JP4024029B2 - Manufacturing method of pressure contact type connector - Google Patents

Manufacturing method of pressure contact type connector Download PDF

Info

Publication number
JP4024029B2
JP4024029B2 JP2001319499A JP2001319499A JP4024029B2 JP 4024029 B2 JP4024029 B2 JP 4024029B2 JP 2001319499 A JP2001319499 A JP 2001319499A JP 2001319499 A JP2001319499 A JP 2001319499A JP 4024029 B2 JP4024029 B2 JP 4024029B2
Authority
JP
Japan
Prior art keywords
insulating rubber
rubber sheet
insulating
thickness
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001319499A
Other languages
Japanese (ja)
Other versions
JP2003123868A (en
Inventor
周三 松本
康弘 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2001319499A priority Critical patent/JP4024029B2/en
Publication of JP2003123868A publication Critical patent/JP2003123868A/en
Application granted granted Critical
Publication of JP4024029B2 publication Critical patent/JP4024029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、COG、COF、TABからなる液晶ディスプレイモジュールと回路基板、あるいは回路基板間の接続等に使用される圧接型コネクタの製造方法に関するものである。
【0002】
【従来の技術】
従来、回路基板間の電気的な接続には、金属コネクタが使用されているが、この金属コネクタには、様々なタイプがある。例えば、図4に示すタイプは、回路基板間に介在する断面略半小判形で弾性の絶縁性エラストマー5と、この絶縁性エラストマー5の湾曲した周面に断面略U字形に屈曲して加硫接着される絶縁性ゴムシート6と、この絶縁性ゴムシート6の表面に並設されて回路基板間を電気的に接続する複数本の導電細線3とから構成されている。また、これ以外にも、図示しないが、板形で弾性の絶縁性エラストマー5と、この絶縁性エラストマー5の表面に重ねて加硫接着される絶縁性ゴムシート6と、この絶縁性ゴムシート6の表面に並設されて回路基板間を電気的に接続する複数本の導電細線3とからなるタイプがある。
【0003】
【発明が解決しようとする課題】
従来の金属コネクタは、以上のように絶縁性エラストマー5に単層の絶縁性ゴムシート6が単に加硫接着して成形されるだけなので、これら絶縁性エラストマー5と絶縁性ゴムシート6の伸び易さの相違から、成形後に長さ方向に反ってしまい(図5参照)、組み込み時の作業性を悪化させるという問題がある。特に、20mm以上の長さの金属コネクタは、無視し難い程反るので、自動組み込みができず、作業の遅延化を招いて結果的に著しいコスト高になる。このような金属コネクタでは回路基板等との接続も不安定な状態になりやすいので、接続しても導通しないことが多く、品質上も問題である。
【0004】
本発明は上記に鑑みなされたもので、製造後の反りを抑制防止し、組み込み時の作業性を向上させてコストを低減でき、しかも、電気接合物と安定して接続することのできる圧接型コネクタの製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明においては上記課題を解決するため、第一、第二の電気接合物を電気的に接続する長さ20mm以上の圧接型コネクタの製造方法であって、
基材シート上にシーティングしたゴム材料を加熱加硫して第一の絶縁性ゴムシートを25〜50μmの厚さに形成し、この加熱硬化した第一の絶縁性ゴムシート上に別のゴム材料を厚さ50〜150μmにシーティングして未加硫の第二の絶縁性ゴムシートを積層形成する工程と、
未加硫の第二の絶縁性ゴムシートの表面に複数本の導電細線を所定のピッチで配列してその余剰部分を除去して整え、第一、第二の絶縁性ゴムシートと複数本の導電細線とを加熱して一次加硫し、その後、第一の絶縁性ゴムシートから基材シートを剥離して二次加硫することにより、第一、第二の絶縁性ゴムシートを75〜200μmの厚さに加硫接着して第一の絶縁性ゴムシートの厚さを25μm以上、第二の絶縁性ゴムシートの厚さを50μm以上とするとともに、第二の絶縁性ゴムシートの表面に複数本の導電細線を加硫接着して中間体を形成し、この中間体を所定の大きさに形成する工程と、
成形用下型内に中間体を断面略U字形にセットしてその複数本の導電細線を下向きとし、中間体の第一の絶縁性ゴムシート上にエラストマー材料をセットし、成形用下型内に成形用上型を型締めして加圧加熱することにより、エラストマー材料を発泡させて第一の絶縁性ゴムシートに密着する弾性の絶縁性エラストマーを略ブロック形に形成する工程と、
成形用下型から一体化した中間体と絶縁性エラストマーとを取り出した後、この一体化した中間体と絶縁性エラストマーとにポストキュアを施して圧接型コネクタを製造する工程とを含んでなることを特徴としている。
【0007】
ここで、特許請求の範囲における加硫硬化された第一の絶縁性ゴムシートの厚さは25〜50μmが良く、未加硫の第二の絶縁性ゴムシートの厚さは50〜150μmが良い。これら第一、第二の絶縁性ゴムシートの加硫接着後の重なった厚さは75〜200μmが良い。第一、第二の電気接合物には、少なくともCOG、COF、TABからなる液晶ディスプレイモジュール、各種の回路基板や半導体パッケージ等が含まれる。また、絶縁性エラストマーの形状としては、断面略長方形、正方形、半円形、半楕円形、半小判形等があげられる。この絶縁性エラストマーは、略棒形でも略ブロック形でも良いし、長さの長短を特に問うものではない。断面略U字形には、断面U字形、断面C字形、断面コ字形、あるいはこれらに類似する形が含まれる。
【0008】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態における圧接型コネクタは、図1に示すように、可撓性の絶縁性ゴムシート6を、相互に積層する第一、第二の絶縁性ゴムシート1、2とし、第二の絶縁性ゴムシート2の表面長さ方向に複数本の導電細線3を所定のピッチで等間隔に並設して柔軟性の導電性ゴムシート4を製造するとともに、この導電性ゴムシート4を、図示しない上下の回路基板間に介在する略ブロック形で弾性の絶縁性エラストマー5の上面、正面、及び下面、換言すれば、周面の一部に、断面略U字形に屈曲して覆着し、圧接に基づき回路基板間を複数本の導電細線3で電気的に接続するようにしている。
【0009】
第一の絶縁性ゴムシート1は、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンニトリル等のようなポリエステルフィルムやポリイミドフィルム等のフィルム上に、クロロプレンゴム、シリコーンゴム、イソプレンゴム、ブチルゴム、フッ素ゴム、ウレタンゴム等から選択されたゴム材料がトッピング法等の一般的な方法により塗布・加硫されることで形成される。
【0010】
第二の絶縁性ゴムシート2は、第一の絶縁性ゴムシート1上に、厚さ25〜50μm程度にプライマーを添加したクロロプレンゴム、シリコーンゴム、イソプレンゴム、ブチルゴム、フッ素ゴム、ウレタンゴム等から選択したゴム材料をトッピング法等の一般的な方法により厚さ50〜150μm程度に塗布されることで形成される。この厚さのバラツキは、好ましくは±5μm以下が良い。これは、厚さのバラツキ(Rmax)が10μmを超える場合には、導電細線3の配列ピッチが乱れやすくなるためである。ゴム材料は、上記種類の中から任意に選択されるが、耐環境特性や機械特性に優れるシリコーンゴムが最適である。このような第一、第二の絶縁性ゴムシート1、2を得るためには、2〜3本のカレンダーロールで混練したゴム材料を、PET等の非収縮性(5%以下)の基材シート上に分出しする方法が良い。
【0011】
第一、第二の絶縁性ゴムシート1、2の厚みであるが、これらの積層した厚みは、厚すぎる(およそ200μm以上)とU字形に屈曲する成形性が悪化し、収縮率・作業効率が低下する。また、(1)厚みの比は、第一の絶縁性ゴムシート1:第二の絶縁性ゴムシート2=1:2よりも小さい方が好ましい。これは、大きくなると(第一の絶縁性ゴムシート1の割合が増えると)製品の長さ方向に反りが発生し、不良品となるからである。また、(2)第二の絶縁性ゴムシート2は厚さ50μm程度以上が好ましい。したがって、第一の絶縁性ゴムシート1の厚さは25μm程度以上が良い。
【0012】
よって、第一、第二の絶縁性ゴムシート1、2の厚みは、以下の4条件を同時に満たす必要がある。
▲1▼第一の絶縁性ゴムシート1は厚さ25μm程度以上であること
▲2▼第二の絶縁性ゴムシート2は厚さ50μm程度以上であること
▲3▼第一の絶縁性ゴムシート1:第二の絶縁性ゴムシート2=1:2よりも小さい方が良い
▲4▼第一、第二の絶縁性ゴムシート1、2を合わせた厚みは200μm程度以下であること
【0013】
各導電細線3としては、金、金合金、白金、銅、アルミニウム、アルミニウム‐ケイ素合金、真鍮、洋白、リン青銅、ベリリウム銅、ニッケル、モリブテン、タングステン、ステンレス等からなる金属細線、あるいはこれらに、金、金合金、ロジウム等の導電性と耐環境特性に優れる材料をメッキ加工した細線等を使用することができる。これらの中でも、優れた導電性と耐環境特性、低い接触特性を有する金属系や金メッキの金属細線が好ましく使用される。
【0014】
導電細線3の径は、太すぎる場合には、細かい配線ピッチのものが得られなくなり、円弧形に成形する場合には、導電細線3の曲げ弾性が強すぎて金型に沿って円弧形に形成し難い。逆に、径が小さすぎる場合、配線時に断線しやすくなる。そこで、導電細線3の太さは、成形しやすく取り扱いのしやすい3〜500μm、好ましくは10〜100μm、より好ましくは15〜50μmの範囲で選択される。また、未加硫の絶縁性ゴムシート上に導電細線3の30〜80%、好ましくは40〜60%が埋設される太さが良い。
【0015】
絶縁性エラストマー5は、各種のエラストマー材料、例えばブタジエン‐スチレン、ブタジエン‐アクリロニトリル、ブタジエン‐イソブチレン等のブタジエン系共重合体、クロロプレン重合体、塩化ビニル‐酢酸ビニル共重合体、ポリウレタン、シリコーンゴム等から選択して成形される。これらの中でも、エラストマー材料としては、耐熱性、耐寒性、耐候性、電気絶縁性に優れ、無毒でもあるシリコーンゴムが好ましい。
【0016】
次に、圧接型コネクタの製造方法について説明すると、先ず、シリコーンゴム材料を調製し、このシリコーンゴム材料を長尺の基材シート上にシーティングして加熱加硫し、第一の絶縁性ゴムシート1を作製する。こうして第一の絶縁性ゴムシート1を作製したら、別のシリコーンゴム材料を調製し、このシリコーンゴム材料を第一の絶縁性ゴムシート1上にシーティングして第二の絶縁性ゴムシート2を積層する。
【0017】
次いで、第二の絶縁性ゴムシート2表面の長手方向に複数本の導電細線3を平行になるよう所定のピッチで並べて配列し、この複数本の導電細線3の余剰部分を除去する。複数本の導電細線3を整えたら、第一、第二の絶縁性ゴムシート1、2、導電細線3からなる中間体をオーブン中で加熱して一次加硫し、第一の絶縁性ゴムシート1から基材シートを剥離してオーブン中で再度加熱して二次加硫し、第一、第二の絶縁性ゴムシート1、2を加硫接着するとともに、第二の絶縁性ゴムシート2の表面に複数本の導電細線3を加硫接着する(図2(a)参照)。そして、一体化した中間体を、複数本の導電細線3を横切るよう切断して所定の大きさに形成する(図2(b)参照)。
【0018】
次いで、絶縁性エラストマー5となる立体のスポンジシリコーンゴム材料7を調製して所定の大きさに形成(図2(c)参照)する。こうしてスポンジシリコーンゴム材料7を所定の大きさに形成したら、用意しておいた成形用下型10内に中間体を断面U字形にセットしてその複数本の導電細線3を下向きにするとともに、第一の絶縁性ゴムシート1上にスポンジシリコーンゴム材料7をセットし、成形用下型10に成形用上型11を型締めして加圧加熱(図2(d)参照)し、スポンジシリコーンゴム材料7を発泡させて第一の絶縁性ゴムシート1に密着する絶縁性エラストマー5を形成し、型開きした成形用下型10から取り出す。
【0019】
そして、所定の条件でポストキュアーを行い、図2(e)に示す長い一応の圧接型コネクタを作製し、その後、圧接型コネクタを所定の長さに切断して略ブロック形にすれば、完全な圧接型コネクタを製造することができる。
こうして圧接型コネクタを製造したら、上下の回路基板に圧接型コネクタを挟持させ、上方の回路基板を圧下押圧すれば、回路基板間を複数本の導電細線3で電気的、かつソフトに導通接続することができる。
【0020】
