JP4025080B2 - Resistance measuring device and diagnostic device - Google Patents

Resistance measuring device and diagnostic device Download PDF

Info

Publication number
JP4025080B2
JP4025080B2 JP2002022730A JP2002022730A JP4025080B2 JP 4025080 B2 JP4025080 B2 JP 4025080B2 JP 2002022730 A JP2002022730 A JP 2002022730A JP 2002022730 A JP2002022730 A JP 2002022730A JP 4025080 B2 JP4025080 B2 JP 4025080B2
Authority
JP
Japan
Prior art keywords
resistance
measurement
fuel cell
signal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002022730A
Other languages
Japanese (ja)
Other versions
JP2003223918A (en
Inventor
健二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2002022730A priority Critical patent/JP4025080B2/en
Publication of JP2003223918A publication Critical patent/JP2003223918A/en
Application granted granted Critical
Publication of JP4025080B2 publication Critical patent/JP4025080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、固体高分子形燃料電池の実効抵抗を四端子法に従って測定するのに適した抵抗測定装置、およびその抵抗測定装置を備えた診断装置に関するものである。
【0002】
【従来の技術】
一般的に、固体高分子形燃料電池(以下「燃料電池」ともいう)の内部抵抗(インピーダンス)のうちの実効抵抗としては、主として、燃料電池を構成する電解質膜の抵抗、触媒の抵抗、電極等の抵抗およびこれらの接触抵抗(本明細書では、これらを「膜抵抗」と定義する)と、触媒および燃料ガスの反応に起因する反応抵抗とで構成される。この場合、燃料電池の内部抵抗における実効抵抗成分(以下、「実効抵抗」ともいう)については、四端子法に従って、測定用交流信号(以下「測定用信号」ともいう)を燃料電池に印加して測定する。この際に、印加する測定用信号が高い周波数のときには、膜抵抗が実効抵抗として測定され、低い周波数のときには、反応抵抗が実効抵抗として測定される。この測定用信号の周波数をパラメータにした燃料電池の内部抵抗における実効抵抗成分と、虚数成分との関係は、一例として、図2に示すコール・コール・プロットで表される。この場合、「R1」は、燃料電池が正常な状態のときの膜抵抗を表し、「R2」は、その状態のときの反応抵抗を表す。一方、燃料電池が、例えば、内部でショートしている状態では、膜抵抗が抵抗値R1よりも小さな抵抗値を示し、燃料電池が消耗した状態では、膜抵抗が同図に示すように抵抗値R1よりも大きな抵抗値R3を示す。また、触媒と燃料ガスとの反応状態が悪い状態では、反応抵抗が同図に示すように抵抗値R2よりも大きな抵抗値R4を示す。したがって、膜抵抗および反応抵抗を測定して、各々の測定値を所定の基準値と比較することにより、燃料電池の良否判定が可能となる。
【0003】
燃料電池の実効抵抗を四端子法に従って測定する抵抗測定装置として、図3に示す抵抗測定装置61が従来から知られている。この抵抗測定装置61を使用して測定対象の燃料電池BTの実効抵抗を測定する際には、印加する測定用信号の周波数を変化させて膜抵抗および反応抵抗を測定する。具体的には、同図に示すように、まず、可変負荷62の抵抗値を燃料電池BTの起電力に応じた抵抗値に設定した後に、可変負荷62をプローブP1,P2を介して燃料電池BTの両電極に接続する。また、燃料電池BTを流れる測定用信号の電流値を検出する電流検出センサ(カレントトランス)CTをプローブP1および可変負荷62の間に配置し、電流検出センサCTと抵抗測定装置61のセンサ信号入力端子とを接続する。さらに、プローブP3,P5を燃料電池BTの一方の電極に接続すると共にプローブP4,P6を他方の電極に接続する。次いで、測定用信号を所定の周波数(例えば、1mHzの低周波数)に設定した後に、プローブP3,P4を介して燃料電池BTに印加し、プローブP5,P6を介して、測定用信号が流れることによって燃料電池BTの内部抵抗に発生する交流電圧を入力する。同時に、電流検出センサCTの検出電圧を入力する。
【0004】
この場合、この抵抗測定装置61では、内部抵抗に発生する交流電圧と、電流検出センサCTによって検出された検出電圧とに基づいて燃料電池BTの実効抵抗を算出する。続いて、測定用信号の周波数を所定の周波数刻みで高い周波数に変更し、同様にして燃料電池BTの実効抵抗を算出する。このようにして、測定用信号の周波数を例えば数十kHzまでの高い周波数に徐々に変更しつつ実効抵抗を算出する。これにより、図3に示すコール・コール・プロットが作成される。この場合、高い周波数の測定用信号で同図に示す膜抵抗(R1)が求められ、低い周波数の測定用信号で同図に示す反応抵抗(R2)が求められ、この膜抵抗および反応抵抗の大きさを確認することで燃料電池BTの良否を判定することができる。
【0005】
【発明が解決しようとする課題】
ところが、従来の抵抗測定装置61には、以下の問題点がある。すなわち、従来の抵抗測定装置61では、測定用信号の周波数を徐々に変更して実効抵抗をその都度測定している。この場合、実効抵抗の測定に際しては、測定用信号の少なくとも1サイクルに相当する時間だけ燃料電池BTに印加し続ける必要があるため、低い周波数の測定用信号で測定するときには、その測定に長時間を要することになる。その一方、燃料電池の膜抵抗R1および反応抵抗R2を測定するためには、高い周波数および低い周波数の測定用信号を印加して測定する必要がある。したがって、長時間を要する測定を何度も実施することになり、測定作業が煩雑で非効率であるという問題点がある。
【0006】
本発明は、かかる問題点に鑑みてなされたものであり、燃料電池の実効抵抗を短時間で効率よく測定し得る抵抗測定装置、およびこの抵抗測定装置によって測定された実効抵抗に基づいて燃料電池の良否を効率よく診断し得る診断装置を提供することを主目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成すべく請求項1記載の抵抗測定装置は、燃料電池の実効抵抗を測定する測定装置であって、前記実効抵抗の一部を形成する膜抵抗を測定するための第1測定用交流信号と当該実効抵抗の一部を形成する反応抵抗を測定するための第2測定用交流信号とをミキシングして測定用信号を生成する測定用信号生成部と、測定部とを備え、前記測定 部は、前記測定用信号を前記燃料電池に印加した状態において前記燃料電池を流れる前記測定用信号の電流値に応じた電圧を入力したときに前記膜抵抗を流れる前記第1測定用交流信号の電流値に応じた電圧を出力する第1バンドパスフィルタと、前記燃料電池の両電極間に発生する電圧と前記第1測定用交流信号の電流値に応じた電圧とで同期検波して前記膜抵抗に発生する電圧を検出する第1同期整流回路と、当該第1同期整流回路によって検出された電圧を前記第1測定用交流信号の電流値に応じた電圧で除算することによって前記膜抵抗の抵抗値を求める第1除算器と、前記測定用信号を前記燃料電池に印加した状態において前記燃料電池を流れる前記測定用信号の電流値に応じた電圧を入力して前記反応抵抗を流れる前記第2測定用交流信号の電流値に応じた電圧を出力する第2バンドパスフィルタと、前記燃料電池の前記両電極間に発生する電圧と前記第2測定用交流信号の電流値に応じた電圧とで同期検波して前記反応抵抗に発生する電圧を検出する第2同期整流回路と、当該第2同期整流回路によって検出された電圧を前記第2測定用交流信号の電流値に応じた電圧で除算することによって前記反応抵抗の抵抗値を求める第2除算器とを備えて構成されている。
【0008】
請求項記載の診断装置は、燃料電池の良否を診断する診断装置であって、請求項1記載の抵抗測定装置と、前記膜抵抗の抵抗値が所定範囲内か否かを判定すると共に前記反応抵抗の抵抗値が所定の上限値以下か否かを判定する判定部とを備えている。
【0009】
請求項記載の診断装置は、請求項記載の診断装置において、前記判定部は、前記膜抵抗の抵抗値が前記所定範囲を外れているとき、または前記反応抵抗の抵抗値が前記所定の上限値を超えているときに、診断対象の前記燃料電池を不良と判定する。
【0010】
請求項記載の診断装置は、請求項または記載の診断装置において、前記判定部の判定結果を表示する表示部を備えている。
【0011】
【発明の実施の形態】
以下、添付図面を参照して、本発明に係る抵抗測定装置および診断装置の好適な実施の形態について説明する。なお、図3に示す構成と同一の構成要素については、同一の符号を付して重複する説明を省略する。
【0012】
最初に、診断装置1の構成について、図1を参照して説明する。
【0013】
診断装置1は、測定対象の燃料電池の実効抵抗を測定してその測定値に基づいて燃料電池の良否を診断する診断装置であって、図1に示すように、信号生成部11、測定部12、判定部13および表示部14を備えて構成されている。信号生成部11は、発振器21,22、アンプ23および抵抗24〜26を備えている。この場合、発振器21は、測定対象である燃料電池BTの膜抵抗を測定し得る周波数(例えば10kHz)の第1測定用交流信号を生成し、発振器22は、燃料電池BTの反応抵抗を測定し得る周波数(第1測定用交流信号の周波数よりも低い周波数:例えば10Hz)の第2測定用交流信号を生成する。また、アンプ23および抵抗24〜26は、発振器21,22によって生成された第1測定用交流信号および第2測定用交流信号をミキシングして測定用信号を生成する。
【0014】
測定部12は、バンドパスフィルタ31,41、同期検波回路32,42、ローパスフィルタ33,43、除算器34,44およびコンパレータ35,45を備えて構成されている。この場合、バンドパスフィルタ31、同期検波回路32、ローパスフィルタ33および除算器34が膜抵抗を測定する。具体的には、バンドパスフィルタ31は、本発明における第1バンドパスフィルタに相当し、電流検出センサCTから出力されるセンサ信号を入力した際に、第1測定用交流信号の電流値に応じた電圧V2を出力する。同期検波回路32は、本発明における第1同期整流回路に相当し、測定用信号が流れることによって燃料電池BTの内部抵抗に発生する電圧V1と電圧V2とで同期検波することによって、等価的に膜抵抗の両端に発生する電圧に対応する電圧を含む電圧V3を生成する。この場合、バンドパスフィルタ31に電圧V1を入力して、同期検波回路32に電圧V1に代えて電流検出センサCTから出力されるセンサ信号を入力してもよい(後述する反応抵抗の測定回路においても同様)。ローパスフィルタ33は、抵抗36およびコンデンサ37と相俟って電圧V3から高周波成分を除去して膜抵抗の両端に発生する電圧に対応する直流の電圧V4のみを出力する。除算器34は、電圧V4を電圧V2で除算することによって膜抵抗の実効抵抗値に比例する電圧値の電圧V5を出力する。
【0015】
一方、バンドパスフィルタ41、同期検波回路42、ローパスフィルタ43および除算器44は反応抵抗を測定する。具体的には、バンドパスフィルタ41は、本発明における第2バンドパスフィルタに相当し、電流検出センサCTから出力されるセンサ信号を入力した際に、第2測定用信号の電流値に応じた電圧V12を出力する。同期検波回路42は、本発明における第2同期整流回路に相当し、測定用信号が流れることによって燃料電池BTの内部抵抗に発生する電圧V1と電圧V12とで同期検波することによって、等価的に反応抵抗の両端に発生する電圧に対応する電圧を含む電圧V13を生成する。ローパスフィルタ43は、抵抗46およびコンデンサ47と相俟って電圧V13から高周波部分を除去して反応抵抗の両端に発生する電圧に対応する直流の電圧V14のみを出力する。除算器44は、電圧V14を電圧V12で除算することによって反応抵抗の実効抵抗値に比例する電圧V15を出力する。
【0016】
コンパレータ35は、下限判定用電源38から出力される下限電圧V6および上限判定用電源39から出力される上限電圧V7と電圧V5とを比較して、電圧V5が下限電圧V6から上限電圧V7までの電圧範囲(所定範囲)から外れたときに検出信号を出力する。この場合、下限電圧V6は、内部でショートしていない状態の良品の燃料電池BTにおける膜抵抗の最小実効抵抗値(図2に示す抵抗値R1の例えば70%の値とする)に相当する電圧に対応し、上限電圧V7は、良品の燃料電池BTの膜抵抗として許容できる最大実効抵抗値(図2に示す抵抗値R1の例えば130%の値とする)に相当する電圧に対応する。また、コンパレータ45は、上限判定用電源48から出力される上限電圧V16と電圧V15とを比較して、電圧V15が上限電圧V16を超えているときに検出信号を出力する。この場合、上限電圧V16は、良品の燃料電池BTの反応抵抗として許容できる最大実効抵抗値(図2に示す抵抗値R2の例えば130%とする)に相当する電圧に対応する。したがって、このコンパレータ35,45の検出信号を監視することで、膜抵抗の実効抵抗値が抵抗値R1に対して±30%の範囲内に収まり、かつ反応抵抗の実効抵抗値が抵抗値R2に対して+130%以下の範囲内に収まっているときに、内部ショートが発生することなく、反応状態が正常の燃料電池BTと判別することが可能となる。なお、反応抵抗の実効抵抗値の下限値については、コンパレータ35の検出信号に基づいて内部ショートを判別できるため、その設定が不要である。
【0017】
判定部13は、コンパレータ35,45によって出力される検出信号に基づいて燃料電池BTの良否を判定し、その判定結果を図外の外部装置に出力すると共に表示部14に表示させる。具体的には、判定部13は、外部装置に対して、例えば、コンパレータ35,45の少なくとも一方から検出信号が出力されたときにNG信号を出力し、いずれからも検出信号が入力されないときはOK信号を出力する。また、判定部13は、電圧V5,V15の電圧値を燃料電池BTの膜抵抗および反応抵抗の各実効抵抗値に変換演算した後に、表示部14に対して各実効抵抗値を表示させると共に、OK信号を出力するときには「良品」を示す旨を表示させ、NG信号を出力するときには「不良品」を示す旨を表示させる。表示部14は、判定部13によって出力される表示データに基づいて、燃料電池BTの膜抵抗および反応抵抗の各実効抵抗値を表示すると共に良否も表示する。
【0018】
次に、この診断装置1による燃料電池BTの実効電圧の測定方法および良否診断動作について、図1を参照して説明する。
【0019】
測定に先立ち、図1に示すように、まず、燃料電池BTの起電力に応じた所定抵抗値の負荷2をプローブP1,P2を介して燃料電池BTの両電極に接続する。次いで、燃料電池BTに流れる電流を検出する電流検出センサCTを燃料電池BTの正極側に接続したプローブP1を取り囲むようにして配置し、その電流検出センサCTと、診断装置1のセンサ信号入力端子とを接続する。
【0020】
また、プローブP3をプローブP1(または燃料電池BTの正極電極)に接続し、プローブP4を燃料電池BTの負極電極に接続する。さらに、プローブP5を燃料電池BTの正極電極に接続すると共にプローブP6を燃料電池BTの負極電極に接続する。これにより、燃料電池BTに測定用信号が印加されて、燃料電池BTを流れる測定用信号の電流値に応じた電圧に相当するセンサ信号が電流検出センサCTから診断装置1のセンサ信号入力端子に出力されると共に、プローブP5を介して燃料電池BTの両電極間に発生する電圧V1が診断装置1のセンスH端子(測定部12の入力部)に出力される。
【0021】
電流検出センサCTから出力されたセンサ信号は、センサ信号入力端子を介して測定部12に入力され、2分配されてバンドパスフィルタ31,41にそれぞれ入力される。この際に、バンドパスフィルタ31は、入力したセンサ信号から第1測定用交流信号の電流値に比例する(応じた)電圧V2を抽出して同期検波回路32に出力する。次いで、同期検波回路32は、電圧V2と電圧V1とで同期検波して電圧V3を生成して出力し、続いて、ローパスフィルタ33がその電圧V3に含まれている高周波成分を除去して、膜抵抗の実効抵抗に発生する電圧に比例する電圧V4を出力する。次いで、除算器34が、電圧V4を電圧V2で除算することによって膜抵抗の実効抵抗値に比例する電圧V5をコンパレータ35および判定部13に出力する。一方、バンドパスフィルタ41は、入力したセンサ信号から第2測定用交流信号の電流値に比例する(応じた)電圧V12を抽出して同期検波回路42に出力する。次いで、同期検波回路42は、電圧V12と電圧V1とで同期検波して電圧V13を生成して出力し、続いて、ローパスフィルタ43がその電圧V13に含まれている高周波部分を除去して、反応抵抗の実効抵抗に発生する電圧に比例する電圧V14を出力する。次いで、除算器44が、電圧V14を電圧V12で除算することによって反応抵抗の実効抵抗値に比例する電圧V15をコンパレータ45および判定部13に出力する。これにより、膜抵抗および反応抵抗の各実効抵抗値が同時に測定される。
【0022】
