2で行っても良い。本実施例では、図6に示す欠陥選択部100と座標対応決定部101に設けられたソフトウエアシステムで以上の処理を実行している。
本実施例において、観察装置2として用いる走査型電子顕微鏡は、図5にその一例を示したように、第一の実施例と同様の構成および動作のものである。
観察装置2においても、光学式検査装置301と同様に、半導体ウエーハの位置決めピンなどの機械的な方法による位置決め、あるいはこれに加えて位置決め用のマークなどを観察して、検査対象物の座標系を決定する。本実施例においては、パターン形成後の半導体ウエーハを検査対象としているので、位置決め用マークを半導体ウエーハに形成しておき、検査対象物の座標系を決定するのに用いることができる。
このとき、光学式検査装置301で用いたのと同一の位置決めマークを用いて座標系を決定できる場合は問題がない。しかし、このマークが酸化膜絶縁層などの下にあり、電子線での検出が困難な場合には、最上層にあって検出容易な他の位置決め用マークを用いることになる。従って、この場合には、第一の実施例と同様に座標系を決定する際の誤差が、光学式検査装置301と観察装置2の双方にわたって存在するので、観察装置2が決定した座標系と、光学式検査装置301における座標系とは完全には一致しない。このため、光学式検査装置301の出力である欠陥の位置座標4をそのまま用いて、観察装置2である走査型電子顕微鏡のステージ27a,ステージ27bを移動させて観察視野を移動し、その画像を検出しようとしても、観察視野の中心に欠陥が発見できない場合が多い。
そこで、前記した方法を用いて欠陥選択部100によって選択された欠陥に限定した欠陥画像の検出をまず行う。前記したように、選択された欠陥は、たとえば0.7 マイクロメートル以上の大きさの欠陥であり、観察装置2における画像検出容易性を基準として選ばれているので、確実に視野に入る程度の低い倍率、たとえば、1万倍以下においても容易にその存在を確認することができる。また、選択される欠陥の大きさの上限を規定しているので、観察視野をはみ出すこともない。
この場合、検出画像から欠陥位置を自動的に知る方法としては、光学式検査装置301と同様に、パターンの繰り返し性を用いて画像比較を行ったり、単に、検出画像の明るさが周辺に比べて明るいかあるいは暗いかによって、欠陥の位置を知る方法が適用できる。
以上のような方法をとっても選択された欠陥が観察装置で検出されないような場合は、選択から除外する。観察装置2における欠陥の位置座標104は、第一の実施例の場合と同様に算出される。
このようにして、光学式検査装置301によって検出された欠陥のうち、観察装置2でまず検出すべき欠陥として選択されたものについて、光学式検査装置301が決定した検査対象物の座標系xyにおける欠陥座標4(x,y)と、観察装置2が決定した検査対象物の座標系x′y′における欠陥座標104(x′,y′)の対が得られる。
これらN組の対をなす座標群(xi,yi)(x′i,y′i)(i=1,2,・・・,N)を用いた、光学式検査装置301の座標系xyから観察装置2の座標系x′y′への変換式の導き方は、第一の実施例と同様である。
さて、このようにして求めた変換式を用いて、光学式検査装置301より出力された全欠陥の位置座標4を観察装置2の座標系に変換し、この変換された位置座標105を用いて、以降この座標位置にステージ27a,ステージ27bによって半導体ウエーハ3を位置合わせし、倍率を例えば3万倍以上に上げて画像検出する事によって、全検出欠陥を詳細に観察し、あるいはその詳細観察画像を記録することができる。
本実施例によれば、パターン形成後の半導体ウエーハに対して、その欠陥や異物などを、短時間で詳細に観察することができる。
このような、欠陥検査方法または欠陥検査システムを用いて、半導体ウエーハの欠陥の観察をすることにより、半導体デバイスの製造プロセスにおける欠陥発生の原因を早期に発見することができ、歩留りの良好な半導体デバイスを得ることができる。
図10は、図2に示した検査装置1や図9に示した光学式検査装置301に接続されたモニタ、図5に示した観察装置2の表示器26に表示される画面表示の一例を示す画面図である。
画面801には、検査装置1で検出された複数の欠陥が表示され、カーソル802で指定された欠陥803の位置座標、属性が指定欠陥表示領域805に表示される。欠陥803に近接した欠陥804は欠陥803よりその大きさが小さく、観察装置2で検出することが困難であるが、欠陥803ならば検出することが可能な場合が多い。そこで、欠陥804に近接した欠陥803の属性、本例では寸法が大きいことを利用して、観察装置2ではこの欠陥803をまず検出する。欠陥803が検出できれば、今見つけたい欠陥804は欠陥803に近接しているので、検出が容易である。
つぎに、本発明による実施例のその他の変形例について示す。
検査装置1の例としては、半導体ウエーハなどを対象とし、その光学像を検出し、パターンの繰り返し性を利用して、繰り返しパターン同士を画像比較し、その不一致を欠陥として出力する、例えば特開昭59−192943号公報に示されるものなどの、欠陥の位置座標を出力する事ができるものであれば、いかなる公知の方法あるいは装置を用いても良い。もちろん、被検査対象としては、半導体ウエーハに限らず半導体用マスク,プリント板,セラミック基板など、パターンが形成されているもの、あるいはこれらパターン形成前のものなど、いかなるものでも良く、これらに対して多くの検査方法および装置が公知の技術として知られている。例えば、特開昭59−157505号公報,特開昭59−232344号公報,特開平2−71377号公報,特開平2−100393号公報,特開昭55−149829号公報,特開平4−216904号公報などに記載されたものがある。本発明では、検出された欠陥の位置座標が出力されるものであれば、これらいずれの検査装置であっても良い。
また、検出された欠陥について、前述した「大きさ」,「ざらざら度」,「ギザギザ度」のほか、観察装置の特性を加味して容易に観察されると想定される欠陥の属性を用いればよい。明るさの局所的な変化である「ざらざら度」、輪郭形状である「ギザギザ度」が一定規準を越えた欠陥は、前述したように検査対象物表面に露出した欠陥である可能性が高いので、検査を光学的に、そして観察を電子線やイオン線で行うような場合、共通に検出可能である可能性が高い。したがって、これらの欠陥のみを観察するようにすることにより、無駄な観察時間を排除することができる。
このほかの属性を検出する公知の例としては、特開平4−27850号公報に示されるような方法が知られている。
また、欠陥の検出に引き続いて行われる欠陥の観察方法としては、光学的画像検出を行うもの、前述した電子線で検出を行うもの、イオン線で検出を行うもの、その他放射線で検出を行うものなど、対象とする欠陥を観察するのに好適な公知の画像検出方法,装置のいずれを用いても良い。光学系の検出波長,電子線,イオン線の加速電圧など、検出条件も、観察に最適なものを選択可能である。
全欠陥の観察においては、順次観察する欠陥の座標の差を△X,△Yとした場合、各座標差△Xの△Yのうち大きい方を総和した量が最小になるように、観察の順序を決めることによって、最小時間での観察が可能になる。この最適解を求めることは容易ではないが、「計算幾何学」の手法を用いて、例えばペンプロッタのペン移動量を最小にする方法と同様の手法を用いて、その近似解を得ることができる。このような手法の例は、伊理正夫監修「計算幾何学と地理情報処理」1986年共立出版,110ページから121ページに記載されている。
本実施例においては、実際に基板上に存在し、また、観察装置で共通かつ容易に検出可能な欠陥を選択して基板位置合わせの基準に用いるので、基板上に位置合わせ用のパターンがない場合やあっても検査装置と観察装置で共通に使い得ない場合においても、観察装置で欠陥位置に高精度に位置合わせ可能になる。
これにより、上記したような場合において、検査装置で検出された欠陥を観察装置で観察や観察画像の収集や欠陥分析を行う場合、検出された欠陥を高い精度で位置合わせすることによって、一気により高い倍率での画像検出を可能にすることによって、欠陥観察作業,欠陥画像収集作業,欠陥分析作業の高効率化,短時間化を図ることができるという効果がある。
また、検査装置で検出された欠陥を観察装置で観察や観察画像の収集や欠陥分析を行う場合、欠陥の属性を用いてこれら装置で検出可能な欠陥のみを事前に抽出するので、同様に欠陥観察作業,欠陥画像収集作業,欠陥分析作業の高効率化,短時間化を図ることができるという効果がある。
この結果、パターン形成前の半導体ウエーハの異物や結晶欠陥の観察や分析,酸化膜上の欠陥や異物の観察や分析,複数工程を経たウエーハにおける欠陥の観察や分析などの作業を短時間に実現することが可能であり、また、これらの画像の収集の自動化が可能になる。
[付記]
[請求項3−1]
請求項3の記載において、前記指標欠陥は、前記複数の欠陥の属性と予め定められた基準値とに基づいて選択されることを特徴とする欠陥検査方法。
[請求項3−2]
請求項3の記載において、前記検査装置と前記観察装置の少なくともいずれかは複数であり、前記相関関係は、欠陥毎にこれら複数の装置で定義される複数の位置座標から算出されることを特徴とする欠陥検査方法。
[請求項3−3]
請求項3の記載において、前記属性は、前記複数の欠陥の少なくとも寸法,種類,散乱光量,明るさの局所的な変化,輪郭形状のうちのひとつであることを特徴とする欠陥検査方法。
[請求項5−1]
請求項5の記載において、前記検査情報データは記憶媒体に格納されて前記観察装置に提供されることを特徴とする欠陥検査システム。
[請求項5−2]
請求項5の記載において、前記検査情報データは通信手段を介して前記観察装置に提供されることを特徴とする欠陥検査システム。
[請求項6−1]
請求項6の記載において、前記相関関係は、少なくとも3組の位置座標を用い、最小2乗近似を用いて算出されることを特徴とする欠陥検査システム。
[請求項6−2]
請求項6の記載において、前記指標欠陥は、前記複数の欠陥の属性と予め定められた基準値とに基づいて選択されることを特徴とする欠陥検査システム。
[請求項6−3]
請求項6の記載において、前記検査装置と前記観察装置の少なくともいずれかは複数であり、前記相関関係は、欠陥毎にこれら複数の装置で定義される複数の位置座標から算出されることを特徴とする欠陥検査システム。
[請求項6−4]
請求項6の記載において、前記属性は、前記複数の欠陥の少なくとも寸法,種類,散乱光量,明るさの局所的な変化,輪郭形状のうちのひとつであることを特徴とする欠陥検査システム。
欠陥検査システムの構成を示す概念図。 検査装置の内部の主要部の構成を示す側面図。 半導体ウエーハが検査装置に設置された状態の一例を示す平面図。 半導体ウエーハが検査装置に設置された状態の一例を示す平面図。 走査型電子顕微鏡の構成を一部横断面を用いて表した側面図。 検査方法の手順を示すフローチャート。 検査方法の手順を示すフローチャート。 欠陥検査システムの構成を示す概念図。 光学式検査装置の内部の主要部の構成を示す側面図。 画面表示の一例を示す画面図。
符号の説明
1…検査装置、2…観察装置、3…半導体ウエーハ、4,104…位置座標、5…属性、100…欠陥選択部、101…座標対応決定部、102,200…通信手段、103,201…データベース、105…変換された位置座標、301…光学式検査装置。

Claims (8)

  1. 検査装置で検出された複数の欠陥の該検査装置で定義される検査位置座標と属性として欠陥の大きさを決定し記憶装置へ格納し、
    前記欠陥の大きさと、観察装置で検出可能な予め定められた基準値として前記欠陥の大きさが一定基準内の大きさに相当するレーザ散乱光量、および前記検査装置で画像検出された該欠陥の画素数のいずれかに基づいて指標欠陥を前記欠陥の中から選択し、
    該選択された指標欠陥を前記観察装置で検出し該観察装置で定義される観察位置座標を決定し、
    前記観察位置座標と前記検査位置座標とから相関関係を算出し前記記憶装置へ格納し、
    前記記憶装置に格納された前記指標欠陥の前記観察位置座標から前記相関関係を用いて変換された位置座標を演算し、
    前記観察装置で該変換された位置座標に基づいて前記指標欠陥を検出し、該指標欠陥を指標として詳細に観察したい所望の欠陥を検出することを特徴とする欠陥検査方法。
  2. 請求項1の記載において、前記検査装置と前記観察装置の少なくともいずれかは複数であり、前記相関関係は、欠陥毎にこれら複数の装置で定義される複数の位置座標から算出されることを特徴とする欠陥検査方法。
  3. 検出された欠陥の少なくとも観察可能性情報を含む属性情報と前記欠陥の位置情報とを含む検査情報データを記憶する記憶装置と、
    前記属性情報は前記欠陥の大きさであって、前記検査情報データと、観察装置で検出可能な予め定められた基準値として前記欠陥の大きさが一定基準内の大きさに相当するレーザ散乱光量、および前記検査装置で画像検出された該欠陥の画素数のいずれかに基づいて指標欠陥を前記欠陥の中から検出し、該検出よりも少なくとも3倍大きな倍率で、該指標欠陥を指標として前記検査情報データ内の詳細に観察したい所望の欠陥の位置の画像情報を取得し、表示、印刷あるいは記録のうち少なくとも1つを行う観察装置とを備えたことを特徴とする欠陥検査システム。
  4. 請求項3の記載において、前記検査情報データは記憶媒体に格納されて前記観察装置に提供されることを特徴とする欠陥検査システム。
  5. 請求項3の記載において、前記検査情報データは通信手段を介して前記観察装置に提供されることを特徴とする欠陥検査システム。
  6. 検査装置で検出された複数の欠陥の該検査装置で定義される検査位置座標と属性として欠陥の大きさを格納する記憶装置と、
    前記欠陥の大きさと、観察装置で検出可能な予め定められた基準値として前記欠陥の大きさが一定基準内の大きさに相当するレーザ散乱光量、および前記検査装置で画像検出された該欠陥の画素数のいずれかに基づいて指標欠陥を前記欠陥の中から選択し、該選択された指標欠陥を前記観察装置で検出する場合に用いられる該観察装置で定義される観察位置座標を決定し、該観察位置座標と前記検査位置座標とから相関関係を算出する演算装置とを備え、
    前記記憶装置は、さらに、前記相関関係を格納し、
    前記演算装置は、さらに、前記観察装置が前記指標欠陥を検出する場合に用いられる位置座標を、前記観察位置座標から前記相関関係を用いて変換し、該変換された位置座標に基づいて前記指標欠陥を検出し、該指標欠陥を指標として詳細に観察したい所望の欠陥を検出することを特徴とする欠陥検査システム。
  7. 請求項6の記載において、前記相関関係は、少なくとも3組の位置座標を用い、最小2乗近似を用いて算出されることを特徴とする欠陥検査システム。
  8. 請求項6の記載において、前記検査装置と前記観察装置の少なくともいずれかは複数であり、前記相関関係は、欠陥毎にこれら複数の装置で定義される複数の位置座標から算出されることを特徴とする欠陥検査システム。
JP2005058321A 2005-03-03 2005-03-03 欠陥検査方法および欠陥検査システム Expired - Lifetime JP4029882B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058321A JP4029882B2 (ja) 2005-03-03 2005-03-03 欠陥検査方法および欠陥検査システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058321A JP4029882B2 (ja) 2005-03-03 2005-03-03 欠陥検査方法および欠陥検査システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000231352A Division JP3671822B2 (ja) 2000-07-26 2000-07-26 欠陥検査方法および欠陥検査システム

Publications (2)

Publication Number Publication Date
JP2005195607A JP2005195607A (ja) 2005-07-21
JP4029882B2 true JP4029882B2 (ja) 2008-01-09

Family

ID=34824790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058321A Expired - Lifetime JP4029882B2 (ja) 2005-03-03 2005-03-03 欠陥検査方法および欠陥検査システム

Country Status (1)

Country Link
JP (1) JP4029882B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792687B1 (ko) 2006-11-06 2008-01-09 삼성전자주식회사 반도체 기판 패턴 결함 검출 방법 및 장치
JP5024079B2 (ja) * 2008-01-31 2012-09-12 富士電機株式会社 欠陥検査装置
JP2013019866A (ja) * 2011-07-14 2013-01-31 Hitachi High-Technologies Corp 走査電子顕微鏡、欠陥検査システム、および欠陥検査装置
CN114324168B (zh) * 2022-01-04 2024-05-17 广东奥普特科技股份有限公司 一种表面缺陷检测方法及***

Also Published As

Publication number Publication date
JP2005195607A (ja) 2005-07-21

Similar Documents

Publication Publication Date Title
JP3671822B2 (ja) 欠陥検査方法および欠陥検査システム
KR100310106B1 (ko) 패턴검사방법 및 그 장치
JP5059297B2 (ja) 電子線式観察装置
US8547429B2 (en) Apparatus and method for monitoring semiconductor device manufacturing process
JP5525421B2 (ja) 画像撮像装置および画像撮像方法
US9040937B2 (en) Charged particle beam apparatus
US7932493B2 (en) Method and system for observing a specimen using a scanning electron microscope
JP2008041940A (ja) Sem式レビュー装置並びにsem式レビュー装置を用いた欠陥のレビュー方法及び欠陥検査方法
JP2001159616A (ja) パターン検査方法及びパターン検査装置
US20060210144A1 (en) Method and apparatus for reviewing defects
US10732512B2 (en) Image processor, method for generating pattern using self-organizing lithographic techniques and computer program
KR101128558B1 (ko) 측정 시스템 및 방법
JP4029882B2 (ja) 欠陥検査方法および欠陥検査システム
JP2000200813A (ja) 画像自動収集装置およびその方法
JP4177375B2 (ja) 回路パターンの検査方法及び検査装置
JP2006227026A (ja) パターン検査方法及びパターン検査装置
JP3936873B2 (ja) 欠陥撮像装置及び撮像方法
JP3186171B2 (ja) 異物観察装置
JP3665194B2 (ja) 回路パターンの検査方法及び検査装置
JP2009092673A (ja) レビューsem
JP3722757B2 (ja) 欠陥撮像装置
JP4028864B2 (ja) パターン欠陥検査方法および検査装置
CN108231513B (zh) 用于操作显微镜的方法
JPH11251377A (ja) 欠陥検査方法およびその装置並びに欠陥の観察または分析方法およびそのシステム
JP5163731B2 (ja) 欠陥候補の画像表示方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071008

R151 Written notification of patent or utility model registration

Ref document number: 4029882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

EXPY Cancellation because of completion of term