上記構成によれば、絶縁性エラストマー5と第二の絶縁性ゴムシート2の間に第一の絶縁性ゴムシート1が介在して支持機能、補強機能を発揮するので、絶縁性エラストマー5と第二の絶縁性ゴムシート2の伸び易さの相違から、圧接型コネクタが成形後に長さ方向に反るのを防止あるいは抑制することができる。したがって、組み込み時の作業性を著しく向上させることができる。特に、圧接型コネクタが20mm以上の長さでも反ることがないので、自動組み込みが可能になり、作業の円滑化、迅速化、容易化を通じて大幅なコスト削減を図ることができる。さらに反りの抑制防止により、回路基板等とも安定した状態で接続することができるので、接続により確実な導通を得ることが可能になる。
【0021】
次に、図3は請求項4記載の発明の実施形態を示すもので、この場合には、可撓性の絶縁性ゴムシート6を、加硫接着により相互に積層する第一、第二の絶縁性ゴムシート1、2とし、第二の絶縁性ゴムシート2の表面長さ方向に複数本の導電細線3を所定のピッチで等間隔に並設して柔軟性の導電性ゴムシート4を製造するとともに、この導電性ゴムシート4を、板形で弾性の絶縁性エラストマー5上に積層して加硫接着し、水平な一対の回路基板間を複数本の導電細線3で電気的に接続するようにしている。
その他の部分については、上記実施形態と同様であるので説明を省略する。
本実施形態においても上記実施形態と同様の作用効果が期待でき、しかも、圧接型コネクタの多様化が大いに期待できるのは明らかである。
【0022】
なお、上記実施形態では絶縁性エラストマー5の背面には特に何も形成していないが、絶縁性エラストマー5の背面にエラストマー製の補強板や支持板等を接着しても良い。また、請求項3記載の発明の実施形態における一対の回路基板、換言すれば、第一、第二の電気接合物は、上下方向又は直角方向に設けられれば良い。
【0023】
【実施例】
以下、本発明に係る圧接型コネクタの実施例を比較例と共に説明する。
実施例
先ず、シリコーンゴムコンパウンドKE‐981U[信越化学工業株式会社製商品名]100重量部に、加硫剤C‐19A、B[信越化学工業株式会社製 商品名]をそれぞれ0.3重量部、2.5重量部添加配合してシリコーンゴム材料を調製し、このシリコーンゴム材料をカレンダーロールによりPETシートからなる非伸縮性で長尺の基材シート上に厚さ50μmにシーティングして加熱加硫し、第一の絶縁性ゴムシートを作製した。
【0024】
次いで、シリコーンゴムコンパウンドKE‐153U[信越化学工業株式会社製 商品名]100重量部に、加硫剤C‐19A、B[信越化学工業株式会社製 商品名]をそれぞれ0.5重量部、0.25重量部、シランカップリング剤KBM403[信越化学工業株式会社製 商品名]1.0重量部添加配合してシリコーンゴム材料を調製し、このシリコーンゴム材料をカレンダーロールにより第一の絶縁性ゴムシート上に厚さ100μmにシーティングして第二の絶縁性ゴムシートを積層した。
【0025】
次いで、第二の絶縁性ゴムシート表面に金メッキを施した真鍮線からなる線径40μmの導電細線を所定のピッチで並べて配列し、この複数本の導電細線の余剰部分を除去して整えた。この複数本の導電細線の配列に際しては、ピッチ100μmで導電細線を30mm配列したら0.4mmずらし、その後、引き続きピッチ100μmで導電細線を30mm配列するという作業を繰り返し、第二の絶縁性ゴムシートの全表面に複数本の導電細線を配列した。
【0026】
次いで、第一、第二の絶縁性ゴムシート、導電細線からなる中間体を120℃のオーブン中で30分間加熱して一次加硫し、第一の絶縁性ゴムシートから基材シートを剥離して195℃のオーブン中で4時間加熱して二次加硫し、第一、第二の絶縁性ゴムシートを加硫接着するとともに、第二の絶縁性ゴムシートの表面に複数本の導電細線を加硫接着した。そして、一体化した中間体を、複数本の導電細線を横切るよう切断して幅8.0mm、長さ300mmの大きさに形成した。
【0027】
次いで、シリコーンゴムコンパウンドKE‐151U[信越化学工業株式会社製 商品名]100重量部に、加硫剤C‐1、C‐3[信越化学工業株式会社製 商品名]0.5重量部、2.0重量部、発泡剤2,2‐アゾビスイソブチロニトリル1.8重量部を添加配合して絶縁性エラストマーとなる立体のスポンジシリコーンゴム材料を調製し、このスポンジシリコーンゴム材料をカレンダーロールにより所定の厚さにシーティングし、所定の大きさとした。
【0028】
次いで、成形用下型内に中間体を断面U字形にセットしてその複数本の導電細線を下向きにするとともに、第一の絶縁性ゴムシート上にスポンジシリコーンゴム材料をセットし、成形用下型に成形用上型を型締めして10kg/cm2の加圧下において175℃、5分間加熱し、スポンジシリコーンゴム材料を発泡させて第一の絶縁性ゴムシートに密着する絶縁性エラストマーを形成し、成形用下型から取り出した。
【0029】
そして、200℃、1時間の条件でポストキュアーを行い、±300mmの一応の圧接型コネクタを作製したところ、長さ方向の面に対する曲りは0.3mmであった。この圧接型コネクタを導電細線の配列されていない0.4mmずらした上記個所で切断して略ブロック形に形成し、圧接型コネクタを作製した。この圧接型コネクタの長さ方向の面に対する曲りは殆どなかった。
【0030】
作製した圧接型コネクタは、長さ方向に対する反りが殆どないので、組み込み時の作業性を著しく向上させることができた。また、自動組み込み装置による自動組み込みが可能になり、作業の円滑化、迅速化、容易化を通じてコスト削減を図ることができた。また、液晶ディスプレイと回路基板、回路基板同士を安定した状態で接続することができ、接続により回路の確実な導通を得ることが可能になった。
【0031】
比較例
図4に示す従来の金属コネクタの場合、長いときには長さ方向に対する反りが発生し、組み込み時の作業性が実に悪かった。具体的には、長さ30mm、厚み2mmの金属コネクタの場合、長さ方向の面に対する反りは3mmにも及んだ。また、液晶ディスプレイと回路基板、回路基板同士を安定した状態で接続することがきわめて困難であり、接続しても回路の導通を得ることが殆ど不可能であった。
【0032】
【発明の効果】
以上のように本発明によれば、絶縁性エラストマーと第二の絶縁性ゴムシートの間に第一の絶縁性ゴムシートが介在して支持機能、補強機能を発揮するので、絶縁性エラストマーと第二の絶縁性ゴムシートの伸び易さの相違から、圧接型コネクタが成形後に長さ方向に反るのを防止あるいは抑制することができる。したがって、組み込み時の作業性を向上させることができる。特に、圧接型コネクタが20mm以上の長さでも反ることがないので、自動組み込みが可能になり、作業の円滑化、迅速化、容易化を通じてコスト削減を図ることができる。さらに、反りの抑制防止により、回路基板等とも安定した状態で接続することができるので、接続により確実な導通を得ることが可能になる。
【図面の簡単な説明】
【図1】 本発明に係る圧接型コネクタの実施形態を示す斜視図である。
【図2】 本発明に係る圧接型コネクタの製造方法の実施形態を示す説明図で、(a)図は第一、第二の絶縁性ゴムシートを加硫接着し、第二の絶縁性ゴムシートに導電細線を加硫接着した状態を示す斜視図、(b)図は第一、第二の絶縁性ゴムシート、及び導電細線からなる中間体をカットして所定の大きさに形成した状態を示す斜視図、(c)図はスポンジシリコーンゴム材料を調製した状態を示す斜視図、(d)図は成形用下型に中間体をセットしてその導電細線を下向きにし、第一の絶縁性ゴムシート上にスポンジシリコーンゴム材料をセットし、成形用下型に成形用上型を型締めした状態を示す断面図、(e)図は長尺の圧接型コネクタを示す斜視図である。
【図3】 本発明に係る圧接型コネクタの他の実施形態を示す斜視図である。
【図4】 従来の金属コネクタを示す斜視図である。
【図5】 従来の金属コネクタの問題点を示す斜視図である。
【符号の説明】
1 第一の絶縁性ゴムシート
2 第二の絶縁性ゴムシート
3 導電細線
4 導電性ゴムシート
5 絶縁性エラストマー
6 絶縁性ゴムシート
7 スポンジシリコーンゴム材料
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of a pressure contact type connector used for connection between a liquid crystal display module made of COG, COF, and TAB and a circuit board, or a connection between circuit boards.
[0002]
[Prior art]
Conventionally, metal connectors have been used for electrical connection between circuit boards, and there are various types of metal connectors. For example, the type shown in FIG. 4 has a substantially semi-oval cross-section and an elastic insulating elastomer 5 interposed between circuit boards, and vulcanizes by bending the curved surface of the insulating elastomer 5 into a substantially U-shaped cross section. The insulating rubber sheet 6 to be bonded is composed of a plurality of conductive thin wires 3 that are arranged in parallel on the surface of the insulating rubber sheet 6 and electrically connect the circuit boards. In addition to this, although not shown, a plate-like elastic insulating elastomer 5, an insulating rubber sheet 6 that is vulcanized and bonded to the surface of the insulating elastomer 5, and the insulating rubber sheet 6 There is a type composed of a plurality of thin conductive wires 3 that are arranged in parallel on the surfaces of the two and electrically connect circuit boards.
[0003]
[Problems to be solved by the invention]
Since the conventional metal connector is formed by simply vulcanizing and bonding the single-layer insulating rubber sheet 6 to the insulating elastomer 5 as described above, the insulating elastomer 5 and the insulating rubber sheet 6 are easily stretched. Due to the difference in thickness, there is a problem in that the length of the sheet is warped after molding (see FIG. 5), and the workability at the time of assembling is deteriorated. In particular, a metal connector having a length of 20 mm or more is warped so as not to be ignored, so that it cannot be automatically assembled, resulting in a delay in work, resulting in a significant increase in cost. In such a metal connector, since the connection with the circuit board or the like is likely to be unstable, there is often no conduction even if the connection is made, which is a problem in terms of quality.
[0004]
The present invention has been made in view of the above, to prevent suppress warpage after manufacture, thereby improving the workability during incorporation can reduce costs, yet, pressure-contact type which can be connected electrically joined object and stable It aims at providing the manufacturing method of a connector .
[0005]
[Means for Solving the Problems]
In the present invention, in order to solve the above-mentioned problem, a method of manufacturing a press-contact connector having a length of 20 mm or more for electrically connecting the first and second electrical joints,
A rubber material sheeted on the base sheet is heated and vulcanized to form a first insulating rubber sheet having a thickness of 25 to 50 μm, and another rubber material is formed on the heat-cured first insulating rubber sheet. A step of sheeting to a thickness of 50 to 150 μm to form an unvulcanized second insulating rubber sheet,
A plurality of conductive thin wires are arranged at a predetermined pitch on the surface of the unvulcanized second insulating rubber sheet, and the excess portions are removed and arranged, and the first and second insulating rubber sheets and the plurality of The conductive thin wire is heated to perform primary vulcanization, and then the base sheet is peeled from the first insulating rubber sheet and subjected to secondary vulcanization, whereby the first and second insulating rubber sheets are 75 to 75%. The thickness of the first insulating rubber sheet is 25 μm or more by vulcanizing and bonding to a thickness of 200 μm, the thickness of the second insulating rubber sheet is 50 μm or more, and the surface of the second insulating rubber sheet A plurality of conductive wires are vulcanized and bonded to form an intermediate, and the intermediate is formed into a predetermined size; and
In the lower mold for molding, the intermediate body is set to have a substantially U-shaped cross section, the plurality of conductive thin wires are directed downward, and an elastomer material is set on the first insulating rubber sheet of the intermediate body. A step of forming an elastic insulating elastomer in a substantially block shape by foaming the elastomer material and closely adhering to the first insulating rubber sheet by clamping and heating the upper mold for molding;
Removing the integrated intermediate and insulating elastomer from the lower mold for molding, and then post-curing the integrated intermediate and insulating elastomer to manufacture a pressure contact type connector. It is characterized by.
[0007]
Here, the thickness of the vulcanized and cured first insulating rubber sheet in the claims is preferably 25 to 50 μm, and the thickness of the unvulcanized second insulating rubber sheet is preferably 50 to 150 μm. . The overlapping thickness of these first and second insulating rubber sheets after vulcanization bonding is preferably 75 to 200 μm. The first and second electrical junctions include at least a liquid crystal display module made of COG, COF, and TAB, various circuit boards, semiconductor packages, and the like. Examples of the shape of the insulating elastomer include a substantially rectangular cross section, a square, a semicircular shape, a semielliptical shape, and a semi-oval shape. This insulating elastomer may be substantially rod-shaped or substantially block-shaped, and it does not specifically ask whether the length is long or short. The substantially U-shaped section includes a U-shaped section, a C-shaped section, a U-shaped section, or a similar shape.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, a press-contact connector according to the present embodiment is a first in which flexible insulating rubber sheets 6 are laminated on each other. The second insulating rubber sheets 1 and 2 are made of flexible conductive material by arranging a plurality of conductive thin wires 3 in parallel at a predetermined pitch in the surface length direction of the second insulating rubber sheet 2. The rubber sheet 4 is manufactured, and the conductive rubber sheet 4 is arranged on the upper, front, and lower surfaces of the substantially elastic insulating elastomer 5 interposed between upper and lower circuit boards (not shown), in other words, the peripheral surface. The circuit boards are electrically connected to each other by a plurality of thin conductive wires 3 based on the pressure contact.
[0009]
The first insulating rubber sheet 1 is made of, for example, a chloroprene rubber, a silicone rubber, an isoprene rubber, a butyl rubber, a fluorine rubber, a urethane on a film such as a polyester film or a polyimide film such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene nitrile. A rubber material selected from rubber or the like is formed by applying and vulcanizing by a general method such as a topping method.
[0010]
The second insulating rubber sheet 2 is made of chloroprene rubber, silicone rubber, isoprene rubber, butyl rubber, fluorine rubber, urethane rubber, etc., to which a primer is added to a thickness of about 25 to 50 μm on the first insulating rubber sheet 1. It is formed by applying the selected rubber material to a thickness of about 50 to 150 μm by a general method such as a topping method. The variation in thickness is preferably ± 5 μm or less. This is because when the thickness variation (Rmax) exceeds 10 μm, the arrangement pitch of the conductive thin wires 3 tends to be disturbed. The rubber material is arbitrarily selected from the above types, and silicone rubber having excellent environmental resistance characteristics and mechanical characteristics is optimal. In order to obtain such first and second insulating rubber sheets 1 and 2, a rubber material kneaded with two or three calender rolls is made of a non-shrinkable (5% or less) base material such as PET. The method of dispensing on the sheet is good.
[0011]
The thickness of the first and second insulating rubber sheets 1 and 2 is too thick (approximately 200 μm or more), but the formability of bending into a U-shape deteriorates, and the shrinkage rate / working efficiency. Decreases. Further, (1) the thickness ratio is preferably smaller than the first insulating rubber sheet 1: the second insulating rubber sheet 2 = 1: 2. This is because warping occurs in the length direction of the product as it becomes larger (when the ratio of the first insulating rubber sheet 1 increases), resulting in a defective product. (2) The second insulating rubber sheet 2 preferably has a thickness of about 50 μm or more. Therefore, the thickness of the first insulating rubber sheet 1 is preferably about 25 μm or more.
[0012]
Therefore, the thickness of the first and second insulating rubber sheets 1 and 2 needs to satisfy the following four conditions simultaneously.
(1) The first insulating rubber sheet 1 has a thickness of about 25 μm or more. (2) The second insulating rubber sheet 2 has a thickness of about 50 μm or more. (3) First insulating rubber sheet 1: It is better that the second insulating rubber sheet 2 is smaller than 1: 2. (4) The total thickness of the first and second insulating rubber sheets 1 and 2 is about 200 μm or less.
Each conductive thin wire 3 is a metal thin wire made of gold, gold alloy, platinum, copper, aluminum, aluminum-silicon alloy, brass, white, phosphor bronze, beryllium copper, nickel, molybdenum, tungsten, stainless steel, or the like. Further, it is possible to use fine wires obtained by plating a material excellent in electrical conductivity and environmental resistance such as gold, gold alloy, and rhodium. Among these, metallic or gold-plated fine metal wires having excellent electrical conductivity, environmental resistance, and low contact characteristics are preferably used.
[0014]
When the diameter of the conductive thin wire 3 is too large, a fine wiring pitch cannot be obtained. When the conductive thin wire 3 is formed into an arc shape, the bending elasticity of the conductive thin wire 3 is too strong and the arc along the mold. Hard to form into shape. On the other hand, if the diameter is too small, it is easy to break during wiring. Therefore, the thickness of the conductive thin wire 3 is selected in the range of 3 to 500 μm, preferably 10 to 100 μm, and more preferably 15 to 50 μm, which is easy to mold and handle. Moreover, the thickness by which 30 to 80%, preferably 40 to 60% of the thin conductive wire 3 is embedded on the unvulcanized insulating rubber sheet is good.
[0015]
The insulating elastomer 5 is made of various elastomer materials, for example, butadiene-based copolymers such as butadiene-styrene, butadiene-acrylonitrile, butadiene-isobutylene, chloroprene polymers, vinyl chloride-vinyl acetate copolymers, polyurethane, silicone rubber, etc. Select and shape. Among these, as the elastomer material, silicone rubber that is excellent in heat resistance, cold resistance, weather resistance, electrical insulation, and nontoxic is preferable.
[0016]
Next, the manufacturing method of the pressure contact type connector will be described. First, a silicone rubber material is prepared, this silicone rubber material is sheeted on a long base sheet, heated and vulcanized, and then a first insulating rubber sheet. 1 is produced. When the first insulating rubber sheet 1 is produced in this way, another silicone rubber material is prepared, this silicone rubber material is seated on the first insulating rubber sheet 1 and the second insulating rubber sheet 2 is laminated. To do.
[0017]
Next, the plurality of conductive thin wires 3 are arranged in a predetermined pitch so as to be parallel to the longitudinal direction of the surface of the second insulating rubber sheet 2, and an excessive portion of the plurality of conductive thin wires 3 is removed. After preparing the plurality of conductive thin wires 3, the intermediate made up of the first and second insulating rubber sheets 1, 2 and the conductive thin wires 3 is heated in an oven for primary vulcanization, and the first insulating rubber sheet The base sheet is peeled off from 1 and heated again in the oven for secondary vulcanization, and the first and second insulating rubber sheets 1 and 2 are vulcanized and bonded, and the second insulating rubber sheet 2 A plurality of thin conductive wires 3 are vulcanized and bonded to the surface (see FIG. 2A). Then, the integrated intermediate body is cut so as to cross the plurality of thin conductive wires 3 and formed into a predetermined size (see FIG. 2B).
[0018]
Next, a three-dimensional sponge silicone rubber material 7 to be the insulating elastomer 5 is prepared and formed into a predetermined size (see FIG. 2C). When the sponge silicone rubber material 7 is formed in a predetermined size in this way, the intermediate body is set in a U-shaped cross section in the prepared lower mold 10 and the plurality of conductive thin wires 3 are directed downward. Sponge silicone rubber material 7 is set on the first insulating rubber sheet 1, the upper mold 11 is clamped on the lower mold 10 and heated under pressure (see FIG. 2 (d)). The rubber material 7 is foamed to form an insulating elastomer 5 that is in close contact with the first insulating rubber sheet 1 and is taken out from the mold lower mold 10 that has been opened.
[0019]
Then, post-curing is performed under predetermined conditions to produce a long temporary press-connecting connector as shown in FIG. 2 (e), and then the press-connecting connector is cut into a predetermined length to form a substantially block shape. A simple pressure contact type connector can be manufactured.
When the pressure contact type connector is manufactured in this way, the pressure contact type connector is sandwiched between the upper and lower circuit boards, and the upper circuit board is pressed down to electrically connect the circuit boards electrically and softly with the plurality of conductive thin wires 3. be able to.
[0020]
According to the above configuration, since the first insulating rubber sheet 1 is interposed between the insulating elastomer 5 and the second insulating rubber sheet 2 and exhibits a supporting function and a reinforcing function, the insulating elastomer 5 and the second insulating rubber sheet 1 Due to the difference in easiness of elongation of the two insulating rubber sheets 2, it is possible to prevent or suppress the pressure contact type connector from warping in the length direction after molding. Therefore, workability at the time of installation can be remarkably improved. In particular, since the pressure contact type connector does not warp even when the length is 20 mm or more, automatic assembly becomes possible, and significant cost reduction can be achieved through smoothing, speeding up, and facilitating work. Furthermore, since it is possible to connect to a circuit board or the like in a stable state by preventing the warpage from being suppressed, it is possible to obtain reliable conduction by the connection.
[0021]
Next, FIG. 3 shows an embodiment of the invention described in claim 4. In this case, the first and second layers in which the flexible insulating rubber sheets 6 are laminated by vulcanization adhesion are shown. Insulating rubber sheets 1 and 2, and a plurality of conductive thin wires 3 are arranged in parallel at a predetermined pitch in the surface length direction of the second insulating rubber sheet 2 to form a flexible conductive rubber sheet 4. The conductive rubber sheet 4 is laminated on a plate-like elastic insulating elastomer 5 and vulcanized and bonded, and a pair of horizontal circuit boards are electrically connected by a plurality of conductive thin wires 3 while being manufactured. Like to do.
The other parts are the same as those in the above embodiment, and the description thereof is omitted.
In the present embodiment, it is obvious that the same effect as the above embodiment can be expected, and that diversification of the pressure contact type connector can be greatly expected.
[0022]
In the above embodiment, nothing is formed on the back surface of the insulating elastomer 5, but an elastomer reinforcing plate, a support plate, or the like may be bonded to the back surface of the insulating elastomer 5. Further, the pair of circuit boards in the embodiment of the invention described in claim 3, in other words, the first and second electrical junctions may be provided in the vertical direction or the right angle direction.
[0023]
【Example】
Hereinafter, examples of the pressure contact type connector according to the present invention will be described together with comparative examples.
Example First, 100 parts by weight of silicone rubber compound KE-981U (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.3 parts by weight of vulcanizing agents C-19A and B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.), respectively. A silicone rubber material is prepared by adding 2.5 parts by weight, and the silicone rubber material is sheeted to a thickness of 50 μm on a non-stretchable long base sheet made of a PET sheet by a calender roll and heated. The first insulating rubber sheet was prepared.
[0024]
Next, 100 parts by weight of silicone rubber compound KE-153U (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) and 0.5 parts by weight of vulcanizing agents C-19A and B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) .25 parts by weight, silane coupling agent KBM403 [trade name, manufactured by Shin-Etsu Chemical Co., Ltd.] 1.0 part by weight was added to prepare a silicone rubber material. A second insulating rubber sheet was laminated on the sheet to a thickness of 100 μm.
[0025]
Next, conductive fine wires having a wire diameter of 40 μm made of brass wires plated with gold on the surface of the second insulating rubber sheet were arranged at a predetermined pitch, and the surplus portions of the plurality of conductive fine wires were removed and arranged. When arranging the plurality of conductive thin wires, if the conductive thin wires are arranged 30 mm at a pitch of 100 μm, the operation is shifted by 0.4 mm, and subsequently, the operation of arranging the conductive thin wires 30 mm at a pitch of 100 μm is repeated. A plurality of thin conductive wires were arranged on the entire surface.
[0026]
Next, the intermediate composed of the first and second insulating rubber sheets and the conductive thin wires is heated in an oven at 120 ° C. for 30 minutes for primary vulcanization, and the base sheet is peeled off from the first insulating rubber sheet. And heated in an oven at 195 ° C. for 4 hours to perform secondary vulcanization, vulcanize and bond the first and second insulating rubber sheets, and a plurality of conductive fine wires on the surface of the second insulating rubber sheet Vulcanized and bonded. And the integrated intermediate body was cut | disconnected so that a several conductive fine wire might be crossed, and it formed in the magnitude | size of width 8.0mm and length 300mm.
[0027]
Next, 100 parts by weight of silicone rubber compound KE-151U [trade name, manufactured by Shin-Etsu Chemical Co., Ltd.], 0.5 parts by weight of vulcanizing agents C-1, C-3 [trade name, manufactured by Shin-Etsu Chemical Co., Ltd.], 2 0.0 parts by weight and 1.8 parts by weight of a foaming agent 2,2-azobisisobutyronitrile were added and mixed to prepare a three-dimensional sponge silicone rubber material to be an insulating elastomer, and this sponge silicone rubber material was calendered Was sheeted to a predetermined thickness to obtain a predetermined size.
[0028]
Next, the intermediate body is set in a U-shaped cross section in the lower mold for molding so that the plurality of conductive fine wires face downward, and a sponge silicone rubber material is set on the first insulating rubber sheet. The upper mold for molding is clamped to the mold and heated at 175 ° C. for 5 minutes under a pressure of 10 kg / cm 2 to foam the sponge silicone rubber material to form an insulating elastomer that adheres closely to the first insulating rubber sheet. Then, it was taken out from the lower mold for molding.
[0029]
Then, post-curing was performed under the conditions of 200 ° C. for 1 hour to produce a temporary pressure contact type connector of ± 300 mm. The bending with respect to the surface in the length direction was 0.3 mm. This pressure contact type connector was cut at the above-mentioned locations shifted by 0.4 mm where the conductive thin wires were not arranged, and formed into a substantially block shape, thereby producing a pressure contact type connector. There was almost no bending with respect to the surface in the length direction of this press-contact type connector.
[0030]
Since the produced pressure contact type connector has almost no warp in the length direction, the workability at the time of assembly could be remarkably improved. In addition, automatic installation by an automatic installation device has become possible, and cost reduction has been achieved through smoothing, speeding up and facilitating work. In addition, the liquid crystal display, the circuit board, and the circuit boards can be connected in a stable state, and reliable connection of the circuit can be obtained by the connection.
[0031]
Comparative Example In the case of the conventional metal connector shown in FIG. 4, warping in the length direction occurred when the connector was long, and workability at the time of assembly was actually poor. Specifically, in the case of a metal connector having a length of 30 mm and a thickness of 2 mm, the warp with respect to the surface in the length direction reached 3 mm. In addition, it is extremely difficult to connect the liquid crystal display and the circuit board, and the circuit boards in a stable state, and it is almost impossible to obtain circuit continuity even when connected.
[0032]
【The invention's effect】
As described above, according to the present invention, since the first insulating rubber sheet is interposed between the insulating elastomer and the second insulating rubber sheet and exhibits a supporting function and a reinforcing function , the insulating elastomer and the second insulating rubber sheet Due to the difference in easiness of elongation of the two insulating rubber sheets, it is possible to prevent or suppress the pressure contact type connector from warping in the length direction after molding. Therefore, workability at the time of incorporation can be improved. In particular, since the pressure contact type connector does not warp even when it is 20 mm or longer, automatic assembly is possible, and cost reduction can be achieved through smoothing, speeding up, and facilitating work. Furthermore, since it is possible to connect to a circuit board or the like in a stable state by preventing the warpage from being suppressed, it is possible to obtain reliable conduction by the connection.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a pressure contact connector according to the present invention.
FIG. 2 is an explanatory view showing an embodiment of a manufacturing method of a pressure contact type connector according to the present invention . FIG. 2 (a) is a diagram showing a second insulating rubber obtained by vulcanizing and bonding first and second insulating rubber sheets. The perspective view which shows the state which carried out the vulcanization adhesion of the conductive fine wire to the sheet, (b) The state which cut the intermediate body which consists of the 1st and 2nd insulating rubber sheets and the conductive fine wire, and formed it in the predetermined size (C) is a perspective view showing a state in which a sponge silicone rubber material is prepared, and (d) is a diagram in which an intermediate body is set in a lower mold for molding and the conductive thin wire is directed downward, and the first insulation is shown. Sectional drawing which shows the state which set sponge silicone rubber material on the property rubber | gum sheet | seat, and clamped the upper mold for shaping | molding to the lower mold for shaping | molding, (e) The figure is a perspective view which shows a elongate press-contact type connector.
FIG. 3 is a perspective view showing another embodiment of the pressure contact connector according to the present invention.
FIG. 4 is a perspective view showing a conventional metal connector.
FIG. 5 is a perspective view showing a problem of a conventional metal connector.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st insulating rubber sheet 2 2nd insulating rubber sheet 3 Conductive thin wire 4 Conductive rubber sheet 5 Insulating elastomer 6 Insulating rubber sheet 7 Sponge silicone rubber material

Claims (1)

第一、第二の電気接合物を電気的に接続する長さ20mm以上の圧接型コネクタの製造方法であって、A method of manufacturing a press-contact connector having a length of 20 mm or more for electrically connecting the first and second electrical joints,
基材シート上にシーティングしたゴム材料を加熱加硫して第一の絶縁性ゴムシートを25〜50μmの厚さに形成し、この加熱硬化した第一の絶縁性ゴムシート上に別のゴム材料を厚さ50〜150μmにシーティングして未加硫の第二の絶縁性ゴムシートを積層形成する工程と、A rubber material sheeted on the base sheet is heated and vulcanized to form a first insulating rubber sheet having a thickness of 25 to 50 μm, and another rubber material is formed on the heat-cured first insulating rubber sheet. A step of sheeting to a thickness of 50 to 150 μm to form an unvulcanized second insulating rubber sheet,
未加硫の第二の絶縁性ゴムシートの表面に複数本の導電細線を所定のピッチで配列してその余剰部分を除去して整え、第一、第二の絶縁性ゴムシートと複数本の導電細線とを加熱して一次加硫し、その後、第一の絶縁性ゴムシートから基材シートを剥離して二次加硫することにより、第一、第二の絶縁性ゴムシートを75〜200μmの厚さに加硫接着して第一の絶縁性ゴムシートの厚さを25μm以上、第二の絶縁性ゴムシートの厚さを50μm以上とするとともに、第二の絶縁性ゴムシートの表面に複数本の導電細線を加硫接着して中間体を形成し、この中間体を所定の大きさに形成する工程と、A plurality of conductive thin wires are arranged at a predetermined pitch on the surface of the unvulcanized second insulating rubber sheet, and the excess portions are removed and arranged, and the first and second insulating rubber sheets and the plurality of The conductive thin wire is heated to perform primary vulcanization, and then the base sheet is peeled from the first insulating rubber sheet and subjected to secondary vulcanization, whereby the first and second insulating rubber sheets are 75 to 75%. The thickness of the first insulating rubber sheet is 25 μm or more by vulcanizing and bonding to a thickness of 200 μm, the thickness of the second insulating rubber sheet is 50 μm or more, and the surface of the second insulating rubber sheet A plurality of conductive wires are vulcanized and bonded to form an intermediate, and the intermediate is formed into a predetermined size; and
成形用下型内に中間体を断面略U字形にセットしてその複数本の導電細線を下向きとし、中間体の第一の絶縁性ゴムシート上にエラストマー材料をセットし、成形用下型内に成形用上型を型締めして加圧加熱することにより、エラストマー材料を発泡させて第一の絶縁性ゴムシートに密着する弾性の絶縁性エラストマーを略ブロック形に形成する工程と、In the lower mold for molding, the intermediate body is set to have a substantially U-shaped cross section, the plurality of conductive thin wires are directed downward, and an elastomer material is set on the first insulating rubber sheet of the intermediate body. A step of forming an elastic insulating elastomer in a substantially block shape by foaming the elastomer material and closely adhering to the first insulating rubber sheet by clamping and heating the upper mold for molding;
成形用下型から一体化した中間体と絶縁性エラストマーとを取り出した後、この一体化した中間体と絶縁性エラストマーとにポストキュアを施して圧接型コネクタを製造する工程とを含んでなることを特徴とする圧接型コネクタの製造方法。Removing the integrated intermediate and insulating elastomer from the lower mold for molding, and then post-curing the integrated intermediate and insulating elastomer to manufacture a pressure contact type connector. A manufacturing method of a pressure contact type connector characterized by.
JP2001319499A 2001-10-17 2001-10-17 Manufacturing method of pressure contact type connector Expired - Lifetime JP4024029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001319499A JP4024029B2 (en) 2001-10-17 2001-10-17 Manufacturing method of pressure contact type connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001319499A JP4024029B2 (en) 2001-10-17 2001-10-17 Manufacturing method of pressure contact type connector

Publications (2)

Publication Number Publication Date
JP2003123868A JP2003123868A (en) 2003-04-25
JP4024029B2 true JP4024029B2 (en) 2007-12-19

Family

ID=19137040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001319499A Expired - Lifetime JP4024029B2 (en) 2001-10-17 2001-10-17 Manufacturing method of pressure contact type connector

Country Status (1)

Country Link
JP (1) JP4024029B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3909771B2 (en) 2004-04-28 2007-04-25 日本航空電子工業株式会社 connector
JP2006228453A (en) 2005-02-15 2006-08-31 Japan Aviation Electronics Industry Ltd Connector
CN107482409B (en) * 2017-08-08 2019-06-25 上海联影医疗科技有限公司 Electric connector and medical image system

Also Published As

Publication number Publication date
JP2003123868A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
KR100614718B1 (en) Press-contact electrical interconnectors and method for producing the same
US6398899B1 (en) Method for manufacture of EMI shielding
JPH0668923A (en) Elastic connector
CN1307748C (en) Connecting unit including contactor having superior electrical conductivity and resilience, and method for producing the same
CN102484327B (en) The manufacture method of anisotropic electric conductor and anisotropic electric conductor and anisotropic electric conductor array chip
JPH0855648A (en) Elastomer connector
JP4024029B2 (en) Manufacturing method of pressure contact type connector
JP6778456B1 (en) Electrical connection member and glass plate structure with terminals
JPWO2020218520A1 (en) Electrical connection member and glass plate structure with terminals
JPH055657Y2 (en)
JPH06260234A (en) Anisotropic conductive elastic connector
JPWO2003079495A1 (en) Flexible good conductive layer and anisotropic conductive sheet using the same
JPH08203583A (en) Connector and manufacture thereof
JP3302635B2 (en) Electrical connector and method of manufacturing the same
JP3531724B2 (en) Pressure contact type electrical connector and method of manufacturing the same
JPH0644684Y2 (en) Dummy connector
WO2003079496A1 (en) Anisotropic conductive sheet and its manufacturing method
TW202208864A (en) Conductive particle and testing socket comprising the same
JP2000021470A (en) Conductive member and low compression/low resistance connector using the same
JP3318278B2 (en) Pressure contact type electrical connector and method of manufacturing the same
US6870116B2 (en) Push-button switch-use member and production method therefor
US12051879B2 (en) Connection component and connection structure
JP2002056908A (en) Electrical connector and its manufacturing method
JPH0685334B2 (en) Anisotropic conductive connector
JP2700090B2 (en) Method for manufacturing face-down connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4024029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250