続いて、コンパレータ35が、電圧V5と、下限判定用電源38から入力した下限電圧V6および上限判定用電源39から入力した上限電圧V7とを比較して、電圧V5が両電圧の範囲から外れたときに、検出信号を出力する。一方、コンパレータ45は、電圧V15と、上限判定用電源48から入力した上限電圧V16とを比較して、電圧V15が上限電圧V16を超えるときに、検出信号を出力する。続いて、判定部13がコンパレータ35,45からそれぞれ出力される検出信号に基づいて燃料電池BTの良否を判定する。この場合、判定部13は、除算器34,44から電圧V5,V15がそれぞれ出力された後に所定時間待機し、コンパレータ35,45の少なくとも一方から検出信号が出力されたときには、燃料電池BTを不良と判断してNG信号を出力し、いずれからも検出信号が出力されていないときには、正常と判断してOK信号を出力する。これにより、膜抵抗および反応抵抗のそれぞれの測定結果に基づいて、燃料電池BTの良否が診断される。また、判定部13は、除算器34から出力された電圧V5および除算器44から出力された電圧V15をそれぞれ数値化すると共にその各数値(測定値)と燃料電池BTの良否判定結果とを表示部14に表示させる。これにより、測定者に対して、燃料電池BTの膜抵抗および反応抵抗の各測定値と、診断結果とが報知される。
【0023】
このように、この診断装置1によれば、燃料電池BTの膜抵抗および反応抵抗の各実効抵抗値をそれぞれ測定するための第1測定用信号および第2測定用信号をミキシングした測定用信号を生成する信号生成部11と、膜抵抗および反応抵抗の各実効抵抗値をそれぞれ測定する測定部12とを備えて構成したことにより、膜抵抗および反応抵抗の各実効抵抗値を同時に測定することができる。したがって、測定に要する時間を短縮することができるため、燃料電池BTの実効抵抗を効率的に測定することができる。また、判定部13を備えたことにより、燃料電池の良否を自動診断させることができる。さらに、表示部14を備えたことにより、測定者が判定結果を視覚的に確実に認識することができると共に、測定値を容易に確認することができる。
【0024】
なお、本発明は、上述した本発明の実施の形態に限定されない。例えば、上記した診断装置1では、固定周波数の信号を生成する発振器21,22を備えて信号生成部11を構成した例について説明したが、周波数を任意に設定可能なDDSやPLL回路を備えて信号生成部を構成することもできる。また、診断装置1を測定対象の燃料電池に組み込むこともできる。この場合、例えば、測定開始時間を計測するタイマを備えることにより、定期的かつ自動的に燃料電池BTの自己診断を行うこともできる。また、測定値を記録する記録装置を備えることにより、測定値の推移の把握やこれによる燃料電池の寿命の予測を行うこともできる。
【0025】
【発明の効果】
以上のように、請求項1記載の抵抗測定装置によれば、膜抵抗を測定するための第1測定用交流信号と反応抵抗を測定するための第2測定用交流信号とをミキシングして測定用信号を生成する測定用信号生成部と、膜抵抗を流れる第1測定用交流信号の電流値および膜抵抗に発生する電圧に基づいて膜抵抗の抵抗値を求めると共に反応抵抗を流れる第2測定用交流信号の電流値および反応抵抗に発生する電圧に基づいて反応抵抗の抵抗値を求める測定部とを備えたことにより、膜抵抗および反応抵抗の各実効抵抗値を同時に測定することができるため、短時間で燃料電池の実効抵抗値を効率よく測定することができる。
【0026】
また、の抵抗測定装置によれば、第1バンドパスフィルタ、第2バンドパスフィルタ、第1同期整流回路、第2同期整流回路、第1除算器および第2除算器を備えて測定部を構成したことにより、膜抵抗および反応抵抗の各実効抵抗値を同時にしかも正確に測定することができる。
【0027】
また、請求項2,3記載の診断装置によれば、抵抗測定装置と、膜抵抗の実効抵抗値が所定範囲内か否かを判定すると共に反応抵抗の実効抵抗値が所定の上限値以下か否かを判定する判定部とを備えたことにより、燃料電池の良否を効率よく、しかも自動診断させることができる。
【0028】
また、請求項記載の測定装置によれば、判定部の判定結果を表示する表示部を備えたことにより、測定者に対して燃料電池の良否を確実に報知することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る診断装置1および燃料電池BTの構成を示す回路図である。
【図2】 一般的な燃料電池の内部抵抗を表すコール・コール・プロット図であって、実線は良品の燃料電池BTにおけるコール・コール・プロット図を示し、破線は不良品の燃料電池BTにおけるコール・コール・プロット図を示す。
【図3】 従来の抵抗測定装置61および燃料電池BTの構成を示す回路図である。
【符号の説明】
1 診断装置
2 負荷
11 信号生成部
12 測定部
13 判定部
14 表示部
21,22 発振器
31,41 バンドパスフィルタ
32,42 同期検波回路
34,44 除算器
35,45 コンパレータ
38 下限判定用電源
39,48 上限判定用電源
BT 燃料電池BT
CT 電流検出センサ
R1,R3 膜抵抗
R2,R4 反応抵抗
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistance measuring apparatus suitable for measuring, for example, the effective resistance of a polymer electrolyte fuel cell according to a four-terminal method, and a diagnostic apparatus including the resistance measuring apparatus.
[0002]
[Prior art]
In general, the effective resistance of the internal resistance (impedance) of a polymer electrolyte fuel cell (hereinafter also referred to as “fuel cell”) mainly includes the resistance of an electrolyte membrane, the resistance of a catalyst, and the electrode constituting the fuel cell. And these contact resistances (in this specification, these are defined as “membrane resistances”) and reaction resistance resulting from the reaction between the catalyst and the fuel gas. In this case, for the effective resistance component (hereinafter also referred to as “effective resistance”) of the internal resistance of the fuel cell, a measurement AC signal (hereinafter also referred to as “measurement signal”) is applied to the fuel cell according to the four-terminal method. To measure. At this time, when the applied measurement signal has a high frequency, the membrane resistance is measured as an effective resistance, and when the measurement signal has a low frequency, the reaction resistance is measured as an effective resistance. The relationship between the effective resistance component and the imaginary component of the internal resistance of the fuel cell using the frequency of the measurement signal as a parameter is represented by a Cole-Cole plot shown in FIG. 2 as an example. In this case, “R1” represents the membrane resistance when the fuel cell is in a normal state, and “R2” represents the reaction resistance in that state. On the other hand, when the fuel cell is short-circuited inside, for example, the membrane resistance exhibits a resistance value smaller than the resistance value R1, and when the fuel cell is consumed, the membrane resistance has a resistance value as shown in FIG. The resistance value R3 is larger than R1. Further, when the reaction state between the catalyst and the fuel gas is poor, the reaction resistance shows a resistance value R4 larger than the resistance value R2 as shown in FIG. Therefore, it is possible to determine the quality of the fuel cell by measuring the membrane resistance and the reaction resistance and comparing each measured value with a predetermined reference value.
[0003]
A resistance measuring device 61 shown in FIG. 3 is conventionally known as a resistance measuring device that measures the effective resistance of a fuel cell according to a four-terminal method. When measuring the effective resistance of the fuel cell BT to be measured using this resistance measuring device 61, the membrane resistance and the reaction resistance are measured by changing the frequency of the applied measurement signal. Specifically, as shown in the figure, first, after setting the resistance value of the variable load 62 to a resistance value corresponding to the electromotive force of the fuel cell BT, the variable load 62 is connected to the fuel cell via the probes P1 and P2. Connect to both electrodes of BT. In addition, a current detection sensor (current transformer) CT for detecting the current value of the measurement signal flowing through the fuel cell BT is disposed between the probe P1 and the variable load 62, and sensor signal inputs of the current detection sensor CT and the resistance measurement device 61 are input. Connect the terminal. Further, the probes P3 and P5 are connected to one electrode of the fuel cell BT, and the probes P4 and P6 are connected to the other electrode. Next, after setting the measurement signal to a predetermined frequency (for example, a low frequency of 1 mHz), the measurement signal is applied to the fuel cell BT through the probes P3 and P4, and the measurement signal flows through the probes P5 and P6. The AC voltage generated at the internal resistance of the fuel cell BT is input by. At the same time, the detection voltage of the current detection sensor CT is input.
[0004]
In this case, the resistance measuring device 61 calculates the effective resistance of the fuel cell BT based on the AC voltage generated in the internal resistance and the detected voltage detected by the current detection sensor CT. Subsequently, the frequency of the measurement signal is changed to a high frequency in predetermined frequency increments, and the effective resistance of the fuel cell BT is calculated in the same manner. In this way, the effective resistance is calculated while gradually changing the frequency of the measurement signal to a high frequency up to several tens of kHz, for example. As a result, the Cole-Cole plot shown in FIG. 3 is created. In this case, the membrane resistance (R1) shown in the figure is obtained with the high frequency measurement signal, and the reaction resistance (R2) shown in the figure is obtained with the low frequency measurement signal. The quality of the fuel cell BT can be determined by checking the size.
[0005]
[Problems to be solved by the invention]
However, the conventional resistance measuring device 61 has the following problems. That is, in the conventional resistance measuring device 61, the effective resistance is measured each time by gradually changing the frequency of the measurement signal. In this case, when measuring the effective resistance, it is necessary to continue to apply to the fuel cell BT for a time corresponding to at least one cycle of the measurement signal. Therefore, when measuring with a low frequency measurement signal, the measurement takes a long time. Will be required. On the other hand, in order to measure the membrane resistance R1 and reaction resistance R2 of the fuel cell, it is necessary to apply and measure measurement signals having high and low frequencies. Therefore, the measurement which requires a long time is performed many times, and there is a problem that the measurement work is complicated and inefficient.
[0006]
The present invention has been made in view of such problems, and a resistance measuring device capable of efficiently measuring the effective resistance of a fuel cell in a short time, and a fuel cell based on the effective resistance measured by the resistance measuring device. The main object of the present invention is to provide a diagnostic apparatus capable of efficiently diagnosing quality.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the resistance measuring apparatus according to claim 1 is a measuring apparatus for measuring an effective resistance of a fuel cell, and is for a first measurement for measuring a membrane resistance forming a part of the effective resistance. comprising a measurement signal generator that generates a measurement signal and mixes the second measuring AC signals for measuring the reaction resistance which forms part of the AC signal and the effective resistance, and a measurement tough, The measuring unit receives the voltage corresponding to the current value of the measurement signal flowing through the fuel cell in a state where the measurement signal is applied to the fuel cell, and the first AC for measurement flows through the membrane resistance. A first band-pass filter that outputs a voltage corresponding to the current value of the signal, and a synchronous detection using a voltage generated between both electrodes of the fuel cell and a voltage corresponding to the current value of the first AC signal for measurement. Detects voltage generated in the membrane resistance A first synchronous rectifier circuit, and a first division for determining a resistance value of the film resistance by dividing a voltage detected by the first synchronous rectifier circuit by a voltage corresponding to a current value of the first AC signal for measurement. Current of the second AC signal for measurement flowing through the reaction resistor by inputting a voltage corresponding to the current value of the signal for measurement flowing through the fuel cell with the measurement signal applied to the fuel cell A second bandpass filter that outputs a voltage corresponding to the value; a voltage generated between the electrodes of the fuel cell; and a voltage corresponding to the current value of the second AC signal for measurement to detect the reaction A second synchronous rectifier circuit that detects a voltage generated in the resistor, and a voltage detected by the second synchronous rectifier circuit is divided by a voltage corresponding to a current value of the second AC signal for measurement. resistance It is configured to include a second divider for obtaining a.
[0008]
Diagnostic device according to claim 2, there is provided a diagnostic apparatus for diagnosing the quality of the fuel cell, a resistance measuring device of claim 1 Symbol placement, the resistance value of the film resistance is determined whether within a predetermined range A determination unit that determines whether or not the resistance value of the reaction resistance is equal to or lower than a predetermined upper limit value.
[0009]
According to a third aspect of the present invention, in the diagnostic device according to the second aspect , the determination unit is configured such that the resistance value of the membrane resistance is out of the predetermined range or the resistance value of the reaction resistance is the predetermined value. When the upper limit is exceeded, the fuel cell to be diagnosed is determined to be defective.
[0010]
According to a fourth aspect of the present invention, the diagnostic apparatus according to the second or third aspect further includes a display unit that displays a determination result of the determination unit.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of a resistance measuring device and a diagnostic device according to the invention will be described with reference to the accompanying drawings. In addition, about the component same as the structure shown in FIG. 3, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
[0012]
First, the configuration of the diagnostic apparatus 1 will be described with reference to FIG.
[0013]
The diagnostic device 1 is a diagnostic device that measures the effective resistance of the fuel cell to be measured and diagnoses the quality of the fuel cell based on the measured value. As shown in FIG. 12, the determination part 13 and the display part 14 are provided. The signal generation unit 11 includes oscillators 21 and 22, an amplifier 23, and resistors 24 to 26. In this case, the oscillator 21 generates a first measurement AC signal having a frequency (for example, 10 kHz) that can measure the membrane resistance of the fuel cell BT to be measured, and the oscillator 22 measures the reaction resistance of the fuel cell BT. A second measurement AC signal having a frequency to be obtained (frequency lower than the frequency of the first measurement AC signal: for example, 10 Hz) is generated. The amplifier 23 and the resistors 24 to 26 generate a measurement signal by mixing the first measurement AC signal and the second measurement AC signal generated by the oscillators 21 and 22.
[0014]
The measurement unit 12 includes band pass filters 31 and 41, synchronous detection circuits 32 and 42, low pass filters 33 and 43, dividers 34 and 44, and comparators 35 and 45. In this case, the band pass filter 31, the synchronous detection circuit 32, the low pass filter 33, and the divider 34 measure the membrane resistance. Specifically, the band-pass filter 31 corresponds to the first band-pass filter in the present invention, and corresponds to the current value of the first AC signal for measurement when the sensor signal output from the current detection sensor CT is input. Voltage V2 is output. The synchronous detection circuit 32 corresponds to the first synchronous rectifier circuit in the present invention, and is equivalently detected by performing synchronous detection with the voltage V1 and the voltage V2 generated in the internal resistance of the fuel cell BT when the measurement signal flows. A voltage V3 including a voltage corresponding to the voltage generated at both ends of the membrane resistance is generated. In this case, the voltage V1 may be input to the bandpass filter 31, and a sensor signal output from the current detection sensor CT may be input to the synchronous detection circuit 32 instead of the voltage V1 (in a reaction resistance measurement circuit described later). The same). The low-pass filter 33 removes a high frequency component from the voltage V3 in combination with the resistor 36 and the capacitor 37, and outputs only the DC voltage V4 corresponding to the voltage generated at both ends of the film resistance. The divider 34 outputs a voltage V5 having a voltage value proportional to the effective resistance value of the membrane resistance by dividing the voltage V4 by the voltage V2.
[0015]
On the other hand, the band-pass filter 41, the synchronous detection circuit 42, the low-pass filter 43, and the divider 44 measure reaction resistance. Specifically, the band-pass filter 41 corresponds to the second band-pass filter in the present invention, and corresponds to the current value of the second measurement signal when the sensor signal output from the current detection sensor CT is input. The voltage V12 is output. The synchronous detection circuit 42 corresponds to the second synchronous rectifier circuit in the present invention, and is equivalently detected by synchronous detection with the voltage V1 and the voltage V12 generated in the internal resistance of the fuel cell BT when the measurement signal flows. A voltage V13 including a voltage corresponding to the voltage generated at both ends of the reaction resistance is generated. The low-pass filter 43, combined with the resistor 46 and the capacitor 47, removes a high-frequency portion from the voltage V13 and outputs only a DC voltage V14 corresponding to the voltage generated at both ends of the reaction resistor. The divider 44 outputs a voltage V15 proportional to the effective resistance value of the reaction resistance by dividing the voltage V14 by the voltage V12.
[0016]
The comparator 35 compares the lower limit voltage V6 output from the lower limit determination power supply 38 and the upper limit voltage V7 output from the upper limit determination power supply 39 with the voltage V5, and the voltage V5 is from the lower limit voltage V6 to the upper limit voltage V7. A detection signal is output when the voltage falls outside the voltage range (predetermined range). In this case, the lower limit voltage V6 is a voltage corresponding to the minimum effective resistance value (for example, 70% of the resistance value R1 shown in FIG. 2) of a good fuel cell BT that is not short-circuited inside. The upper limit voltage V7 corresponds to a voltage corresponding to the maximum effective resistance value (for example, a value of 130% of the resistance value R1 shown in FIG. 2) allowable as the membrane resistance of the non-defective fuel cell BT. The comparator 45 compares the upper limit voltage V16 output from the upper limit determination power supply 48 with the voltage V15, and outputs a detection signal when the voltage V15 exceeds the upper limit voltage V16. In this case, the upper limit voltage V16 corresponds to a voltage corresponding to a maximum effective resistance value (for example, 130% of the resistance value R2 shown in FIG. 2) that can be accepted as a reaction resistance of a good fuel cell BT. Therefore, by monitoring the detection signals of the comparators 35 and 45, the effective resistance value of the membrane resistance falls within ± 30% of the resistance value R1, and the effective resistance value of the reaction resistance becomes the resistance value R2. On the other hand, when it is within the range of + 130% or less, it becomes possible to distinguish the fuel cell BT from the normal reaction state without causing an internal short circuit. The lower limit value of the effective resistance value of the reaction resistance need not be set because an internal short circuit can be determined based on the detection signal of the comparator 35.
[0017]
The determination unit 13 determines the quality of the fuel cell BT based on the detection signals output by the comparators 35 and 45, and outputs the determination result to an external device (not shown) and causes the display unit 14 to display the determination result. Specifically, the determination unit 13 outputs an NG signal to an external device when, for example, a detection signal is output from at least one of the comparators 35 and 45, and when no detection signal is input from either of them. An OK signal is output. The determination unit 13 converts the voltage values of the voltages V5 and V15 into the effective resistance values of the membrane resistance and reaction resistance of the fuel cell BT, and then displays the effective resistance values on the display unit 14, When an OK signal is output, a message indicating “non-defective product” is displayed, and when an NG signal is output, a message indicating “defective product” is displayed. The display unit 14 displays the effective resistance values of the membrane resistance and the reaction resistance of the fuel cell BT based on the display data output by the determination unit 13 and also the quality.
[0018]
Next, a method for measuring the effective voltage of the fuel cell BT and the pass / fail diagnosis operation by the diagnostic device 1 will be described with reference to FIG.
[0019]
Prior to the measurement, as shown in FIG. 1, first, a load 2 having a predetermined resistance value corresponding to the electromotive force of the fuel cell BT is connected to both electrodes of the fuel cell BT via the probes P1 and P2. Next, a current detection sensor CT for detecting a current flowing through the fuel cell BT is disposed so as to surround the probe P1 connected to the positive electrode side of the fuel cell BT, and the current detection sensor CT and the sensor signal input terminal of the diagnostic device 1 And connect.
[0020]
Further, the probe P3 is connected to the probe P1 (or the positive electrode of the fuel cell BT), and the probe P4 is connected to the negative electrode of the fuel cell BT. Further, the probe P5 is connected to the positive electrode of the fuel cell BT, and the probe P6 is connected to the negative electrode of the fuel cell BT. As a result, a measurement signal is applied to the fuel cell BT, and a sensor signal corresponding to a voltage corresponding to the current value of the measurement signal flowing through the fuel cell BT is transferred from the current detection sensor CT to the sensor signal input terminal of the diagnostic device 1. At the same time, a voltage V1 generated between both electrodes of the fuel cell BT via the probe P5 is output to the sense H terminal of the diagnostic apparatus 1 (input unit of the measuring unit 12).
[0021]
The sensor signal output from the current detection sensor CT is input to the measurement unit 12 via the sensor signal input terminal, divided into two, and input to the bandpass filters 31 and 41, respectively. At this time, the bandpass filter 31 extracts a voltage V2 proportional to (corresponding to) the current value of the first measurement AC signal from the input sensor signal and outputs the voltage V2 to the synchronous detection circuit 32. Next, the synchronous detection circuit 32 generates and outputs the voltage V3 by performing synchronous detection with the voltage V2 and the voltage V1, and then the low-pass filter 33 removes the high frequency component included in the voltage V3, A voltage V4 proportional to the voltage generated in the effective resistance of the membrane resistance is output. Next, the divider 34 divides the voltage V4 by the voltage V2 to output a voltage V5 proportional to the effective resistance value of the membrane resistance to the comparator 35 and the determination unit 13. On the other hand, the band-pass filter 41 extracts a voltage V12 proportional to (corresponding to) the current value of the second measurement AC signal from the input sensor signal and outputs the voltage V12 to the synchronous detection circuit 42. Subsequently, the synchronous detection circuit 42 generates and outputs a voltage V13 by performing synchronous detection with the voltage V12 and the voltage V1, and subsequently, the low-pass filter 43 removes a high frequency portion included in the voltage V13, A voltage V14 proportional to the voltage generated at the effective resistance of the reaction resistance is output. Next, the divider 44 divides the voltage V14 by the voltage V12 to output a voltage V15 proportional to the effective resistance value of the reaction resistance to the comparator 45 and the determination unit 13. Thereby, each effective resistance value of membrane resistance and reaction resistance is measured simultaneously.
[0022]
Subsequently, the comparator 35 compares the voltage V5 with the lower limit voltage V6 input from the lower limit determination power supply 38 and the upper limit voltage V7 input from the upper limit determination power supply 39, and the voltage V5 deviates from the range of both voltages. Sometimes a detection signal is output. On the other hand, the comparator 45 compares the voltage V15 with the upper limit voltage V16 input from the upper limit determination power supply 48, and outputs a detection signal when the voltage V15 exceeds the upper limit voltage V16. Subsequently, the determination unit 13 determines the quality of the fuel cell BT based on the detection signals output from the comparators 35 and 45, respectively. In this case, the determination unit 13 waits for a predetermined time after the voltages V5 and V15 are output from the dividers 34 and 44, respectively, and when the detection signal is output from at least one of the comparators 35 and 45, the fuel cell BT is defective. NG signal is output, and if no detection signal is output from any of them, it is determined normal and an OK signal is output. Thereby, the quality of the fuel cell BT is diagnosed based on the measurement results of the membrane resistance and the reaction resistance. Further, the determination unit 13 quantifies the voltage V5 output from the divider 34 and the voltage V15 output from the divider 44, and displays each numerical value (measured value) and the quality determination result of the fuel cell BT. Display on the unit 14. As a result, the measured value of the membrane resistance and reaction resistance of the fuel cell BT and the diagnosis result are notified to the measurer.
[0023]
As described above, according to the diagnostic apparatus 1, the measurement signal obtained by mixing the first measurement signal and the second measurement signal for measuring the effective resistance values of the membrane resistance and reaction resistance of the fuel cell BT, respectively. By comprising the signal generating unit 11 to be generated and the measuring unit 12 for measuring the respective effective resistance values of the membrane resistance and the reaction resistance, it is possible to simultaneously measure the effective resistance values of the membrane resistance and the reaction resistance. it can. Therefore, since the time required for measurement can be shortened, the effective resistance of the fuel cell BT can be measured efficiently. In addition, since the determination unit 13 is provided, the quality of the fuel cell can be automatically diagnosed. Further, by providing the display unit 14, the measurer can visually recognize the determination result reliably and can easily check the measurement value.
[0024]
The present invention is not limited to the above-described embodiment of the present invention. For example, in the above-described diagnosis apparatus 1, the example in which the signal generation unit 11 is configured by including the oscillators 21 and 22 that generate signals having fixed frequencies has been described. However, the diagnosis apparatus 1 includes a DDS or PLL circuit that can arbitrarily set the frequency. A signal generation unit can also be configured. Moreover, the diagnostic apparatus 1 can also be incorporated in the fuel cell to be measured. In this case, for example, by providing a timer for measuring the measurement start time, the self-diagnosis of the fuel cell BT can be performed regularly and automatically. In addition, by providing a recording device for recording the measured value, it is possible to grasp the transition of the measured value and predict the life of the fuel cell by this.
[0025]
【The invention's effect】
As described above, according to the resistance measuring apparatus of the first aspect, measurement is performed by mixing the first measurement AC signal for measuring the membrane resistance and the second measurement AC signal for measuring the reaction resistance. A measurement signal generator for generating a signal for use, and a second measurement value for obtaining a resistance value of the membrane resistance based on the current value of the first AC signal for measurement flowing through the membrane resistance and the voltage generated in the membrane resistance and flowing through the reaction resistance Since the measurement unit for obtaining the resistance value of the reaction resistance based on the current value of the alternating current signal and the voltage generated in the reaction resistance is provided, the effective resistance values of the membrane resistance and the reaction resistance can be measured simultaneously. The effective resistance value of the fuel cell can be efficiently measured in a short time.
[0026]
Further, according to the resistance measuring device of this first band-pass filter, second bandpass filter, the first synchronous rectifier circuit, the second synchronous rectifier circuit, the measurement unit comprises a first divider and a second divider By comprising, each effective resistance value of a membrane resistance and reaction resistance can be measured simultaneously and correctly.
[0027]
In addition, according to the diagnostic device of the second and third aspects, the resistance measuring device and whether or not the effective resistance value of the membrane resistance is within a predetermined range and whether the effective resistance value of the reaction resistance is equal to or less than a predetermined upper limit value are determined. By including the determination unit for determining whether or not the fuel cell is good, it is possible to efficiently and automatically diagnose the quality of the fuel cell.
[0028]
Further, according to the measurement device of the fourth aspect, by providing the display unit that displays the determination result of the determination unit, it is possible to reliably notify the measurer of the quality of the fuel cell.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing configurations of a diagnostic apparatus 1 and a fuel cell BT according to an embodiment of the present invention.
FIG. 2 is a Cole-Cole plot diagram showing the internal resistance of a general fuel cell, in which a solid line shows a Cole-Cole plot diagram for a non-defective fuel cell BT, and a broken line shows a bad fuel cell BT. A Cole-Cole plot diagram is shown.
FIG. 3 is a circuit diagram showing the configuration of a conventional resistance measuring device 61 and a fuel cell BT.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Diagnosis apparatus 2 Load 11 Signal generation part 12 Measurement part 13 Judgment part 14 Display part 21,22 Oscillator 31,41 Bandpass filter 32,42 Synchronous detection circuit 34,44 Divider 35,45 Comparator 38 Lower limit judgment power supply 39, 48 Power supply for upper limit judgment BT Fuel cell BT
CT Current detection sensor R1, R3 Membrane resistance R2, R4 Reaction resistance

Claims (4)

燃料電池の実効抵抗を測定する測定装置であって、
前記実効抵抗の一部を形成する膜抵抗を測定するための第1測定用交流信号と当該実効抵抗の一部を形成する反応抵抗を測定するための第2測定用交流信号とをミキシングして測定用信号を生成する測定用信号生成部と、測定部とを備え
前記測定部は、前記測定用信号を前記燃料電池に印加した状態において前記燃料電池を流れる前記測定用信号の電流値に応じた電圧を入力したときに前記膜抵抗を流れる前記第1測定用交流信号の電流値に応じた電圧を出力する第1バンドパスフィルタと、前記燃料電池の両電極間に発生する電圧と前記第1測定用交流信号の電流値に応じた電圧とで同期検波して前記膜抵抗に発生する電圧を検出する第1同期整流回路と、当該第1同期整流回路によって検出された電圧を前記第1測定用交流信号の電流値に応じた電圧で除算することによって前記膜抵抗の抵抗値を求める第1除算器と、前記測定用信号を前記燃料電池に印加した状態において前記燃料電池を流れる前記測定用信号の電流値に応じた電圧を入力して前記反応抵抗を流れる前記第2測定用交流信号の電流値に応じた電圧を出力する第2バンドパスフィルタと、前記燃料電池の前記両電極間に発生する電圧と前記第2測定用交流信号の電流値に応じた電圧とで同期検波して前記反応抵抗に発生する電圧を検出する第2同期整流回路と、当該第2同期整流回路によって検出された電圧を前記第2測定用交流信号の電流値に応じた電圧で除算することによって前記反応抵抗の抵抗値を求める第2除算器とを備えて構成されている抵抗測定装置。
A measuring device for measuring the effective resistance of a fuel cell,
Mixing a first measurement AC signal for measuring a film resistance forming a part of the effective resistance and a second measurement AC signal for measuring a reaction resistance forming a part of the effective resistance; comprising a measurement signal generator that generates a measurement signal, and a measurement tough,
The measuring unit receives the voltage corresponding to the current value of the measurement signal flowing through the fuel cell in a state where the measurement signal is applied to the fuel cell, and the first AC for measurement flows through the membrane resistance. A first band-pass filter that outputs a voltage corresponding to the current value of the signal, and a synchronous detection using a voltage generated between both electrodes of the fuel cell and a voltage corresponding to the current value of the first AC signal for measurement. A first synchronous rectifier circuit for detecting a voltage generated in the film resistor; and the voltage detected by the first synchronous rectifier circuit is divided by a voltage corresponding to a current value of the first AC signal for measurement. A first divider for obtaining a resistance value of the resistor, and a voltage corresponding to a current value of the measurement signal flowing through the fuel cell in a state where the measurement signal is applied to the fuel cell, to flow through the reaction resistor Above A second band-pass filter that outputs a voltage according to the current value of the AC signal for measurement, a voltage generated between the electrodes of the fuel cell, and a voltage according to the current value of the second AC signal for measurement. A second synchronous rectifier circuit for detecting a voltage generated in the reaction resistor by synchronous detection at a first frequency, and a voltage detected by the second synchronous rectifier circuit divided by a voltage corresponding to a current value of the second AC signal for measurement And a second divider for determining a resistance value of the reaction resistance .
燃料電池の良否を診断する診断装置であって、
請求項1記載の抵抗測定装置と、前記膜抵抗の抵抗値が所定範囲内か否かを判定すると共に前記反応抵抗の抵抗値が所定の上限値以下か否かを判定する判定部とを備えている診断装置。
A diagnostic device for diagnosing the quality of a fuel cell,
1 SL and mounting of the resistance measuring apparatus according to claim, and a determination unit for determining the resistance value of the reaction resistance is whether less than a predetermined upper limit value the resistance value of the film resistance is determined whether within a predetermined range Diagnostic device provided.
前記判定部は、前記膜抵抗の抵抗値が前記所定範囲を外れているとき、または前記反応抵抗の抵抗値が前記所定の上限値を超えているときに、診断対象の前記燃料電池を不良と判定する請求項記載の診断装置。The determination unit determines that the fuel cell to be diagnosed is defective when the resistance value of the membrane resistance is out of the predetermined range or when the resistance value of the reaction resistance exceeds the predetermined upper limit value. The diagnostic apparatus according to claim 2 for determining. 前記判定部の判定結果を表示する表示部を備えている請求項または記載の診断装置。The determination of the determination result diagnostic apparatus according to claim 2 or 3, wherein a display unit for displaying.
JP2002022730A 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device Expired - Fee Related JP4025080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002022730A JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002022730A JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Publications (2)

Publication Number Publication Date
JP2003223918A JP2003223918A (en) 2003-08-08
JP4025080B2 true JP4025080B2 (en) 2007-12-19

Family

ID=27745648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002022730A Expired - Fee Related JP4025080B2 (en) 2002-01-31 2002-01-31 Resistance measuring device and diagnostic device

Country Status (1)

Country Link
JP (1) JP4025080B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080712A (en) * 2011-08-01 2013-05-01 阿尔卑斯绿色器件株式会社 Battery device temperature measurement method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4720105B2 (en) * 2004-05-20 2011-07-13 日産自動車株式会社 Fuel cell diagnostic device and fuel cell diagnostic method
AT500968B8 (en) * 2004-10-07 2007-02-15 Avl List Gmbh METHOD FOR MONITORING THE OPERATING STATE OF A FUEL CELL STACK
US7626353B2 (en) 2004-10-19 2009-12-01 Hitachi, Ltd. Mobile type information terminal and self diagnosis method and operation method thereof
JP5007963B2 (en) * 2006-03-29 2012-08-22 東京電力株式会社 Calculation method of interface resistance
US10379168B2 (en) 2007-07-05 2019-08-13 Battelle Energy Alliance, Llc Apparatuses and methods for testing electrochemical cells by measuring frequency response
JP2009283173A (en) * 2008-05-20 2009-12-03 Yokogawa Electric Corp Impedance characteristics evaluation method and impedance characteristics evaluation device
WO2017003917A1 (en) * 2015-07-01 2017-01-05 Battelle Energy Alliance, Llc Energy storage cell impedance measuring apparatus, methods and related systems
FR2942545B1 (en) * 2009-02-24 2012-08-03 Helion METHOD FOR DETERMINING A HEALTH STATUS OF AN ELECTROCHEMICAL DEVICE
CN102318114A (en) * 2009-05-08 2012-01-11 丰田自动车株式会社 Fuel cell hydrogen concentration estimation device and fuel cell system
US8900767B2 (en) * 2011-04-26 2014-12-02 GM Global Technology Operations LLC Algorithm for in-situ quantification of PEMFC membrane health over its life
EP2908149B1 (en) * 2012-10-09 2017-04-26 Nissan Motor Co., Ltd. Device for measuring impedance of laminated battery
JP6413402B2 (en) * 2014-07-03 2018-10-31 日産自動車株式会社 Impedance measuring device
WO2016092618A1 (en) * 2014-12-08 2016-06-16 日産自動車株式会社 Impedance measurement device and impedance measurement method
US10345384B2 (en) 2016-03-03 2019-07-09 Battelle Energy Alliance, Llc Device, system, and method for measuring internal impedance of a test battery using frequency response
US10656233B2 (en) 2016-04-25 2020-05-19 Dynexus Technology, Inc. Method of calibrating impedance measurements of a battery
US11054481B2 (en) 2019-03-19 2021-07-06 Battelle Energy Alliance, Llc Multispectral impedance determination under dynamic load conditions
US11422102B2 (en) 2020-01-10 2022-08-23 Dynexus Technology, Inc. Multispectral impedance measurements across strings of interconnected cells
US11519969B2 (en) 2020-01-29 2022-12-06 Dynexus Technology, Inc. Cross spectral impedance assessment for cell qualification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103080712A (en) * 2011-08-01 2013-05-01 阿尔卑斯绿色器件株式会社 Battery device temperature measurement method
CN103080712B (en) * 2011-08-01 2015-01-14 阿尔卑斯绿色器件株式会社 Battery device temperature measurement method

Also Published As

Publication number Publication date
JP2003223918A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP4025080B2 (en) Resistance measuring device and diagnostic device
JP4648322B2 (en) Method and apparatus for determining the state of charge of a battery
TWI286218B (en) Method for determining state-of-health of batteries
CN106896274B (en) Apparatus, system and method for insulation resistance measurement and insulation loss diagnosis
JP2004191373A (en) Electronic battery tester
JP5348428B2 (en) Method and apparatus for off-line test of electric motor
KR101966573B1 (en) Method of manufacturing power storage device, inspection device of structure
JP4940889B2 (en) Battery characteristic detection method and battery characteristic detection apparatus
JP5620297B2 (en) Impedance measuring device
JP2011099842A (en) Circuit for sensing short circuit and disconnection of resolver of hybrid vehicle, and sensing method of short circuit and disconnection of resolver using the same
EP3264120A1 (en) Cell deterioration diagnostic method and cell deterioration diagnostic device
JP2007333494A (en) Deterioration diagnosis method of storage battery, and deterioration diagnosis device thereof
JP2009198188A (en) Ground resistance meter
JP2008157838A (en) Insulation monitoring device
JPH11174136A (en) Method and device for judging deterioration of battery pack
JP4593053B2 (en) Abnormality diagnosis method and apparatus for separate transformer
JP2009002857A (en) Circuit element measuring apparatus
ITCO20100030A1 (en) DEVICE AND METHOD FOR DISTANCE ANALYZER
KR100550360B1 (en) Apparatus for diagnosing status of electric power converter
CN208126192U (en) A kind of controller for electric vehicle full-automatic test system
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
JP3964654B2 (en) Electrical circuit diagnostic equipment
CN109923428A (en) For diagnosing the device and method of multiphase current detection
CN110442109A (en) A kind of controller for electric vehicle full-automatic test system
JP2006071306A (en) Battery characteristics measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees