JP4027807B2 - Phase change type multilayer sheet - Google Patents

Phase change type multilayer sheet Download PDF

Info

Publication number
JP4027807B2
JP4027807B2 JP2003012361A JP2003012361A JP4027807B2 JP 4027807 B2 JP4027807 B2 JP 4027807B2 JP 2003012361 A JP2003012361 A JP 2003012361A JP 2003012361 A JP2003012361 A JP 2003012361A JP 4027807 B2 JP4027807 B2 JP 4027807B2
Authority
JP
Japan
Prior art keywords
resin
layer
phase change
heat
conductive filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003012361A
Other languages
Japanese (ja)
Other versions
JP2004228217A (en
Inventor
博昭 澤
敏勝 光永
正人 川野
健一郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003012361A priority Critical patent/JP4027807B2/en
Publication of JP2004228217A publication Critical patent/JP2004228217A/en
Application granted granted Critical
Publication of JP4027807B2 publication Critical patent/JP4027807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、フェーズチェンジ型多層シートに関する。本発明のフェーズチェンジ型多層シートは、発熱性電子部品と放熱部品との間に介在させる放熱材料として好適なものである。
【0002】
【従来の技術】
近年、発熱性電子部品の高密度化や、携帯用パソコンをはじめとする電子機器の小型、薄型、軽量化に伴い、それらに用いられる放熱部材の低熱抵抗化の要求が益々高まっており、放熱部材の薄化が要求されている。放熱部材としては、シリコーンゴムに熱伝導性無機粉末が充填された硬化物からなる放熱シート、シリコーンゲルに熱伝導性無機粉末が充填された柔軟性を有する硬化物からなる放熱スペーサー、液状シリコーンに熱伝導性無機粉末が充填された流動性のある放熱グリース、樹脂の相変化を利用したフェーズチェンジ型放熱部材(以下、単にフェーズチェンジという。)等が例示される。これらのうち、薄化が容易なものは、放熱グリース及びフェーズチェンジであるが、作業性があまり良くない放熱グリースよりもフェーズチェンジが好まれている。
【0003】
フェーズチェンジは、発熱性電子部品の作動温度で相変化する相変化物質、例えばワックス類に、平均粒径2〜100μmの窒化硼素又はアルミナ粒子を10〜80質量%充填したもの(特許文献1)、エチレン−酢酸ビニル共重合体等の加熱により軟化する樹脂15〜60体積%に、平均粒径1.5μm程度の窒化アルミニウム粉末を40〜85体積%充填し、更に分散剤を添加したもの(特許文献2)が知られている。しかしながら、これらのものは、加熱後に粘着性を有するので、発熱性電子部品と放熱部品にくっついて剥離が困難になる。そこで、粘着性を少なくするために熱伝導性無機粉末を高充填すると、流動性が失われて薄化が困難となり、放熱性が悪化すると共に、粘着性がないために仮止めもしずらいという問題があった。
【0004】
これを解決するため、アルミ箔等の金属箔にフェーズチェンジを貼り付ける方法が提案(特許文献3)されているが、この方法ではアルミ箔と放熱部品との密着が上手く取れないので、放熱性が十分でないという問題があった。
【0005】
【特許文献1】
特開2001−89756号公報
【特許文献2】
特開平11−45965号公報
【特許文献2】
特開2002−305271号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記に鑑み、仮止めが容易で、発熱性電子部品と放熱部品への形状追従性が良いので低熱抵抗であると共に、補修時や点検時には容易に解体可能なように加熱後も剥離可能である、発熱性電子部品の放熱材料として適したフェーズチェンジ型多層シートを提供する。本発明の目的は、最上層と最下層との粘着力が異なる多層構造のフェーズチェンジとすることによって達成することができる。
【0007】
【課題を解決するための手段】
すなわち、本発明は、 多層構造からなるものであって、いずれの層も温度40〜120℃で軟化する樹脂と熱伝導性充填材を含有しており、しかも最上層は粘着性を有し、最下層は粘着性を有しないものであり、最上層が樹脂17.7〜31.7質量%、熱伝導性充填材68〜82質量%及び粘着付与剤0.1〜0.5質量%、最下層が樹脂8〜13質量%、熱伝導性充填材87〜92質量%で構成され、樹脂がワックス又は常温で固体のパラフィン、熱伝導性充填材が窒化アルミニウム粉末、アルミナ粉末、又はその混合粉末、粘着付与剤が脂肪族系石油樹脂であるフェーズチェンジ型多層シートである。
【0008】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0009】
本発明で使用される熱伝導性充填材は、窒化アルミニウム粉末、アルミナ粉末、又はその混合粉末である。最大粒径15μm以下の、炭化ホウ素粉末、炭化ケイ素粉末、酸化亜鉛、窒化ケイ素、窒化ホウ素、アルミニウム粉末、銅粉末等から選ばれた一種又は二種以上の粉末は、熱伝導性充填材の合計中、10質量%まで含有させることができる。好ましくは、窒化アルミニウム粉末とアルミナ粉末とを併用することであり、これによって、窒化アルミニウム粉末の熱伝導性とアルミナ粉末の流動性を両立させることができる。
【0010】
熱伝導性充填材は、平均粒径0.5〜1.4μm、好ましくは0.8〜1.4μm、最大粒径が3〜10μm、好ましくは3〜6μmである。平均粒径が0.5μm未満であるか、又は最大粒径が3μm未満であると、フェーズチェンジ内での粒子間接触点数が増えて熱抵抗は大きくなり、また平均粒径が1.4μmをこえるか、又は最大粒径が15μmをこえると、薄化が困難となる。
【0011】
熱伝導性充填材の含有率は、最上層では、68〜82質量%である。特に75〜82質量%であることが好ましい。65質量%未満であると、熱伝導性が小さいので、いくら薄化しても低熱抵抗化は困難となる。また、85質量%をこえると、樹脂組成物の流動性が低くなり、薄化が困難となる。一方、最下層では、87〜92質量%である。86質量%未満であると、加熱後に粘着力が残るので剥離が困難となり、繰り返しての使用が困難となる。また、93質量%をこえると、樹脂組成物の流動性はほとんど得られず、薄化しない。
【0012】
熱伝導性充填材は、球形度が高いほど加熱時の流動性は高くなり、薄化が容易となるので好ましい。本発明においては、平均球形度は0.8以上、特に0.85以上であることが好ましい。
【0013】
平均球形度は、実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、次のようにして測定することができる。すなわち、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とした。
【0014】
本発明で用いられる樹脂は、温度40〜120℃で軟化するものであり、常温では固体であり加熱により低粘度の液体となるものである。このような樹脂をマトリックスとすることによって、加熱時の流動性を極めて高くすることができるので薄化が極めて容易となる。
【0015】
このような樹脂としては、ワックス又は常温で固体のパラフィンが代表例として例示することができる。ワックス類としては、マイクロクリスタリンワックス、モンタン酸ワックス、モンタン酸ワックス、モンタン酸エステルワックス、パラフィンワックス等、常温で固体のパラフィンとしては、日本精蝋社製の「パラフィンワックス・シリーズ」「マイクロクリスタリンワックス Hi−Micシリーズ」等をあげることができる。
【0016】
本発明のフェーズチェンジ型多層シートには、その強度を高めるために、温度40〜120℃で軟化するワックス類以外の樹脂を更に含有させることができる。このような樹脂を例示すれば、エチレン−酢酸ビニル共重合体である。さらには、ガラスクロス、フッ素樹脂メッシュ、金属箔等の補強シートで補強することもできる。ガラスクロス、フッ素樹脂メッシュは、厚み0.01〜0.1mmで目開きが広いものが好ましく、織り方としては絡み織りが強度の面で好ましい。金属箔は、厚み0.01〜0.2mmのアルミニウム箔、銅箔が好ましい。補強する位置は、最下層とそれ以外の層との界面であることが好ましい。
【0017】
本発明のフェーズチェンジ型多層シートは、最上層と最下層の少なくとも二層で構成されている。全体のシート厚みは、0.5mm以下、特に0.01〜0.35mmであることが好ましい。厚みが0.5mmをこえると、低熱抵抗化が困難となる。また、シート厚みが0.01mm未満では、発熱性電子部品との接触が不十分となりやすい。中でも、最下層の厚みが0.01〜0.10mmであって、しかも最下層以外の全層の合計厚みよりも薄く構成されていることが好ましい。また、最上層には、オレフィン系樹脂・組成物やテルペン等の粘着付与剤を0.1〜0.5質量%含有させて、熱伝導性を有する粘着層を形成できる。
【0018】
本発明のフェーズチェンジ型多層シートは、温度40〜120℃で軟化する樹脂と熱伝導性充填材を含む混合物を加温しながら万能混合攪拌機、ニーダー等で混ぜて混練物とし、それをシート化した後、あるいはシート化しながらその複数をラミネーター等で貼り合わせ、自己粘着力によって一体化させることによって製造することができる。
【0019】
単層の各シートは、上記混合物又は混練物をPETフィルム等のベースフィルムにのせ、所定厚みの金型で加熱プレスするか、加熱しながら押出し成形するか、加熱しながらロールコーター等で所定の空間を通過させるか、又は混練物をトルエン等の溶剤で溶解させ、ドクター法等で塗工した後ラミネーターで厚みを調整することによって成形することができる。なお、ベースフィルム表面は、剥離性を高めるため、シリコン又はフッ素等で処理されていることは好ましい。
【0020】
本発明のフェーズチェンジ型多層シートは、例えばMPUやパワートランジスタ、トランス等の発熱性電子部品からの熱を放熱フィンや放熱ファン等の放熱部品に伝熱させるために使用され、発熱性電子部品と放熱部品の間に挟み込まれて使用される。これによって、発熱性電子部品と放熱部品間の伝熱が良好となり、発熱性電子部品の誤作動を軽減させることができる。さらには、モーターの熱を放熱板等に伝えるための伝熱シート、粘着性を有し、しかも剥離可能なサーモラベル用粘着シート等として使用される。
【0021】
【実施例】
以下、実施例及び比較例をあげて更に具体的に本発明を説明する。
【0022】
実施例1〜5
表1に示す窒化アルミニウム粉末(トクヤマ社製商品名「Hグレード」)と、アルミナ粉末(住友化学工業社製球状アルミナ商品名「AA−2」、「AA−05」)を準備し、上層用熱伝導性充填材(表2)と下層用熱伝導性充填材(表3)を調整した。
【0023】
一方、温度40〜120℃で軟化する樹脂として、ワックス(日本精蝋社製商品名「パラフィンワックス115」)と固形パラフィン(OG技研社製商品名「HR−1A」)、補強用樹脂として、エチレン−酢酸ビニル共重合体(EVA)(三井化学社製商品名「エバフレックスEV150」軟化点33℃)、粘着付与剤として、トーネックス社製商品名「エスコレッツ2520」(成分:脂肪族系石油樹脂)を準備し、上層用樹脂(表2)と下層用樹脂(表3)を調整した。
【0024】
この熱伝導性充填材と上層用樹脂又は下層用樹脂とを150℃に加熱した万能混合攪拌機の釜に入れ、15分間混合しながら真空脱泡し、冷却後に釜から取り出した。ついで、これを片面シリコーン処理PETフィルム(厚み0.1mm、幅160mm)に所定厚みのシートとなる量をのせ、120℃に設定された遠赤外加熱炉を通して加熱を行って溶融させ、上に前述と同じ片面シリコーン処理PETフィルムを被せ、目的厚みにPETフィルム 厚み(0.1mm×2枚=0.2mm)をプラスしたギャップを有するロール間に溶融させたまま通して所定厚の両面PETフィルム付きシート状成形物を得た。これを、長さ400mmに切断後冷却し、PETフィルムを剥がして、上層用と下層用の単層のシート状成形物(所定厚み、幅150mm、長さ400mm)をそれぞれ成形した。これらを重ね、加熱ラミネーター(80℃)を通過させて、厚み0.25mmのフェーズチェンジ型多層シートを得た。
【0025】
比較例1〜6
厚み0.25mmの単層にしたこと以外は、実施例1に準じてフェーズチェンジを製造した。
【0026】
比較例7〜9
上層を表2に示す割合で、下層を表3の割合で配合したこと以外は、実施例1に準じて上層用又は下層用の樹脂を調製した。比較例7の配合では、上下層のシートは共に粘着性がなく、熱抵抗測定後の剥離もできなかった。比較例8の配合では、熱伝導性充填材の比率が多すぎて、下層用のシート化はできなかった。比較例9の配合では、上下層共に粘着性がなく、また熱抵抗は著しく大きかった。
【0027】
熱伝導性充填材の粒径、及び上層単層又は多層シートの熱抵抗と剥離性を以下に従って測定した。熱抵抗の結果を表4に示す。
【0028】
(1)平均粒径及び最大粒径:L&N社製粒度分布計「マイクロトラックSP−A」を用いて測定した。
(2)熱抵抗:□10mmの試料装着部分に上層単層又は多層シート試料をいれ、それをヒーターの埋め込まれた銅製治具と銅製冷却治具との間にはさみ、4.2kgの荷重を掛けてセットした後、ヒーターに電力20Wをかけて30分間保持し、銅製ヒーターケースと銅板との温度差(℃)を測定し、式、熱抵抗(℃/W)=温度差(℃)/電力(W)、により算出した。
(3)剥離性:熱抵抗測定後に銅製冷却治具から容易に剥離可能かを調べた。
○:剥離容易
△:剥離できるがちぎれる
×:剥離できず、無理に剥がせばボロボロになる。
【0029】
【表1】

Figure 0004027807
【0030】
【表2】
Figure 0004027807
【0031】
【表3】
Figure 0004027807
【0032】
【表4】
Figure 0004027807
【0033】
表1〜4に示すとおり、特定の配合で多層化された本発明のフェーズチェンジ型多層シートは、剥離性と低熱抵抗の両立が達成された。
【0034】
【発明の効果】
本発明によれば、低熱抵抗で加熱後も剥離可能なフェーズチェン型多層シートが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a phase change type multilayer sheet. The phase change type multilayer sheet of the present invention is suitable as a heat dissipation material interposed between the heat-generating electronic component and the heat dissipation component.
[0002]
[Prior art]
In recent years, with the increase in the density of heat-generating electronic components and the reduction in size, thickness, and weight of electronic devices such as portable personal computers, there has been an increasing demand for lower heat resistance of heat-dissipating members used in them. Thinning of members is required. As a heat dissipation member, a heat dissipation sheet made of a cured material in which silicone rubber is filled with a heat conductive inorganic powder, a heat dissipation spacer made of a flexible cured material in which a silicone gel is filled with a heat conductive inorganic powder, liquid silicone, Examples include fluid heat-dissipating grease filled with a heat conductive inorganic powder, a phase change heat dissipating member (hereinafter, simply referred to as phase change) utilizing a phase change of resin, and the like. Of these, those that can be easily thinned are heat dissipation grease and phase change, but phase change is preferred over heat dissipation grease that is not very good in workability.
[0003]
In the phase change, a phase change material that changes phase at the operating temperature of the heat-generating electronic component, for example, wax is filled with boron nitride or alumina particles having an average particle diameter of 2 to 100 μm in an amount of 10 to 80 mass% (Patent Document 1). Resin that is softened by heating, such as ethylene-vinyl acetate copolymer, is filled with 40 to 85% by volume of aluminum nitride powder having an average particle size of about 1.5 μm and further added with a dispersant ( Patent document 2) is known. However, since these have adhesiveness after heating, they adhere to the heat-generating electronic component and the heat-dissipating component and are difficult to peel off. Therefore, if high-conductivity inorganic powder is filled to reduce adhesiveness, fluidity is lost and thinning becomes difficult, heat dissipation is deteriorated, and temporary fixing is difficult due to lack of adhesiveness. There was a problem.
[0004]
In order to solve this, a method of attaching a phase change to a metal foil such as an aluminum foil has been proposed (Patent Document 3). However, since this method does not allow the aluminum foil and the heat dissipating component to be well adhered, There was a problem that was not enough.
[0005]
[Patent Document 1]
JP 2001-89756 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-45965 [Patent Document 2]
JP 2002-305271 A [0006]
[Problems to be solved by the invention]
In view of the above, the object of the present invention is to provide a low thermal resistance because it is easy to temporarily fix and has good shape followability to heat-generating electronic parts and heat-radiating parts, and is heated so that it can be easily disassembled at the time of repair or inspection. Provided is a phase change type multilayer sheet that can be peeled later and is suitable as a heat dissipation material for heat-generating electronic components. The object of the present invention can be achieved by making a phase change of a multilayer structure in which the adhesion between the uppermost layer and the lowermost layer is different.
[0007]
[Means for Solving the Problems]
That is, the present invention consists of a multilayer structure, each layer contains a resin that softens at a temperature of 40 to 120 ° C. and a thermally conductive filler, and the uppermost layer has adhesiveness, the bottom layer all SANYO not tacky, 17.7 to 31.7 wt% top layer resin, the thermally conductive filler 68-82% by weight and a tackifier 0.1-0.5 wt% , 8-13 wt% lowermost resin comprises a thermally conductive filler 87 to 92 wt%, solid paraffin resin in wax or normal temperature, thermal-aluminum nitride powder, alumina powder, or It is a phase change type multilayer sheet in which the mixed powder and the tackifier are aliphatic petroleum resins .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0009]
The thermally conductive filler used in the present invention is aluminum nitride powder, alumina powder, or a mixed powder thereof . One or two or more powders selected from boron carbide powder, silicon carbide powder, zinc oxide, silicon nitride, boron nitride, aluminum powder, copper powder and the like having a maximum particle size of 15 μm or less are the total of the heat conductive fillers. Among them, it can be contained up to 10% by mass. Preferably, an aluminum nitride powder and an alumina powder are used in combination, whereby both the thermal conductivity of the aluminum nitride powder and the fluidity of the alumina powder can be achieved.
[0010]
The heat conductive filler has an average particle size of 0.5 to 1.4 μm, preferably 0.8 to 1.4 μm, and a maximum particle size of 3 to 10 μm, preferably 3 to 6 μm. If the average particle size is less than 0.5 μm, or if the maximum particle size is less than 3 μm, the number of contact points between particles in the phase change increases and the thermal resistance increases, and the average particle size becomes 1.4 μm. If it exceeds or the maximum particle size exceeds 15 μm, it will be difficult to reduce the thickness.
[0011]
The content of the heat conductive filler is 68 to 82 % by mass in the uppermost layer . It is especially preferable that it is 75-82 mass%. If it is less than 65% by mass, the thermal conductivity is small, so that it is difficult to reduce the thermal resistance no matter how thin it is. Moreover, when it exceeds 85 mass%, the fluidity | liquidity of a resin composition will become low and thinning will become difficult. On the other hand, in the lowest layer, it is 87-92 mass% . If it is less than 86% by mass, the adhesive strength remains after heating, so that peeling becomes difficult and repeated use becomes difficult. Moreover, when it exceeds 93 mass%, the fluidity | liquidity of a resin composition is hardly obtained and it does not thin.
[0012]
The higher the sphericity of the heat conductive filler, the higher the fluidity at the time of heating, and the easier it is to make it thinner. In the present invention, the average sphericity is preferably 0.8 or more, particularly preferably 0.85 or more.
[0013]
The average sphericity is obtained by taking a particle image taken with a stereomicroscope such as “Model SMZ-10” (Nikon Corporation), a scanning electron microscope or the like into an image analyzer such as Nihon Avionics Co., Ltd. It can measure as follows. That is, the projected area (A) and the perimeter (PM) of particles are measured from a photograph. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr2, and therefore B = π × (PM / 2π) 2, The sphericity can be calculated as sphericity = A / B = A × 4π / (PM) 2. The sphericity of 200 arbitrary particles thus obtained was determined, and the average value was defined as the average sphericity.
[0014]
The resin used in the present invention is softened at a temperature of 40 to 120 ° C., is a solid at room temperature, and becomes a low-viscosity liquid by heating. By using such a resin as a matrix, the fluidity at the time of heating can be made extremely high, so that thinning becomes extremely easy.
[0015]
Typical examples of such a resin include wax or paraffin that is solid at room temperature. As waxes, microcrystalline wax, montanic acid wax, montanic acid wax, montanic acid ester wax, paraffin wax, etc., as paraffin that is solid at room temperature, the “paraffin wax series” “microcrystalline wax” manufactured by Nippon Seiwa Co., Ltd. Hi-Mic series ”and the like.
[0016]
In order to increase the strength, the phase change type multilayer sheet of the present invention may further contain a resin other than waxes that are softened at a temperature of 40 to 120 ° C. An example of such a resin is an ethylene-vinyl acetate copolymer. Furthermore, it can also reinforce with reinforcing sheets, such as a glass cloth, a fluororesin mesh, and metal foil. The glass cloth and the fluororesin mesh preferably have a thickness of 0.01 to 0.1 mm and a wide opening, and as a weaving method, an entangled weave is preferable in terms of strength. The metal foil is preferably an aluminum foil or copper foil having a thickness of 0.01 to 0.2 mm. The reinforcing position is preferably the interface between the lowermost layer and the other layers.
[0017]
The phase change type multilayer sheet of the present invention is composed of at least two layers of an uppermost layer and a lowermost layer. The total sheet thickness is preferably 0.5 mm or less, particularly 0.01 to 0.35 mm. If the thickness exceeds 0.5 mm, it is difficult to reduce the thermal resistance. Further, when the sheet thickness is less than 0.01 mm, the contact with the heat-generating electronic component tends to be insufficient. Among these, it is preferable that the thickness of the lowermost layer is 0.01 to 0.10 mm, and the thickness is made thinner than the total thickness of all layers other than the lowermost layer. Moreover, 0.1 to 0.5 mass% of tackifiers, such as an olefin resin and a composition and a terpene, are contained in the uppermost layer, and the adhesion layer which has heat conductivity can be formed.
[0018]
The phase change type multilayer sheet of the present invention is a kneaded product by mixing with a universal mixing stirrer, kneader, etc. while heating a mixture containing a resin softening at a temperature of 40 to 120 ° C. and a heat conductive filler. Then, or while forming into a sheet, a plurality of them can be bonded together with a laminator or the like and integrated by self-adhesive force.
[0019]
Each single-layer sheet is obtained by placing the above mixture or kneaded material on a base film such as a PET film and heating and pressing it with a mold having a predetermined thickness, or extruding while heating, or using a roll coater or the like while heating. It can be molded by passing through a space, or by dissolving the kneaded material with a solvent such as toluene, coating by a doctor method or the like, and adjusting the thickness with a laminator. The base film surface is preferably treated with silicon, fluorine, or the like in order to improve the peelability.
[0020]
The phase change type multilayer sheet of the present invention is used to transfer heat from heat-generating electronic components such as MPUs, power transistors, and transformers to heat-dissipating components such as heat-dissipating fins and heat-dissipating fans. Used by being sandwiched between heat dissipation components. Thereby, heat transfer between the heat-generating electronic component and the heat-dissipating component is improved, and malfunction of the heat-generating electronic component can be reduced. Furthermore, it is used as a heat transfer sheet for transferring the heat of a motor to a heat radiating plate or the like, an adhesive sheet for thermo label which has adhesiveness and can be peeled off.
[0021]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0022]
Examples 1-5
Prepare aluminum nitride powder (trade name “H grade” manufactured by Tokuyama Co., Ltd.) and alumina powder (spherical alumina trade names “AA-2” and “AA-05” manufactured by Sumitomo Chemical Co., Ltd.) shown in Table 1 for upper layer A thermally conductive filler (Table 2) and a lower layer thermally conductive filler (Table 3) were prepared.
[0023]
On the other hand, as a resin softening at a temperature of 40 to 120 ° C., wax (trade name “Paraffin Wax 115” manufactured by Nippon Seiwa Co., Ltd.) and solid paraffin (trade name “HR-1A” manufactured by OG Giken Co., Ltd.), as a reinforcing resin, Ethylene-vinyl acetate copolymer (EVA) (trade name “Evaflex EV150” manufactured by Mitsui Chemicals Co., Ltd., softening point 33 ° C.), as a tackifier, product name “Escollets 2520” manufactured by Tonex Co., Ltd. (component: aliphatic petroleum resin) ) Was prepared, and the upper layer resin (Table 2) and the lower layer resin (Table 3) were prepared.
[0024]
The thermally conductive filler and the upper layer resin or the lower layer resin were placed in a kettle of a universal mixing stirrer heated to 150 ° C., vacuum degassed while mixing for 15 minutes, and taken out from the kettle after cooling. Next, this is placed on a single-sided silicone-treated PET film (thickness 0.1 mm, width 160 mm) in a predetermined thickness, heated through a far-infrared heating furnace set at 120 ° C., and melted. Cover the same single-sided silicone-treated PET film as described above, and pass it while it is melted between rolls with a gap that adds the PET film thickness (0.1 mm x 2 sheets = 0.2 mm) to the target thickness. An attached sheet-like molded product was obtained. This was cut to a length of 400 mm and cooled, and the PET film was peeled off to form single layer sheet-like molded products (predetermined thickness, width 150 mm, length 400 mm) for the upper layer and the lower layer. These were stacked and passed through a heating laminator (80 ° C.) to obtain a phase change type multilayer sheet having a thickness of 0.25 mm.
[0025]
Comparative Examples 1-6
A phase change was produced in accordance with Example 1 except that a single layer having a thickness of 0.25 mm was used.
[0026]
Comparative Examples 7-9
Resin for upper layer or lower layer was prepared according to Example 1 except that the upper layer was blended in the ratio shown in Table 2 and the lower layer was blended in the ratio of Table 3. In the composition of Comparative Example 7, the upper and lower layer sheets were not sticky and could not be peeled off after measuring the thermal resistance. In the composition of Comparative Example 8, the ratio of the heat conductive filler was too large to form a sheet for the lower layer. In the composition of Comparative Example 9, the upper and lower layers were not sticky and the thermal resistance was remarkably high.
[0027]
The particle size of the thermally conductive filler and the thermal resistance and peelability of the upper single layer or multilayer sheet were measured as follows. Table 4 shows the results of thermal resistance.
[0028]
(1) Average particle size and maximum particle size: Measured using a particle size distribution meter “Microtrac SP-A” manufactured by L & N.
(2) Thermal resistance: □ Place the upper layer single layer or multilayer sheet sample in the sample mounting part of 10mm, and sandwich it between the copper jig with the heater embedded and the copper cooling jig, and load 4.2kg After setting, multiply the heater by applying electric power of 20W and hold for 30 minutes, measure the temperature difference (° C) between the copper heater case and the copper plate, the formula, thermal resistance (° C / W) = temperature difference (° C) / Calculated by electric power (W).
(3) Peelability: After measuring the thermal resistance, it was examined whether it can be easily peeled from the copper cooling jig.
○: Easy to peel Δ: Can be peeled off but torn ×: Cannot be peeled off;
[0029]
[Table 1]
Figure 0004027807
[0030]
[Table 2]
Figure 0004027807
[0031]
[Table 3]
Figure 0004027807
[0032]
[Table 4]
Figure 0004027807
[0033]
As shown in Tables 1 to 4, the phase change type multilayer sheet of the present invention multilayered with a specific composition achieved both releasability and low thermal resistance.
[0034]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the phase chain type | mold multilayer sheet which can peel after heating with low heat resistance is provided.

Claims (2)

多層構造からなるものであって、いずれの層も温度40〜120℃で軟化する樹脂と熱伝導性充填材を含有しており、しかも最上層は粘着性を有し、最下層は粘着性を有しないものであり、最上層が樹脂17.7〜31.7質量%、熱伝導性充填材68〜82質量%及び粘着付与剤0.1〜0.5質量%、最下層が樹脂8〜13質量%、熱伝導性充填材87〜92質量%で構成され、樹脂がワックス又は常温で固体のパラフィン、熱伝導性充填材が窒化アルミニウム粉末、アルミナ粉末、又はその混合粉末、粘着付与剤が脂肪族系石油樹脂であることを特徴とするフェーズチェンジ型多層シート。It has a multilayer structure, and each layer contains a resin that softens at a temperature of 40 to 120 ° C. and a thermally conductive filler, and the uppermost layer has adhesiveness, and the lowermost layer has adhesiveness. der having no is, 17.7 to 31.7 wt% top layer resin, the thermally conductive filler 68-82% by weight and a tackifier 0.1-0.5 wt%, the lowest layer is the resin 8 ~ 13 % by mass, heat conductive filler 87 ~ 92 % by mass, resin is wax or paraffin solid at normal temperature, heat conductive filler is aluminum nitride powder, alumina powder, or mixed powder thereof, tackifier Is a phase change type multilayer sheet characterized by being an aliphatic petroleum resin . 温度40〜120℃で軟化する樹脂が、さらにエチレン−酢酸ビニル共重合体を含有しており、その含有量が最上層では6〜13.7質量%、最下層では5〜8質量%であることを特徴とする請求項1記載のフェーズチェンジ型多層シート。The resin that softens at a temperature of 40 to 120 ° C. further contains an ethylene-vinyl acetate copolymer, and the content thereof is 6 to 13.7% by mass in the uppermost layer and 5 to 8% by mass in the lowermost layer. The phase change type multilayer sheet according to claim 1.
JP2003012361A 2003-01-21 2003-01-21 Phase change type multilayer sheet Expired - Fee Related JP4027807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003012361A JP4027807B2 (en) 2003-01-21 2003-01-21 Phase change type multilayer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003012361A JP4027807B2 (en) 2003-01-21 2003-01-21 Phase change type multilayer sheet

Publications (2)

Publication Number Publication Date
JP2004228217A JP2004228217A (en) 2004-08-12
JP4027807B2 true JP4027807B2 (en) 2007-12-26

Family

ID=32900993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003012361A Expired - Fee Related JP4027807B2 (en) 2003-01-21 2003-01-21 Phase change type multilayer sheet

Country Status (1)

Country Link
JP (1) JP4027807B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9795059B2 (en) * 2007-11-05 2017-10-17 Laird Technologies, Inc. Thermal interface materials with thin film or metallization
US8445102B2 (en) 2007-11-05 2013-05-21 Laird Technologies, Inc. Thermal interface material with thin transfer film or metallization
US8545987B2 (en) 2007-11-05 2013-10-01 Laird Technologies, Inc. Thermal interface material with thin transfer film or metallization
JP6125273B2 (en) * 2013-02-27 2017-05-10 デンカ株式会社 Boron nitride molded body, production method and use thereof
CN113105838A (en) * 2021-05-12 2021-07-13 苏州环明电子科技有限公司 Programmable stepped heat dissipation and temperature control film for electronic equipment

Also Published As

Publication number Publication date
JP2004228217A (en) 2004-08-12

Similar Documents

Publication Publication Date Title
US10600714B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
US6391442B1 (en) Phase change thermal interface material
US6644395B1 (en) Thermal interface material having a zone-coated release linear
TW552690B (en) Clean release, phase change thermal interface
AU723258B2 (en) Conformal thermal interface material for electronic components
US6869642B2 (en) Phase change thermal interface composition having induced bonding property
TW200303166A (en) Thermal management materials having a phase change dispersion
JP2001168246A (en) Heat conductive sheet and manufacturing method thereof
JP2010524236A (en) Thermal grease article and method
KR20040086802A (en) Thermal-Conductive Composite Sheets and Process for Preparing the Same
JP3794996B2 (en) Thermally conductive resin composition and phase change type heat radiation member
JP4027807B2 (en) Phase change type multilayer sheet
JP4030399B2 (en) Self-adhesive phase change heat dissipation member
JP6088731B2 (en) Heat dissipation member and method for manufacturing semiconductor module
JP4749631B2 (en) Heat dissipation member
JP2005203735A (en) Thermally conductive composite sheet
JP4119287B2 (en) Heat dissipation member and connection structure
JP2005320484A (en) Heat-conductive composition and heat-conductive sheet
JP3739335B2 (en) Heat dissipation member and power module
JP3978056B2 (en) Heat dissipation member and connection structure
JP3976642B2 (en) Heat dissipation member and connection structure
TW201914815A (en) Thermally-conductive electrically-insullating sheet and composite member
WO2008053785A1 (en) Phase-change heat dissipating member
JP4729266B2 (en) Thermally conductive composition and thermal conductive sheet
JP2004079641A (en) Heat radiating member and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4027807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees